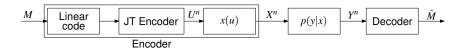
#### Towards an

# Algebraic Network Information Theory : Technical Lemmas

Sung Hoon Lim, Chen Feng, Adriano Pastore, Bobak Nazer, Michael Gastpar

KIOST — UBC — CTTC — BU — EPFL

CISS 2018, Princeton, N.J., U.S.A. — March 23



- Three components
  - ► (Auxiliary) linear code
  - Joint typicality encoder
  - ▶ Symbol-by-symbol mapping x(u)

### Outline

**Mismatched Typicality** 

**Nested Linear Codes** 

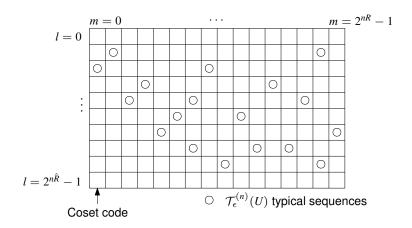
A Markov Lemma

#### Consider a random coding argument where :

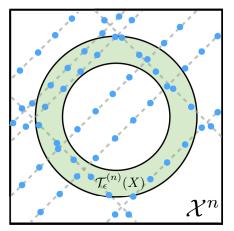
- first, a **base codebook** is drawn in such a way that every pair of codewords is drawn pairwise independently and that the (marginal) distribution of each codeword is IID  $\prod \tilde{p}_X(\cdot)$
- then, in that codebook, we only actually use those codewords that lie in the typical set of a different distribution p(x).

Note: The usual typicality argument simply has  $p_X(x) = \tilde{p}_X(x)$ .

### Random Linear Codebooks



### Random Linear Codebooks



Random Linear Codes

#### Lemma (Mismatched Typicality Lemma)

Let  $X \sim p_X(x)$  and let  $\tilde{p}_X(x)$  be another distribution on  $\mathcal X$  such that  $D_X = D(p_X \| \tilde{p}_X) < \infty$ . Then, for  $x^n \in \mathcal T_\epsilon^{(n)}(X)$ ,

$$2^{-n(D_X + H(X) + \delta(\epsilon))} \le \prod_{i=1}^n \tilde{p}_X(x_i) \le 2^{-n(D_X + H(X) - \delta(\epsilon))}.$$

Note: The usual typicality argument simply has  $p_X(x) = \tilde{p}_X(x)$ .

To prove the first statement, observe that,

 $\prod_{i=1}^n \tilde{p}_X(x_i) = \prod_{x \in \mathcal{X}} \tilde{p}_X(x)^{n\pi(x|x^n)}$ , where  $\pi(x|x^n)$  is the empirical pmf of  $x^n$ . Then,

$$\log \tilde{p}_X(x^n) = \sum_{x \in \mathcal{X}} n\pi(x|x^n) \log \tilde{p}_X(x)$$

$$= \sum_{x \in \mathcal{X}} n(\pi(x|x^n) - p_X(x) + p_X(x)) \log \tilde{p}_X(x)$$

$$= n \sum_{x \in \mathcal{X}} p_X(x) \log \tilde{p}_X(x) - n \sum_{x \in \mathcal{X}} (\pi(x|x^n) - p_X(x)) (-\log \tilde{p}_X(x))$$

$$= -n \left( D(p_X || \tilde{p}_X) + H(X) \right) - n \sum_{x \in \mathcal{X}} (\pi(x|x^n) - p_X(x)) \left( -\log \tilde{p}_X(x) \right)$$

Since  $x^n \in \mathcal{T}^{(n)}_{\epsilon}(X)$ ,

$$\left| \sum_{x \in \mathcal{X}} \left( \pi(x|x^n) - p_X(x) \right) \left( -\log \tilde{p}_X(x) \right) \right| \le \sum_{x \in \mathcal{X}} \left| \pi(x|x^n) - p_X(x) \right| \left( -\log \tilde{p}_X(x) \right)$$

$$\le -\epsilon \sum_{x \in \mathcal{X}} p_X(x) \log \tilde{p}_X(x)$$

$$= \epsilon (D(p_X || \tilde{p}_X) + H(X))$$

#### Lemma (Mismatched Joint Typicality Lemma)

Let  $(X,Y) \sim p_{X,Y}(x,y)$  and  $\tilde{p}_X(x)$  be another distribution on  $\mathcal{X}$  such that  $D(p_X\|\tilde{p}_X) < \infty$ . Let  $\epsilon' < \epsilon$ . Then, there exists  $\delta(\epsilon) > 0$  that tends to zero as  $\epsilon \to 0$  such that the following statement holds:

