Towards an

Algebraic Network Information Theory :

 Technical LemmasSung Hoon Lim, Chen Feng, Adriano Pastore, Bobak Nazer, Michael Gastpar
KIOST - UBC - CTTC - BU - EPFL
CISS 2018, Princeton, N.J., U.S.A. - March 23

Linear Coding + Multicoding Architecture

- Three components
- (Auxiliary) linear code
- Joint typicality encoder
- Symbol-by-symbol mapping $x(u)$

Outline

Mismatched Typicality

Nested Linear Codes

A Markov Lemma

"Mismatched Typicality"

Consider a random coding argument where :

- first, a base codebook is drawn in such a way that every pair of codewords is drawn pairwise independently and that the (marginal) distribution of each codeword is IID $\prod \tilde{p}_{X}(\cdot)$
- then, in that codebook, we only actually use those codewords that lie in the typical set of a different distribution $p(x)$.

Note: The usual typicality argument simply has $p_{X}(x)=\tilde{p}_{X}(x)$.

Random Linear Codebooks

Random Linear Codebooks

"Mismatched Typicality"

Lemma (Mismatched Typicality Lemma)

Let $X \sim p_{X}(x)$ and let $\tilde{p}_{X}(x)$ be another distribution on \mathcal{X} such that $D_{X}=D\left(p_{X} \| \tilde{p}_{X}\right)<\infty$. Then, for $x^{n} \in \mathcal{T}_{\epsilon}^{(n)}(X)$,

$$
2^{-n\left(D_{X}+H(X)+\delta(\epsilon)\right)} \leq \prod_{i=1}^{n} \tilde{p}_{X}\left(x_{i}\right) \leq 2^{-n\left(D_{X}+H(X)-\delta(\epsilon)\right)} .
$$

Note: The usual typicality argument simply has $p_{X}(x)=\tilde{p}_{X}(x)$.

"Mismatched Typicality"

To prove the first statement, observe that, $\prod_{i=1}^{n} \tilde{p}_{X}\left(x_{i}\right)=\prod_{x \in \mathcal{X}} \tilde{p}_{X}(x)^{n \pi\left(x \mid x^{n}\right)}$, where $\pi\left(x \mid x^{n}\right)$ is the empirical pmf of x^{n}. Then,

$$
\begin{aligned}
\log \tilde{p}_{X}\left(x^{n}\right) & =\sum_{x \in \mathcal{X}} n \pi\left(x \mid x^{n}\right) \log \tilde{p}_{X}(x) \\
& =\sum_{x \in \mathcal{X}} n\left(\pi\left(x \mid x^{n}\right)-p_{X}(x)+p_{X}(x)\right) \log \tilde{p}_{X}(x) \\
& =n \sum_{x \in \mathcal{X}} p_{X}(x) \log \tilde{p}_{X}(x)-n \sum_{x \in \mathcal{X}}\left(\pi\left(x \mid x^{n}\right)-p_{X}(x)\right)\left(-\log \tilde{p}_{X}(x)\right) \\
& =-n\left(D\left(p_{X} \| \tilde{p}_{X}\right)+H(X)\right)-n \sum_{x \in \mathcal{X}}\left(\pi\left(x \mid x^{n}\right)-p_{X}(x)\right)\left(-\log \tilde{p}_{X}(x)\right)
\end{aligned}
$$

"Mismatched Typicality"

Since $x^{n} \in \mathcal{T}_{\epsilon}^{(n)}(X)$,

$$
\begin{aligned}
\left|\sum_{x \in \mathcal{X}}\left(\pi\left(x \mid x^{n}\right)-p_{X}(x)\right)\left(-\log \tilde{p}_{X}(x)\right)\right| & \leq \sum_{x \in \mathcal{X}}\left|\pi\left(x \mid x^{n}\right)-p_{X}(x)\right|\left(-\log \tilde{p}_{X}(x)\right) \\
& \leq-\epsilon \sum_{x \in \mathcal{X}} p_{X}(x) \log \tilde{p}_{X}(x) \\
& =\epsilon\left(D\left(p_{X} \| \tilde{p}_{X}\right)+H(X)\right)
\end{aligned}
$$

"Mismatched Typicality"

Lemma (Mismatched Joint Typicality Lemma)

