Towards an Algebraic Network Information Theory: Part II. Simultaneous Decoding

Bobak Nazer
BU

Sung Hoon Lim Chen Feng Adriano Pastore Michael Gastpar KIOST UBC CTTC
EPFL

CISS 2018
March 23, 2018

Algebraic Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Algebraic Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Algebraic Approach:

- Utilize linear or lattice codebooks.

Algebraic Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Algebraic Approach:

- Utilize linear or lattice codebooks.
- Compelling examples starting from the work of Körner and Marton on distributed compression and, more recently, many papers on physical-layer network coding, distributed dirty-paper coding, and interference alignment.

Algebraic Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Algebraic Approach:

- Utilize linear or lattice codebooks.
- Compelling examples starting from the work of Körner and Marton on distributed compression and, more recently, many papers on physical-layer network coding, distributed dirty-paper coding, and interference alignment.
- Coding schemes exhibit behavior not found via i.i.d. ensembles.

Algebraic Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Algebraic Approach:

- Utilize linear or lattice codebooks.
- Compelling examples starting from the work of Körner and Marton on distributed compression and, more recently, many papers on physical-layer network coding, distributed dirty-paper coding, and interference alignment.
- Coding schemes exhibit behavior not found via i.i.d. ensembles.
- However, some classical coding techniques are still unavailable.

Algebraic Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Algebraic Approach:

- Utilize linear or lattice codebooks.
- Compelling examples starting from the work of Körner and Marton on distributed compression and, more recently, many papers on physical-layer network coding, distributed dirty-paper coding, and interference alignment.
- Coding schemes exhibit behavior not found via i.i.d. ensembles.
- However, some classical coding techniques are still unavailable.
- Most of the initial efforts have focused on Gaussian networks.

Algebraic Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Algebraic Approach:

- Utilize linear or lattice codebooks.
- Compelling examples starting from the work of Körner and Marton on distributed compression and, more recently, many papers on physical-layer network coding, distributed dirty-paper coding, and interference alignment.
- Coding schemes exhibit behavior not found via i.i.d. ensembles.
- However, some classical coding techniques are still unavailable.
- Most of the initial efforts have focused on Gaussian networks.
- Are these just a collection of intriguing examples or elements of a more general theory?

Algebraic Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Algebraic Approach:

- Utilize linear or lattice codebooks.
- Compelling examples starting from the work of Körner and Marton on distributed compression and, more recently, many papers on physical-layer network coding, distributed dirty-paper coding, and interference alignment.
- Coding schemes exhibit behavior not found via i.i.d. ensembles.
- However, some classical coding techniques are still unavailable.
- Most of the initial efforts have focused on Gaussian networks.
- Are these just a collection of intriguing examples or elements of a more general theory?
- Recent efforts, starting with Padakandla-Pradhan '13, demonstrate that nested linear codes can be brought into the powerful framework of joint typicality encoding and decoding.

Multiple-Access Channels

Problem Statement:

- Transmitter k has a message $m_{k} \in\left[2^{n R_{k}}\right] \triangleq\left\{0, \ldots, 2^{n R_{k}}-1\right\}$

Multiple-Access Channels

Problem Statement:

- Transmitter k has a message $m_{k} \in\left[2^{n R_{k}}\right] \triangleq\left\{0, \ldots, 2^{n R_{k}}-1\right\}$

Multiple-Access Channels

Problem Statement:

- Transmitter k has a message $m_{k} \in\left[2^{n R_{k}}\right] \triangleq\left\{0, \ldots, 2^{n R_{k}}-1\right\}$
- R_{k} is the rate (in bits/channel use)

Multiple-Access Channels

Problem Statement:

- Transmitter k has a message $m_{k} \in\left[2^{n R_{k}}\right] \triangleq\left\{0, \ldots, 2^{n R_{k}}-1\right\}$
- R_{k} is the rate (in bits/channel use)
- Encoder k : assigns codeword $x_{k}^{n}\left(m_{k}\right) \in \mathcal{X}_{k}^{n}$ to each $m_{k} \in\left[2^{n R_{k}}\right]$