**1** If  $\tilde{y}^n$  is an arbitrary sequence and  $\tilde{X}^n \sim \prod_{i=1}^n \tilde{p}_X(\tilde{x}_i)$ , then

$$\mathsf{P}\{(\tilde{X}^n, \tilde{y}^n) \in \mathcal{T}^{(n)}_{\epsilon}(X, Y)\} \le 2^{-n(I(X; Y) + D(p_X || \tilde{p}_X) - \delta(\epsilon))}$$

2 If  $\tilde{y}^n \in \mathcal{T}^{(n)}_{\epsilon'}(Y)$  and  $\tilde{X}^n \sim \prod_{i=1}^n \tilde{p}_X(\tilde{x}_i)$ , then for n sufficiently large,

$$\mathsf{P}\{(\tilde{X}^n, \tilde{y}^n) \in \mathcal{T}^{(n)}_{\epsilon}(X, Y)\} \geq 2^{-n(I(X; Y) + D(p_X \| \tilde{p}_X) + \delta(\epsilon))}$$

The proof follows from the Mismatched Typicality Lemma and standard cardinality bounds on the conditional typical set  $\mathcal{T}^{(n)}_{\epsilon}(X|y^n)$ .

### Packing Lemma

#### Packing Lemma for mismatched distributions

- $(X,Y) \sim p_{X,Y}(x,y)$
- $\tilde{p}_X(x)$  is another distribution on  $\mathcal{X}$
- ullet  $ilde{Y}^n$  be an arbitrarily distributed random sequence
- Codebook  $\mathcal{C}$ :  $\tilde{X}^n(m) \sim \prod_{i=1}^n \tilde{p}_X(\tilde{x}_i)$ ,  $m \in [2^{nR}]$
- Codewords in  $\mathcal C$  are pairwise independent of  $Y^n$

Then,

$$\lim_{n\to\infty} \mathsf{P}\{(\tilde{X}^n(m),\tilde{Y}^n)\in \mathcal{T}^{(n)}_\epsilon(X,Y) \text{ for some } m\in\mathcal{C}\}=0,$$

if 
$$R < I(X;Y) + D(p_X || \tilde{p}_X) - \delta(\epsilon)$$

### Covering Lemma

#### Covering Lemma for mismatched distributions

- $(X, \hat{X}) \sim p_{X,\hat{X}}(x, \hat{x})$
- $\tilde{p}_{\hat{X}}(\hat{x})$  is another distribution on  $\hat{\mathcal{X}}$
- $X^n$  is a random sequence with  $\lim_{n\to\infty} \mathsf{P}\{X^n\in\mathcal{T}^{(n)}_\epsilon(X)\}=1$
- Codebook  $\mathcal{C}$ :  $\tilde{X}^n(m) \sim \prod_{i=1}^n \tilde{p}_{\hat{X}}(\hat{x}_i)$ ,  $m \in [2^{nR}]$
- ullet Codewords in  ${\mathcal C}$  are pairwise independent and independent of  $X^n$

Then,

$$\lim_{n\to\infty} \mathsf{P}\{(X^n,\tilde{X}^n(m))\in \mathcal{T}^{(n)}_\epsilon(X,\hat{X}) \text{ for some } m\in\mathcal{C}\}=1,$$

if 
$$R > I(X; \hat{X}) + D(p_X || \tilde{p}_X) + \delta(\epsilon)$$

# Covering Lemma — Proof

Let  $\mathcal{A}=\{m\in[1:2^{nR}]:(X^n,\tilde{X}^n(m))\in\mathcal{T}^{(n)}_\epsilon(X,\hat{X})\}.$  Then, by the Chebyshev lemma,

$$\mathsf{P}\{|\mathcal{A}|=0\} \le \frac{\mathrm{Var}(|\mathcal{A}|)}{(\mathsf{E}\,|\mathcal{A}|)^2}.$$

For  $m \in [1:2^{nR}]$ , define the indicator random variables

$$E(m) = \begin{cases} 1 & \text{if } (X^n, \tilde{X}^n(m)) \in \mathcal{T}_{\epsilon}^{(n)}(X, \hat{X}), \\ 0 & \text{otherwise,} \end{cases}$$

and let  $p_1 := P\{E(1) = 1\}$  and  $p_2 := P\{E(1) = 1, E(2) = 1\} = p_1^2$ .