Let $(X, Y) \sim p_{X, Y}(x, y)$ and $\tilde{p}_{X}(x)$ be another distribution on \mathcal{X} such that $D\left(p_{X} \| \tilde{p}_{X}\right)<\infty$. Let $\epsilon^{\prime}<\epsilon$. Then, there exists $\delta(\epsilon)>0$ that tends to zero as $\epsilon \rightarrow 0$ such that the following statement holds:
(1) If \tilde{y}^{n} is an arbitrary sequence and $\tilde{X}^{n} \sim \prod_{i=1}^{n} \tilde{p}_{X}\left(\tilde{x}_{i}\right)$, then

$$
\mathrm{P}\left\{\left(\tilde{X}^{n}, \tilde{y}^{n}\right) \in \mathcal{T}_{\epsilon}^{(n)}(X, Y)\right\} \leq 2^{-n\left(I(X ; Y)+D\left(p_{X} \| \tilde{p}_{X}\right)-\delta(\epsilon)\right)}
$$

(2) If $\tilde{y}^{n} \in \mathcal{T}_{\epsilon^{\prime}}^{(n)}(Y)$ and $\tilde{X}^{n} \sim \prod_{i=1}^{n} \tilde{p}_{X}\left(\tilde{x}_{i}\right)$, then for n sufficiently large,

$$
\mathrm{P}\left\{\left(\tilde{X}^{n}, \tilde{y}^{n}\right) \in \mathcal{T}_{\epsilon}^{(n)}(X, Y)\right\} \geq 2^{-n\left(I(X ; Y)+D\left(p_{X} \| \tilde{p}_{X}\right)+\delta(\epsilon)\right)}
$$

The proof follows from the Mismatched Typicality Lemma and standard cardinality bounds on the conditional typical set $\mathcal{T}_{\epsilon}^{(n)}\left(X \mid y^{n}\right)$.

Packing Lemma

Packing Lemma for mismatched distributions

- $(X, Y) \sim p_{X, Y}(x, y)$
- $\tilde{p}_{X}(x)$ is another distribution on \mathcal{X}
- \tilde{Y}^{n} be an arbitrarily distributed random sequence
- Codebook $\mathcal{C}: \tilde{X}^{n}(m) \sim \prod_{i=1}^{n} \tilde{p}_{X}\left(\tilde{x}_{i}\right), m \in\left[2^{n R}\right]$
- Codewords in \mathcal{C} are pairwise independent of Y^{n}

Then,

$$
\begin{aligned}
& \quad \lim _{n \rightarrow \infty} \mathrm{P}\left\{\left(\tilde{X}^{n}(m), \tilde{Y}^{n}\right) \in \mathcal{T}_{\epsilon}^{(n)}(X, Y) \text { for some } m \in \mathcal{C}\right\}=0, \\
& \text { if } R<I(X ; Y)+D\left(p_{X} \| \tilde{p}_{X}\right)-\delta(\epsilon)
\end{aligned}
$$

Covering Lemma

Covering Lemma for mismatched distributions

- $(X, \hat{X}) \sim p_{X, \hat{X}}(x, \hat{x})$
- $\tilde{p}_{\hat{X}}(\hat{x})$ is another distribution on \hat{X}
- X^{n} is a random sequence with $\lim _{n \rightarrow \infty} \mathrm{P}\left\{X^{n} \in \mathcal{T}_{\epsilon}^{(n)}(X)\right\}=1$
- Codebook $\mathcal{C}: \tilde{X}^{n}(m) \sim \prod_{i=1}^{n} \tilde{p}_{\hat{X}}\left(\hat{x}_{i}\right), m \in\left[2^{n R}\right]$
- Codewords in \mathcal{C} are pairwise independent and independent of X^{n}

Then,

$$
\lim _{n \rightarrow \infty} \mathrm{P}\left\{\left(X^{n}, \tilde{X}^{n}(m)\right) \in \mathcal{T}_{\epsilon}^{(n)}(X, \hat{X}) \text { for some } m \in \mathcal{C}\right\}=1
$$

if $R>I(X ; \hat{X})+D\left(p_{X} \| \tilde{p}_{X}\right)+\delta(\epsilon)$

Covering Lemma - Proof

Let $\mathcal{A}=\left\{m \in\left[1: 2^{n R}\right]:\left(X^{n}, \tilde{X}^{n}(m)\right) \in \mathcal{T}_{\epsilon}^{(n)}(X, \hat{X})\right\}$. Then, by the
Chebyshev lemma,

$$
\mathrm{P}\{|\mathcal{A}|=0\} \leq \frac{\operatorname{Var}(|\mathcal{A}|)}{(\mathrm{E}|\mathcal{A}|)^{2}} .
$$