Multiple-Access Channels

Problem Statement:

- Transmitter k has a message $m_{k} \in\left[2^{n R_{k}}\right] \triangleq\left\{0, \ldots, 2^{n R_{k}}-1\right\}$
- R_{k} is the rate (in bits/channel use)
- Encoder k : assigns codeword $x_{k}^{n}\left(m_{k}\right) \in \mathcal{X}_{k}^{n}$ to each $m_{k} \in\left[2^{n R_{k}}\right]$
- Memoryless Channel: $p_{Y^{n} \mid X_{1}^{n}, X_{2}^{n}}\left(y^{n} \mid x_{1}^{n}, x_{2}^{n}\right)=\prod_{i=1}^{n} p_{Y \mid X_{1}, X_{2}}\left(y_{i} \mid x_{1, i} x_{2, i}\right)$

Multiple-Access Channels

Problem Statement:

- Transmitter k has a message $m_{k} \in\left[2^{n R_{k}}\right] \triangleq\left\{0, \ldots, 2^{n R_{k}}-1\right\}$
- R_{k} is the rate (in bits/channel use)
- Encoder k : assigns codeword $x_{k}^{n}\left(m_{k}\right) \in \mathcal{X}_{k}^{n}$ to each $m_{k} \in\left[2^{n R_{k}}\right]$
- Memoryless Channel: $p_{Y^{n} \mid X_{1}^{n}, X_{2}^{n}}\left(y^{n} \mid x_{1}^{n}, x_{2}^{n}\right)=\prod_{i=1}^{n} p_{Y \mid X_{1}, X_{2}}\left(y_{i} \mid x_{1, i} x_{2, i}\right)$
- Decoder: assigns estimates $\left(\hat{m}_{1}, \hat{m}_{2}\right)$ to each $y^{n} \in \mathcal{Y}^{n}$

Multiple-Access Channels

Problem Statement:

- Transmitter k has a message $m_{k} \in\left[2^{n R_{k}}\right] \triangleq\left\{0, \ldots, 2^{n R_{k}}-1\right\}$
- R_{k} is the rate (in bits/channel use)
- Encoder k : assigns codeword $x_{k}^{n}\left(m_{k}\right) \in \mathcal{X}_{k}^{n}$ to each $m_{k} \in\left[2^{n R_{k}}\right]$
- Memoryless Channel: $p_{Y^{n} \mid X_{1}^{n}, X_{2}^{n}}\left(y^{n} \mid x_{1}^{n}, x_{2}^{n}\right)=\prod_{i=1}^{n} p_{Y \mid X_{1}, X_{2}}\left(y_{i} \mid x_{1, i} x_{2, i}\right)$
- Decoder: assigns estimates $\left(\hat{m}_{1}, \hat{m}_{2}\right)$ to each $y^{n} \in \mathcal{Y}^{n}$
- Average probability of error is $\operatorname{P}\left\{\left(\hat{M}_{1}, \ldots, \hat{M}_{K}\right) \neq\left(M_{1}, \ldots, M_{K}\right)\right\}$ where M_{1}, \ldots, M_{K} are drawn independently and uniformly.

Two-User Multiple-Access Channels

Theorem (Ahlswede '71, Liao '72)

The multiple-access capacity region is the convex closure of all rate pairs $\left(R_{1}, R_{2}\right)$ satisfying
$R_{1}<I\left(X_{1} ; Y \mid X_{2}\right) \quad R_{2}<I\left(X_{2} ; Y \mid X_{1}\right) \quad R_{1}+R_{2}<I\left(X_{1}, X_{2} ; Y\right)$
for some $p_{X_{1}}\left(x_{1}\right) p_{X_{2}}\left(x_{2}\right)$.

MAC Achievability via I.I.D. Random Coding

Code Construction:

- For each message $m_{1} \in\left[2^{n R_{1}}\right]$, generate codeword $X_{1}^{n}\left(m_{1}\right)$
i.i.d. according to $p_{X_{1}}\left(x_{1}\right)$.
- For each message $m_{2} \in\left[2^{n R_{2}}\right]$, generate codeword $X_{2}^{n}\left(m_{2}\right)$
i.i.d. according to $p_{X_{2}}\left(x_{2}\right)$.