### Covering Lemma — Proof

Then,

$$\begin{split} \mathsf{E}(|\mathcal{A}|) &= \sum_{m} \mathsf{P}\{(X^{n}, \tilde{X}(m)) \in \mathcal{T}_{\epsilon}^{(n)}(X, \hat{X})\} = 2^{nR}p_{1}, \\ \mathsf{E}(|\mathcal{A}|^{2}) &= \sum_{m} \mathsf{P}\{(X^{n}, \tilde{X}(m)) \in \mathcal{T}_{\epsilon}^{(n)}(X, \hat{X})\} \\ &+ \sum_{m} \sum_{m' \neq m} \mathsf{P}\{(X^{n}, \tilde{X}(m)) \in \mathcal{T}_{\epsilon}^{(n)}(X, \hat{X}), (X^{n}, \tilde{X}(m')) \in \mathcal{T}_{\epsilon}^{(n)}(X, \hat{X})\} \\ &\leq 2^{nR}p_{1} + 2^{n2R}p_{2} = 2^{nR}p_{1} + 2^{n2R}p_{1}^{2}. \end{split}$$

Thus,  $Var(|\mathcal{A}|) \leq 2^{nR} p_1$ .

### Covering Lemma — Proof

From the Joint Typicality Lemma, for sufficiently large n, we have

$$p_1 \le 2^{-n(I(X;\hat{X}) + D(p_X || \tilde{p}_X) - \delta(\epsilon))},$$
  
$$p_1 \ge 2^{-n(I(X;\hat{X}) + D(p_X || \tilde{p}_X) + \delta(\epsilon))},$$

and hence.

$$\frac{\operatorname{Var}(|\mathcal{A}|)}{(\mathsf{E}\,|\mathcal{A}|)^2} \le \frac{1}{2^{nR}p_1} \le 2^{-n(R-I(X;\hat{X})-D(p_X\|\tilde{p}_X)-\delta(\epsilon))},$$

which tends to zero as  $n \to \infty$  if

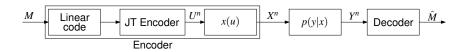
$$R > I(X; \hat{X}) + D(p_X || \tilde{p}_X) + \delta'(\epsilon).$$

### Outline

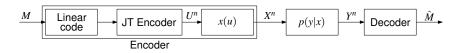
**Mismatched Typicality** 

**Nested Linear Codes** 

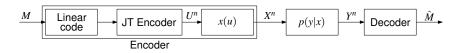
A Markov Lemma



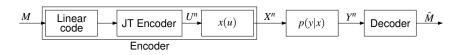
- Three components
  - ► (Auxiliary) linear code
  - Joint typicality encoder
  - ▶ Symbol-by-symbol mapping x(u)



• Messages  $m \in [2^{nR}]$ , auxiliary indices  $l \in [2^{n\hat{R}}]$ 



- Messages  $m \in [2^{nR}]$ , auxiliary indices  $l \in [2^{n\hat{R}}]$
- Represented in  $\mathbb{F}_{\mathbf{q}} \colon \left[ oldsymbol{
  u}(m), oldsymbol{
  u}(l) 
  ight] \in \mathbb{F}_{\mathbf{q}}^{\kappa}$



- Messages  $m \in [2^{nR}]$ , auxiliary indices  $l \in [2^{n\hat{R}}]$
- Represented in  $\mathbb{F}_{\mathbf{q}} \colon \left[ oldsymbol{
  u}(m), oldsymbol{
  u}(l) 
  ight] \in \mathbb{F}_{\mathbf{q}}^{\kappa}$
- Codebook construction:

$$u^{n}(m,l) = [\nu(m), \nu(l)] G \oplus d^{n}, \quad m \in [2^{nR}], l \in [2^{n\hat{R}}]$$

- Generator matrix  $G \in \mathbb{F}_q^{\kappa \times n}$ ,  $g_{ij} \sim p_q(g_{ij}) := \mathrm{Unif}(\mathbb{F}_q)$
- Dither  $d^n \in \mathbb{F}_q^n$ ,  $d_i \sim p_q(d_i)$

(Almost) all codewords are typical in the uniform typical set

$$u^n(m,l) \in \mathcal{T}^{(n)}_{\epsilon}(p_{\mathsf{q}})$$

(Almost) all codewords are typical in the uniform typical set

$$u^n(m,l) \in \mathcal{T}^{(n)}_{\epsilon}(p_{\mathsf{q}})$$

• "Shaping": Use codewords that are typical with respect to  $p_U$ 

(Almost) all codewords are typical in the uniform typical set

$$u^n(m,l) \in \mathcal{T}^{(n)}_{\epsilon}(p_{\mathsf{q}})$$

• "Shaping": Use codewords that are typical with respect to  $p_U$ 

#### Joint typicality encoding

Fix p(u) and x(u). For each m, find an index l such that  $u^n(m,l) \in \mathcal{T}^{(n)}_{\epsilon'}(U)$  and transmit  $x_i = x(u_i(m,l))$ :