For $m \in\left[1: 2^{n R}\right]$, define the indicator random variables

$$
E(m)= \begin{cases}1 & \text { if }\left(X^{n}, \tilde{X}^{n}(m)\right) \in \mathcal{T}_{\epsilon}^{(n)}(X, \hat{X}) \\ 0 & \text { otherwise }\end{cases}
$$

and let $p_{1}:=\mathrm{P}\{E(1)=1\}$ and $p_{2}:=\mathrm{P}\{E(1)=1, E(2)=1\}=p_{1}^{2}$.

Covering Lemma - Proof

Then,

$$
\begin{aligned}
\mathrm{E}(|\mathcal{A}|)= & \sum_{m} \mathrm{P}\left\{\left(X^{n}, \tilde{X}(m)\right) \in \mathcal{T}_{\epsilon}^{(n)}(X, \hat{X})\right\}=2^{n R} p_{1}, \\
\mathrm{E}\left(|\mathcal{A}|^{2}\right)= & \sum_{m} \mathrm{P}\left\{\left(X^{n}, \tilde{X}(m)\right) \in \mathcal{T}_{\epsilon}^{(n)}(X, \hat{X})\right\} \\
& +\sum_{m} \sum_{m^{\prime} \neq m} \mathrm{P}\left\{\left(X^{n}, \tilde{X}(m)\right) \in \mathcal{T}_{\epsilon}^{(n)}(X, \hat{X}),\left(X^{n}, \tilde{X}\left(m^{\prime}\right)\right) \in \mathcal{T}_{\epsilon}^{(n)}(X, \hat{X})\right\} \\
\leq & 2^{n R} p_{1}+2^{n 2 R} p_{2}=2^{n R} p_{1}+2^{n 2 R} p_{1}^{2} .
\end{aligned}
$$

Thus, $\operatorname{Var}(|\mathcal{A}|) \leq 2^{n R} p_{1}$.

Covering Lemma - Proof

From the Joint Typicality Lemma, for sufficiently large n, we have

$$
\begin{aligned}
& p_{1} \leq 2^{-n\left(I(X ; \hat{X})+D\left(p_{X} \| \tilde{p}_{X}\right)-\delta(\epsilon)\right)} \\
& p_{1} \geq 2^{-n\left(I(X ; \hat{X})+D\left(p_{X} \| \tilde{p}_{X}\right)+\delta(\epsilon)\right)}
\end{aligned}
$$

and hence,

$$
\frac{\operatorname{Var}(|\mathcal{A}|)}{(\mathrm{E}|\mathcal{A}|)^{2}} \leq \frac{1}{2^{n R} p_{1}} \leq 2^{-n\left(R-I(X ; \hat{X})-D\left(p_{X} \| \tilde{p}_{X}\right)-\delta(\epsilon)\right)}
$$

which tends to zero as $n \rightarrow \infty$ if

$$
R>I(X ; \hat{X})+D\left(p_{X} \| \tilde{p}_{X}\right)+\delta^{\prime}(\epsilon) .
$$

Outline

Mismatched Typicality

Nested Linear Codes

A Markov Lemma

Linear Coding + Multicoding Architecture

- Three components
- (Auxiliary) linear code
- Joint typicality encoder
- Symbol-by-symbol mapping $x(u)$

Linear Coding + Multicoding Architecture

- Messages $m \in\left[2^{n R}\right]$, auxiliary indices $l \in\left[2^{n \hat{R}}\right]$

Linear Coding + Multicoding Architecture

- Messages $m \in\left[2^{n R}\right]$, auxiliary indices $l \in\left[2^{n \hat{R}}\right]$
- Represented in $\mathbb{F}_{\mathrm{q}}:[\boldsymbol{\nu}(m), \boldsymbol{\nu}(l)] \in \mathbb{F}_{\mathrm{q}}^{\kappa}$

