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Linear Coding + Multicoding Architecture
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e Three components

» (Auxiliary) linear code
» Joint typicality encoder
» Symbol-by-symbol mapping z(u)
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“Mismatched Typicality”

Consider a random coding argument where :

o first, a base codebook is drawn in such a way that every pair of
codewords is drawn pairwise independently and that the (marginal)
distribution of each codeword is IID [[px ()

e then, in that codebook, we only actually use those codewords that lie in

the typical set of a different distribution p(x).

Note: The usual typicality argument simply has px (z) = px ().
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Random Linear Codebooks
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Random Linear Codebooks

Random Linear Codes
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“Mismatched Typicality”

Lemma (Mismatched Typicality Lemma)

Let X ~ px(z) and let px(x) be another distribution on X such that
Dx = D(px||fx) < oo. Then, for z" € T™(X),

n
9—n(Dx+H(X)+6(e)) < H < 9~UDx+H(X)=8(e))

Note: The usual typicality argument simply has px (z) = px ().

Mismatched Typicality



“Mismatched Typicality”

To prove the first statement, observe that,
[T px (i) = [T e Px (z)""(1=") where 7(x|z") is the empirical pmf of
z™. Then,

log px (z Z;(mr |z") log px ()
i{ px(x) + px(2))log px (x)
ZEZXPX( ) log fix (« *”ZX m(z|z") = px(2)) (- log px (x))
= e( D(pxllpx) + H(X —ZZ (z|z") (2)) (= log px (x))

zeX
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“Mismatched Typicality”

Since 2" € T (X),

> (w(@la") = px (@) (= logx ()| < Y |m(a]a™) ()| (—log px (x))
TeEX reX

—€ > px()logpx (v

reX

= e(D(pxIpx) + H(X))
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“Mismatched Typicality”

Lemma (Mismatched Joint Typicality Lemma)

Let (X,Y) ~pxy(z,y) and px(x) be another distribution on X such that
D(px||px) < co. Let € < €. Then, there exists §(¢) > 0 that tends to zero

as € — 0 such that the following statement holds:

© If§" is an arbitrary sequence and X™ ~ [T, px(Z;), then
P{(X", ") € 7;(71) (X,Y)} < 9—n(I(X;Y)+D(px [Ipx)—5(€))

® Ify" e 7;(/n)(Y) and X" ~ T[], px (%), then for n sufficiently large,
P{(X™, ) € TM(X,Y)} > 2~ "X+ DEx 15x)+5(0)

The proof follows from the Mismatched Typicality Lemma and standard
cardinality bounds on the conditional typical set 7™ (X|y™).

Mismatched Typicality



Packing Lemma

Packing Lemma for mismatched distributions

© (va) NpX,Y(xay)
e px(z) is another distribution on X’
e Y™ be an arbitrarily distributed random sequence

Codebook C: X™(m) ~ [T, px (%), m € [2"F]

Codewords in C are pairwise independent of Y

Then,
lim P{(X"(m),Y™) € T\™(X,Y) for some m € C} = 0,

n—o0

if R<I(X;Y)+ D(px|px) — 6(e)
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Covering Lemma

Covering Lemma for mismatched distributions
(XaX) NpX7X("E7i‘)

Dy (Z) is another distribution on X

X" is a random sequence with lim, o P{X™ € T{™ (X))} = 1

Codebook C: X™(m) ~ [[I, pg (1), m € [2"F]

e Codewords in C are pairwise independent and independent of X"

Then,
lim P{(X"™, X"(m)) € T\™ (X, X) for some m € C} =1,

n— oo

if R> I(X; X) + D(px||px) + d(e)
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Covering Lemma — Proof

Let A= {m e [l:2"8]: (X", X"(m)) € T{™ (X, X)}. Then, by the

Chebyshev lemma,

Var(JA|)
(EJA[)?-

P{IA] =0} <
For m € [1 : 2"F], define the indicator random variables

. n wyn (n) %
Bm) {1 if (X", X"(m)) e TX(X, X),

0 otherwise,

and let py := P{E(1) = 1} and py := P{E(1) = 1, E(2) = 1} = pi.
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Covering Lemma — Proof