(Almost) all codewords are typical in the uniform typical set

$$u^n(m,l) \in \mathcal{T}^{(n)}_{\epsilon}(p_{\mathsf{q}})$$

• "Shaping": Use codewords that are typical with respect to  $p_U$ 

#### Joint typicality encoding

Fix p(u) and x(u). For each m, find an index l such that  $u^n(m,l)\in\mathcal{T}^{(n)}_{\epsilon'}(U)$  and transmit  $x_i=x(u_i(m,l))$ : successful w.h.p. if

$$\hat{R} > D(p_U \| p_{\mathsf{q}})$$

### Covering Lemma

#### Covering Lemma for mismatched distributions

- $(X, \hat{X}) \sim p_{X,\hat{X}}(x, \hat{x})$
- $\tilde{p}_{\hat{X}}(\hat{x})$  is another distribution on  $\hat{\mathcal{X}}$
- $X^n$  is a random sequence with  $\lim_{n\to\infty} \mathsf{P}\{X^n\in\mathcal{T}^{(n)}_\epsilon(X)\}=1$
- Codebook  $\mathcal{C}$ :  $\tilde{X}^n(m) \sim \prod_{i=1}^n \tilde{p}_{\hat{X}}(\hat{x}_i)$ ,  $m \in [2^{nR}]$
- ullet Codewords in  ${\mathcal C}$  are pairwise independent and independent of  $X^n$

Then,

$$\lim_{n\to\infty} \mathsf{P}\{(X^n,\tilde{X}^n(m))\in\mathcal{T}^{(n)}_\epsilon(X,\hat{X}) \text{ for some } m\in\mathcal{C}\}=1,$$

if 
$$R > I(X; \hat{X}) + D(p_X || \tilde{p}_X) + \delta(\epsilon)$$

#### Joint typicality decoding

Find the unique index  $\hat{m}$  such that

$$(u^n(\hat{m},\hat{l}),y^n)\in\mathcal{T}^{(n)}_{\epsilon}(U,Y)$$

for some  $\hat{l}$ 

#### Joint typicality decoding

Find the unique index  $\hat{m}$  such that

$$(u^n(\hat{m},\hat{l}),y^n)\in\mathcal{T}^{(n)}_{\epsilon}(U,Y)$$

for some  $\hat{l}$ : successful w.h.p. if

$$R + \hat{R} < I(U;Y) + D(p_U || p_{\mathsf{q}})$$

#### Joint typicality decoding

Find the unique index  $\hat{m}$  such that

$$(u^n(\hat{m},\hat{l}),y^n)\in\mathcal{T}^{(n)}_{\epsilon}(U,Y)$$

for some  $\hat{l}$ : successful w.h.p. if

$$R + \hat{R} < I(U;Y) + D(p_U || p_q)$$

- Joint typicality lemmas for mismatched distributions
- · Covering and packing lemmas for mismatched distributions

ullet Eliminate  $\hat{R}$  in encoding and decoding conditions

$$\hat{R} > D(p_U || p_q), \qquad R + \hat{R} < I(U; Y) + D(p_U || p_q)$$

ullet Eliminate  $\hat{R}$  in encoding and decoding conditions

$$\hat{R} > D(p_U || p_q), \qquad R + \hat{R} < I(U; Y) + D(p_U || p_q)$$

#### Capacity

$$R < \max_{p(u), x(u)} I(U; Y)$$

- Observed by Miyake ('10), Padakandla-Pradhan ('13), in our work, plus probably elsewhere.
- "Shaping"  $p_X$  with  $p_U = p_X$  and U = X
- We only need  $q \ge |\mathcal{X}|$
- Analysis of linear codes for JT encoding/decoding is not so different from analysing IID codes

### Outline

**Mismatched Typicality** 

**Nested Linear Codes** 

A Markov Lemma

Given a distribution

$$p(x, u_1, u_2, \dots, u_K) = p(x) \prod_{k=1}^K p(u_k|x),$$

and a sequence  $x^n$ , consider K encoders, each selecting a codeword index  $\ell_k$  so that

$$(x^n, U_k^n(\ell_k)) \in \mathcal{T}_{\epsilon}^{(n)}(X, U_k).$$

We would like to infer that

$$(x^n, U_1^n(\ell_1), \dots, U_K^n(\ell_K)) \in \mathcal{T}_{\epsilon}^{(n)}(X, U_1, \dots, U_K).$$