Linear Coding + Multicoding Architecture

- Messages $m \in\left[2^{n R}\right]$, auxiliary indices $l \in\left[2^{n \hat{R}}\right]$
- Represented in $\mathbb{F}_{\mathrm{q}}:[\boldsymbol{\nu}(m), \boldsymbol{\nu}(l)] \in \mathbb{F}_{\mathrm{q}}^{\kappa}$
- Codebook construction:

$$
u^{n}(m, l)=[\boldsymbol{\nu}(m), \boldsymbol{\nu}(l)] \mathbf{G} \oplus d^{n}, \quad m \in\left[2^{n R}\right], l \in\left[2^{n \hat{R}}\right]
$$

- Generator matrix $\mathrm{G} \in \mathbb{F}_{\mathrm{q}}^{\kappa \times n}, g_{i j} \sim p_{\mathrm{q}}\left(g_{i j}\right):=\operatorname{Unif}\left(\mathbb{F}_{\mathrm{q}}\right)$
- Dither $d^{n} \in \mathbb{F}_{\mathrm{q}}^{n}, d_{i} \sim p_{\mathrm{q}}\left(d_{i}\right)$

Joint Typicality Encoding

- (Almost) all codewords are typical in the uniform typical set

$$
u^{n}(m, l) \in \mathcal{T}_{\epsilon}^{(n)}\left(p_{\mathbf{q}}\right)
$$

Joint Typicality Encoding

- (Almost) all codewords are typical in the uniform typical set

$$
u^{n}(m, l) \in \mathcal{T}_{\epsilon}^{(n)}\left(p_{\mathrm{q}}\right)
$$

- "Shaping": Use codewords that are typical with respect to p_{U}

Joint Typicality Encoding

- (Almost) all codewords are typical in the uniform typical set

$$
u^{n}(m, l) \in \mathcal{T}_{\epsilon}^{(n)}\left(p_{\mathbf{q}}\right)
$$

- "Shaping": Use codewords that are typical with respect to p_{U}

Joint typicality encoding

Fix $p(u)$ and $x(u)$. For each m, find an index l such that
$u^{n}(m, l) \in \mathcal{T}_{\epsilon^{\prime}}^{(n)}(U)$ and transmit $x_{i}=x\left(u_{i}(m, l)\right)$:

Joint Typicality Encoding

- (Almost) all codewords are typical in the uniform typical set

$$
u^{n}(m, l) \in \mathcal{T}_{\epsilon}^{(n)}\left(p_{\mathbf{q}}\right)
$$

- "Shaping": Use codewords that are typical with respect to p_{U}

Joint typicality encoding
Fix $p(u)$ and $x(u)$. For each m, find an index l such that
$u^{n}(m, l) \in \mathcal{T}_{\epsilon^{\prime}}^{(n)}(U)$ and transmit $x_{i}=x\left(u_{i}(m, l)\right)$: successful w.h.p. if

$$
\hat{R}>D\left(p_{U} \| p_{\mathbf{q}}\right)
$$

Covering Lemma

Covering Lemma for mismatched distributions

- $(X, \hat{X}) \sim p_{X, \hat{X}}(x, \hat{x})$
- $\tilde{p}_{\hat{X}}(\hat{x})$ is another distribution on \hat{X}
- X^{n} is a random sequence with $\lim _{n \rightarrow \infty} \mathrm{P}\left\{X^{n} \in \mathcal{T}_{\epsilon}^{(n)}(X)\right\}=1$
- Codebook $\mathcal{C}: \tilde{X}^{n}(m) \sim \prod_{i=1}^{n} \tilde{p}_{\hat{X}}\left(\hat{x}_{i}\right), m \in\left[2^{n R}\right]$
- Codewords in \mathcal{C} are pairwise independent and independent of X^{n}