Then,
E(JA) Z P{(X", X(m)) e T (X, X)} = 2"Fp,,
E(|A%) Z P{(X", X(m)) e T (X, X)}

+Z > P{(X", X(m) € TW(X, X), (X", X(m)) € TW (X, X)
m m/#m

S 2an1 + 2'(12Rp2 _ Qanl + 2n2Rp%'

Thus, Var(|A]) < 2"8p,.
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Covering Lemma — Proof

From the Joint Typicality Lemma, for sufficiently large n, we have

n S2_n(I(X;X‘)+D(pxHﬁx)—ts(ﬁ))’

m > 2771(I(X;X)*FD(PXHISX)Jr(S(E))7

and hence,

Var([A) o 1 5on(R-1(550)-Doxllpx)-5(0),
(EJA]? = 2nftp, =

which tends to zero as n — oo if

R > I(X; X) + D(px|[px) + &' (€).
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Linear Coding + Multicoding Architecture
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e Three components

» (Auxiliary) linear code

» Joint typicality encoder

» Symbol-by-symbol mapping z(u)
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Linear Coding + Multicoding Architecture

M Linear
code

JT Encoder

n

x(u)

X"

pylx)

Y"

Decoder

o Messages m € [2"], auxiliary indices | € [2"F]

Encoder
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Linear Coding + Multicoding Architecture

M i n X" n
Linear u pOl) - Decoder Y~

code [ JT Encoder — x(u)

Encoder

o Messages m € [2"], auxiliary indices | € [2"F]

e Represented in Fq: [v(m),v(l)] € F¥
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Linear Coding + Multicoding Architecture

. " . )
" Légggr JT Encoder |-+ x(u) X pOl) | Decoder |-
Encoder
o Messages m € [2"B], auxiliary indices [ € [2"%]

Represented in Fq: [v(m),v(l)] € Fs

Codebook construction:

u(m,1) = [v(m),v()]G&d", me 2"l 27

Generator matrix G € Fq"“X", Gij ~ DPq(gi;) = Unif(Fq)
Dither d" € Fy, di ~ pq(d;)
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Joint Typicality Encoding

o (Almost) all codewords are typical in the uniform typical set

u(m,1) € T (pq)
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Joint Typicality Encoding

o (Almost) all codewords are typical in the uniform typical set

u(m,1) € T (pq)

e “Shaping”: Use codewords that are typical with respect to py
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Joint Typicality Encoding

o (Almost) all codewords are typical in the uniform typical set
u(m,1) € T4 (p)

e “Shaping”: Use codewords that are typical with respect to py

Joint typicality encoding
Fix p(u) and z(u). For each m, find an index [ such that
u(m,l) € 7;(/n)(U) and transmit z; = z(u;(m,1)):
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Joint Typicality Encoding

o (Almost) all codewords are typical in the uniform typical set
u(m,1) € T4 (p)

e “Shaping”: Use codewords that are typical with respect to py

Joint typicality encoding

Fix p(u) and z(u). For each m, find an index [ such that

u(m,l) € 7;(/n)(U) and transmit z; = x(u;(m,1)): successful w.h.p.
if
R > D(pulipq)
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Covering Lemma

Covering Lemma for mismatched distributions
(XaX) NpX7X("E7i‘)

Dy (Z) is another distribution on X

X" is a random sequence with lim, o P{X™ € T{™ (X))} = 1

Codebook C: X™(m) ~ [[I, pg (1), m € [2"F]

e Codewords in C are pairwise independent and independent of X"

Then,
lim P{(X"™, X"(m)) € T\™ (X, X) for some m € C} =1,

n— oo

if R> I(X; X) + D(px||px) + d(e)
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Joint Typicality Decoding

Joint typicality decoding

Find the unique index m such that
(w"(m,1),y™) € TM(U,Y)

for some [
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Joint Typicality Decoding