Code Construction:

- For each message $m_{1} \in\left[2^{n R_{1}}\right]$, generate codeword $X_{1}^{n}\left(m_{1}\right)$ i.i.d. according to $p_{X_{1}}\left(x_{1}\right)$.
- For each message $m_{2} \in\left[2^{n R_{2}}\right]$, generate codeword $X_{2}^{n}\left(m_{2}\right)$
i.i.d. according to $p_{X_{2}}\left(x_{2}\right)$.
- With high probability, codewords are typical.

Code Construction:

- For each message $m_{1} \in\left[2^{n R_{1}}\right]$, generate codeword $X_{1}^{n}\left(m_{1}\right)$ i.i.d. according to $p_{X_{1}}\left(x_{1}\right)$.
- For each message $m_{2} \in\left[2^{n R_{2}}\right]$, generate codeword $X_{2}^{n}\left(m_{2}\right)$
i.i.d. according to $p_{X_{2}}\left(x_{2}\right)$.
- With high probability, codewords are typical.

Encoding:

Code Construction:

- For each message $m_{1} \in\left[2^{n R_{1}}\right]$, generate codeword $X_{1}^{n}\left(m_{1}\right)$ i.i.d. according to $p_{X_{1}}\left(x_{1}\right)$.
- For each message $m_{2} \in\left[2^{n R_{2}}\right]$, generate codeword $X_{2}^{n}\left(m_{2}\right)$
i.i.d. according to $p_{X_{2}}\left(x_{2}\right)$.
- With high probability, codewords are typical.

Encoding:

- User 1: Transmit $X_{1}^{n}\left(m_{1}\right)$.

Code Construction:

- For each message $m_{1} \in\left[2^{n R_{1}}\right]$, generate codeword $X_{1}^{n}\left(m_{1}\right)$ i.i.d. according to $p_{X_{1}}\left(x_{1}\right)$.
- For each message $m_{2} \in\left[2^{n R_{2}}\right]$, generate codeword $X_{2}^{n}\left(m_{2}\right)$
i.i.d. according to $p_{X_{2}}\left(x_{2}\right)$.
- With high probability, codewords are typical.

Encoding:

- User 1: Transmit $X_{1}^{n}\left(m_{1}\right)$.
- User 2: Transmit $X_{2}^{n}\left(m_{2}\right)$.

MAC Achievability via I.I.D. Random Coding

Decoding: Search for $\left(\hat{m}_{1}, \hat{m}_{2}\right)$ such that $\left(X_{1}^{n}\left(\hat{m}_{1}\right), X_{1}^{n}\left(\hat{m}_{1}\right), Y^{n}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(X_{1}, X_{2}, Y^{n}\right)$.
Output as estimate if unique.
Otherwise, declare an error.

MAC Achievability via I.I.D. Random Coding

Decoding: Search for $\left(\hat{m}_{1}, \hat{m}_{2}\right)$ such that $\left(X_{1}^{n}\left(\hat{m}_{1}\right), X_{1}^{n}\left(\hat{m}_{1}\right), Y^{n}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(X_{1}, X_{2}, Y^{n}\right)$.
Output as estimate if unique. Otherwise, declare an error.