If we look at a random coding argument ("code construction") for which it can be proved that each of the L codwords is selected uniformly and independently from the respective (conditionally) typical sets, we could use Problem 2.9 from Csiszar & Körner's textbook:

#### Lemma

Let  $V_1,\ldots,V_K$  be random variables that are conditionally independent given the random variable X. Then, for sufficiently small  $\epsilon'<\epsilon$  and  $x^n\in\mathcal{T}^{(n)}_{\epsilon'}(X)$ ,

$$\lim_{n\to\infty} \frac{\left|\mathcal{T}_{\epsilon'}^{(n)}(V_1|x^n)\times\cdots\times\mathcal{T}_{\epsilon'}^{(n)}(V_K|x^n)\cap\left(\mathcal{T}_{\epsilon}^{(n)}(V_1,\ldots,V_K|x^n)\right)^{\mathsf{c}}\right|}{\left|\mathcal{T}_{\epsilon'}^{(n)}(V_1|x^n)\times\cdots\times\mathcal{T}_{\epsilon'}^{(n)}(V_K|x^n)\right|} = 0.$$

For the nested linear code construction, the generator matrix G is shared between all users. Therefore, this cannot be used directly.

#### Lemma (Markov Lemma for Nested Linear Codes)

For sufficiently small  $\epsilon' < \epsilon$  and any  $x^n \in \mathcal{T}^{(n)}_{\epsilon'}(X)$ ,

$$\lim_{n \to \infty} P\{(x^n, U_1^n(L_1), \dots, U_K^n(L_k)) \in \mathcal{T}_{\epsilon}^{(n)}(X, U_1, \dots, U_K)\} = 1,$$

if

$$\hat{R}_k > I(U_k; X) + D(p_{U_k} || p_q) + \delta(\epsilon'), \quad k \in [1:K].$$

#### We prove this by establishing that :

- When the indices  $L_1, L_2, \ldots, L_K$ , expressed as vectors over  $\mathbb{F}_q^n$ , are *linearly independent*, then even though we use the same generator matrix, the codewords are chosen independently and uniformly.
- Then, we show that "there are not too many cases" where the indices are not independent.

Let  $\mathcal{S}_k$  be a subset of  $\mathbb{F}_q^n$ . For any subset  $\mathcal{S}$  of  $\mathcal{S}_1 \times \cdots \times \mathcal{S}_K$ , define

$$Z_{\mathcal{S}} := \sum_{(l_1, \dots, l_K)} \mathbf{1}((U_1^n(l_1), \dots, U_K^n(l_K)) \in \mathcal{S}),$$

i.e., the number of codeword tuples that fall in S. Since the codewords are uniformly distributed, the mean of  $Z_S$  is

$$\mu_{\mathcal{S}} = \frac{|\mathcal{S}|}{\mathsf{q}^{Kn - (n_1 + \dots + n_K)}},$$

where  $q^{n_k}$  is the size of the kth codebook.

Then, we establish via Chebyshev that

$$\begin{split} & \mathsf{P}\left\{|Z_{\mathcal{S}} - \mu_{\mathcal{S}}| \geq \frac{\gamma|\mathcal{S}_{1}|\cdots|\mathcal{S}_{K}|}{\mathsf{q}^{Kn - (n_{1} + \cdots + n_{K})}}\right\} \\ & \leq \frac{1}{\gamma^{2}}\left(\frac{\mathsf{q}^{Kn - (n_{1} + \cdots + n_{K})}}{|\mathcal{S}_{1}|\cdots|\mathcal{S}_{K}|} + \mathsf{q}^{K^{2}}\sum_{t=1}^{K-1}\sum_{1 \leq j_{1} < \cdots < j_{t} \leq K} \frac{\mathsf{q}^{n - n_{j_{1}}}}{|\mathcal{S}_{j_{1}}|} \cdots \frac{\mathsf{q}^{n - n_{j_{t}}}}{|\mathcal{S}_{j_{t}}|}\right). \end{split}$$

The key ingredient is

$$\mathsf{E}(Z_{\mathcal{S}}^2) = \sum_{l_1,\ldots,l_K,\tilde{l}_1,\ldots,\tilde{l}_K} \mathsf{P}\left\{(U_1^n(l_1),\ldots,U_K^n(l_K)) \in \mathcal{S}, (U_1^n(\tilde{l}_1),\ldots,U_K^n(\tilde{l}_K)) \in \mathcal{S}\right\}$$

# Some Concluding Thoughts

- Mismatched typicality can serve as a first tool to analyze nested linear codes.
- It exactly parallels the standard typicality methodology.
- In a multi-user setting, it appears that a more fine-grained analysis of the (nested linear) code construction is necessary.