Joint typicality decoding

Find the unique index m such that
(w"(m,1),y™) € TM(U,Y)

for some [: successful w.h.p. if
R+ R < I(U;Y) + D(py

Pq)
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Joint Typicality Decoding

Joint typicality decoding

Find the unique index m such that
(w"(m,1),y™) € TM(U,Y)

for some [: successful w.h.p. if
R+ R < I(U;Y) + D(py

Pq)

e Joint typicality lemmas for mismatched distributions

e Covering and packing lemmas for mismatched distributions
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Linear Coding + Multicoding Architecture

e Eliminate R in encoding and decoding conditions

R>D(pylps), R+ R<IU:;Y)+ D(py|py)
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Linear Coding 4+ Multicoding Architecture

e Eliminate R in encoding and decoding conditions

R>D(pylps), R+ R<IU:;Y)+ D(py|py)

R< max I(U;Y)
p(u),z(u)

Observed by Miyake ('10), Padakandla-Pradhan ('13), in our work, plus

probably elsewhere.

“Shaping” px with py =px and U = X

We only need q > |X|

Analysis of linear codes for JT encoding/decoding is not so different from

analysing ID codes
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A Markov Lemma

Given a distribution

p(z,ur,ug, ... uk plug|z),

H::]N

and a sequence z'™, consider K encoders, each selecting a codeword index

so that
(2™, U (6)) € TIV(X, Uy).
We would like to infer that

(Ian{l(el)v .. 7UI%(€K)) € t(n)(Xv Ula cey UK)
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A Markov Lemma

If we look at a random coding argument ( “code construction™) for which it
can be proved that each of the L codwords is selected uniformly and
independently from the respective (conditionally) typical sets, we could use

Problem 2.9 from Csiszar & Korner's textbook:

Lemma

Let Vi,...,Vk be random variables that are conditionally independent given
the random variable X. Then, for sufficiently small € < ¢ and x™ € T(")( X),

L T W) x - x TP Vi) 0 (T (W, Viele™) |

o) ™ =0.
nee T2 (Valan) x - x TS (Viglam)|

For the nested linear code construction, the generator matrix G is shared

between all users. Therefore, this cannot be used directly.
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A Markov Lemma

Lemma (Markov Lemma for Nested Linear Codes)

For sufficiently small € < € and any z™ € TS (X),

lim P{(z",U7(L1),--.,Uk(Ly)) € TV(X, Uy, Uk)} = 1,
n—oo

if

Ry > I(Ux; X) + D(pu, Ipg) + 6(€'), ke [L:K].
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A Markov Lemma

We prove this by establishing that :

e When the indices Ly, Lo, ..., Lk, expressed as vectors over F¢, are linearly
independent, then even though we use the same generator matrix, the

codewords are chosen indepedently and uniformly.

e Then, we show that “there are not too many cases” where the indices are

not independent.
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A Markov Lemma

Let S be a subset of IFy. For any subset S of S; x -+ X Sk, define
Zs:= > UML), .Uklk)) €8),
(ll,...,lK)

i.e., the number of codeword tuples that fall in S. Since the codewords are

uniformly distributed, the mean of Zg is

_ S|
Hs = qan(n1+~~+nK)’

where q"* is the size of the kth codebook.
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A Markov Lemma

Then, we establish via Chebyshev that

VIS - - |Sk]
P{|ZS_MS > m

1 Kn—(ni+-+ng) 2 K-1 q" " qn e
Sz T +q" Z Z S| S,
Y |S1] - - |Sk| =1 1<ji<--<ji<K | J1| | Jt‘
The key ingredient is
E(Z%) = > P{UrW),...,.Up(lk)) €S, (UF),...,Up(ix)) € S}

| PIN FO PN
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Some Concluding Thoughts

e Mismatched typicality can serve as a first tool to analyze nested linear

codes.
o |t exactly parallels the standard typicality methodology.

e In a multi-user setting, it appears that a more fine-grained analysis of the

(nested linear) code construction is necessary.
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