Then,

$$
\lim _{n \rightarrow \infty} \mathrm{P}\left\{\left(X^{n}, \tilde{X}^{n}(m)\right) \in \mathcal{T}_{\epsilon}^{(n)}(X, \hat{X}) \text { for some } m \in \mathcal{C}\right\}=1
$$

if $R>I(X ; \hat{X})+D\left(p_{X} \| \tilde{p}_{X}\right)+\delta(\epsilon)$

Joint Typicality Decoding

Joint typicality decoding

Find the unique index \hat{m} such that

$$
\left(u^{n}(\hat{m}, \hat{l}), y^{n}\right) \in \mathcal{T}_{\epsilon}^{(n)}(U, Y)
$$

for some \hat{l}

Joint Typicality Decoding

Joint typicality decoding

Find the unique index \hat{m} such that

$$
\left(u^{n}(\hat{m}, \hat{l}), y^{n}\right) \in \mathcal{T}_{\epsilon}^{(n)}(U, Y)
$$

for some \hat{l} : successful w.h.p. if

$$
R+\hat{R}<I(U ; Y)+D\left(p_{U} \| p_{\mathrm{q}}\right)
$$

Joint Typicality Decoding

Joint typicality decoding

Find the unique index \hat{m} such that

$$
\left(u^{n}(\hat{m}, \hat{l}), y^{n}\right) \in \mathcal{T}_{\epsilon}^{(n)}(U, Y)
$$

for some \hat{l} : successful w.h.p. if

$$
R+\hat{R}<I(U ; Y)+D\left(p_{U} \| p_{\mathrm{q}}\right)
$$

- Joint typicality lemmas for mismatched distributions
- Covering and packing lemmas for mismatched distributions

Linear Coding + Multicoding Architecture

- Eliminate \hat{R} in encoding and decoding conditions

$$
\hat{R}>D\left(p_{U} \| p_{\mathrm{q}}\right), \quad R+\hat{R}<I(U ; Y)+D\left(p_{U} \| p_{\mathrm{q}}\right)
$$

Linear Coding + Multicoding Architecture

- Eliminate \hat{R} in encoding and decoding conditions

$$
\hat{R}>D\left(p_{U} \| p_{\mathrm{q}}\right), \quad R+\hat{R}<I(U ; Y)+D\left(p_{U} \| p_{\mathrm{q}}\right)
$$

Capacity

$$
R<\max _{p(u), x(u)} I(U ; Y)
$$

- Observed by Miyake ('10), Padakandla-Pradhan ('13), in our work, plus probably elsewhere.
- "Shaping" p_{X} with $p_{U}=p_{X}$ and $U=X$
- We only need $\mathrm{q} \geq|\mathcal{X}|$
- Analysis of linear codes for JT encoding/decoding is not so different from analysing IID codes

Outline

Mismatched Typicality

Nested Linear Codes

A Markov Lemma

A Markov Lemma

Given a distribution

$$
p\left(x, u_{1}, u_{2}, \ldots, u_{K}\right)=p(x) \prod_{k=1}^{K} p\left(u_{k} \mid x\right)
$$

and a sequence x^{n}, consider K encoders, each selecting a codeword index ℓ_{k} so that

$$
\left(x^{n}, U_{k}^{n}\left(\ell_{k}\right)\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(X, U_{k}\right) .
$$

We would like to infer that

$$
\left(x^{n}, U_{1}^{n}\left(\ell_{1}\right), \ldots, U_{K}^{n}\left(\ell_{K}\right)\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(X, U_{1}, \ldots, U_{K}\right)
$$

A Markov Lemma

If we look at a random coding argument ("code construction") for which it can be proved that each of the L codwords is selected uniformly and independently from the respective (conditionally) typical sets, we could use Problem 2.9 from Csiszar \& Körner's textbook:

Lemma

Let V_{1}, \ldots, V_{K} be random variables that are conditionally independent given the random variable X. Then, for sufficiently small $\epsilon^{\prime}<\epsilon$ and $x^{n} \in \mathcal{T}_{\epsilon^{\prime}}^{(n)}(X)$,

$$
\lim _{n \rightarrow \infty} \frac{\left|\mathcal{T}_{\epsilon^{\prime}}^{(n)}\left(V_{1} \mid x^{n}\right) \times \cdots \times \mathcal{T}_{\epsilon^{\prime}}^{(n)}\left(V_{K} \mid x^{n}\right) \cap\left(\mathcal{T}_{\epsilon}^{(n)}\left(V_{1}, \ldots, V_{K} \mid x^{n}\right)\right)^{c}\right|}{\left|\mathcal{T}_{\epsilon^{\prime}}^{(n)}\left(V_{1} \mid x^{n}\right) \times \cdots \times \mathcal{T}_{\epsilon^{\prime}}^{(n)}\left(V_{K} \mid x^{n}\right)\right|}=0 .
$$

For the nested linear code construction, the generator matrix G is shared between all users. Therefore, this cannot be used directly.

A Markov Lemma

Lemma (Markov Lemma for Nested Linear Codes)

For sufficiently small $\epsilon^{\prime}<\epsilon$ and any $x^{n} \in \mathcal{T}_{\epsilon^{\prime}}^{(n)}(X)$,

$$
\lim _{n \rightarrow \infty} \mathrm{P}\left\{\left(x^{n}, U_{1}^{n}\left(L_{1}\right), \ldots, U_{K}^{n}\left(L_{k}\right)\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(X, U_{1}, \ldots, U_{K}\right)\right\}=1
$$

if

$$
\hat{R}_{k}>I\left(U_{k} ; X\right)+D\left(p_{U_{k}} \| p_{\mathrm{q}}\right)+\delta\left(\epsilon^{\prime}\right), \quad k \in[1: K] .
$$

A Markov Lemma

We prove this by establishing that :

- When the indices $L_{1}, L_{2}, \ldots, L_{K}$, expressed as vectors over $\mathbb{F}_{\mathrm{q}}^{n}$, are linearly independent, then even though we use the same generator matrix, the codewords are chosen indepedently and uniformly.
- Then, we show that "there are not too many cases" where the indices are not independent.

A Markov Lemma

Let \mathcal{S}_{k} be a subset of $\mathbb{F}_{\mathrm{q}}^{n}$. For any subset \mathcal{S} of $\mathcal{S}_{1} \times \cdots \times \mathcal{S}_{K}$, define

$$
Z_{\mathcal{S}}:=\sum_{\left(l_{1}, \ldots, l_{K}\right)} \mathbf{1}\left(\left(U_{1}^{n}\left(l_{1}\right), \ldots, U_{K}^{n}\left(l_{K}\right)\right) \in \mathcal{S}\right),
$$

i.e., the number of codeword tuples that fall in \mathcal{S}. Since the codewords are uniformly distributed, the mean of $Z_{\mathcal{S}}$ is

$$
\mu_{\mathcal{S}}=\frac{|\mathcal{S}|}{\mathrm{q}^{K n-\left(n_{1}+\cdots+n_{K}\right)}},
$$

where $\mathrm{q}^{n_{k}}$ is the size of the k th codebook.

A Markov Lemma

Then, we establish via Chebyshev that

$$
\begin{aligned}
& \mathrm{P}\left\{\left|Z_{\mathcal{S}}-\mu_{\mathcal{S}}\right| \geq \frac{\gamma\left|\mathcal{S}_{1}\right| \cdots\left|\mathcal{S}_{K}\right|}{\mathrm{q}^{K n-\left(n_{1}+\cdots+n_{K}\right)}}\right\} \\
& \leq \frac{1}{\gamma^{2}}\left(\frac{\mathrm{q}^{K n-\left(n_{1}+\cdots+n_{K}\right)}}{\left|\mathcal{S}_{1}\right| \cdots\left|\mathcal{S}_{K}\right|}+\mathrm{q}^{K^{2}} \sum_{t=1}^{K-1} \sum_{1 \leq j_{1}<\cdots<j_{t} \leq K} \frac{\mathrm{q}^{n-n_{j_{1}}}}{\left|\mathcal{S}_{j_{1}}\right|} \cdots \frac{\mathrm{q}^{n-n_{j_{t}}}}{\left|\mathcal{S}_{j_{t}}\right|}\right) .
\end{aligned}
$$

The key ingredient is

$$
\mathrm{E}\left(Z_{\mathcal{S}}^{2}\right)=\quad \sum_{\sim} \mathrm{P}\left\{\left(U_{1}^{n}\left(l_{1}\right), \ldots, U_{K}^{n}\left(l_{K}\right)\right) \in \mathcal{S},\left(U_{1}^{n}\left(\tilde{l}_{1}\right), \ldots, U_{K}^{n}\left(\tilde{l}_{K}\right)\right) \in \mathcal{S}\right\}
$$

Some Concluding Thoughts

- Mismatched typicality can serve as a first tool to analyze nested linear codes.
- It exactly parallels the standard typicality methodology.
- In a multi-user setting, it appears that a more fine-grained analysis of the (nested linear) code construction is necessary.