MAC Achievability via I.I.D. Random Coding

Error Analysis: Assume $m_{1}=0, m_{2}=0$ are selected messages.
$\mathcal{E}_{1}=\left\{\left(X_{1}^{n}(0), X_{2}^{n}(0), Y^{n}\right) \notin \mathcal{T}_{\epsilon}^{(n)}\left(X_{1}, X_{2}, Y\right)\right\}$
$\mathcal{E}_{2}=\left\{\left(X_{1}^{n}\left(m_{1}\right), X_{2}^{n}(0), Y^{n}\right) \notin \mathcal{T}_{\epsilon}^{(n)}\left(X_{1}, X_{2}, Y\right)\right.$ for some $\left.m_{1} \neq 0\right\}$
$\mathcal{E}_{3}=\left\{\left(X_{1}^{n}(0), X_{2}^{n}\left(m_{2}\right), Y^{n}\right) \notin \mathcal{T}_{\epsilon}^{(n)}\left(X_{1}, X_{2}, Y\right)\right.$ for some $\left.m_{2} \neq 0\right\}$
$\mathcal{E}_{4}=\left\{\left(X_{1}^{n}\left(m_{1}\right), X_{2}^{n}\left(m_{2}\right), Y^{n}\right) \notin \mathcal{T}_{\epsilon}^{(n)}\left(X_{1}, X_{2}, Y\right)\right.$ for some $\left.m_{1} \neq 0, m_{2} \neq 0\right\}$

- By the Weak Law of Large Numbers, $\mathrm{P}\left\{\mathcal{E}_{1}\right\} \rightarrow 0$.
- By the Packing Lemma, $\mathrm{P}\left\{\mathcal{E}_{2}\right\} \rightarrow 0$ if $R_{1}<I\left(X_{1} ; Y \mid X_{2}\right)-\delta(\epsilon)$.
- By the Packing Lemma, $\mathrm{P}\left\{\mathcal{E}_{3}\right\} \rightarrow 0$ if $R_{2}<I\left(X_{2} ; Y \mid X_{1}\right)-\delta(\epsilon)$.
- By the Packing Lemma, $\mathrm{P}\left\{\mathcal{E}_{4}\right\} \rightarrow 0$ if $R_{1}+R_{2}<I\left(X_{1}, X_{2} ; Y\right)-\delta(\epsilon)$.

Compute-Forward

Compute-Forward

Problem Statement:

- Messages: $m_{k} \in\left[2^{n R_{k}}\right] \triangleq\left\{0, \ldots, 2^{n R_{k}}-1\right\}, k=1, \ldots, K$.

Compute-Forward

Problem Statement:

- Messages: $m_{k} \in\left[2^{n R_{k}}\right] \triangleq\left\{0, \ldots, 2^{n R_{k}}-1\right\}, k=1, \ldots, K$.
- Encoders: mappings $\left(u_{k}^{n}, x_{k}^{n}\right)\left(m_{k}\right) \in \mathbb{F}_{\mathrm{q}}^{n} \times \mathcal{X}_{k}^{n}, k=1, \ldots, K$ such that $u_{k}^{n}\left(m_{k}\right)$ is bijective.

Compute-Forward

Problem Statement:

- Messages: $m_{k} \in\left[2^{n R_{k}}\right] \triangleq\left\{0, \ldots, 2^{n R_{k}}-1\right\}, k=1, \ldots, K$.
- Encoders: mappings $\left(u_{k}^{n}, x_{k}^{n}\right)\left(m_{k}\right) \in \mathbb{F}_{\mathrm{q}}^{n} \times \mathcal{X}_{k}^{n}, k=1, \ldots, K$ such that $u_{k}^{n}\left(m_{k}\right)$ is bijective.
- Linear Combination: $w_{\boldsymbol{a}}^{n} \triangleq \bigoplus_{k} a_{k} u_{k}^{n}\left(m_{k}\right), \boldsymbol{a}=\left[a_{1} \cdots a_{K}\right] \in \mathbb{F}_{\mathbf{q}}^{K}$

Compute-Forward

Problem Statement:

- Messages: $m_{k} \in\left[2^{n R_{k}}\right] \triangleq\left\{0, \ldots, 2^{n R_{k}}-1\right\}, k=1, \ldots, K$.
- Encoders: mappings $\left(u_{k}^{n}, x_{k}^{n}\right)\left(m_{k}\right) \in \mathbb{F}_{\mathrm{q}}^{n} \times \mathcal{X}_{k}^{n}, k=1, \ldots, K$ such that $u_{k}^{n}\left(m_{k}\right)$ is bijective.
- Linear Combination: $w_{\boldsymbol{a}}^{n} \triangleq \bigoplus_{k} a_{k} u_{k}^{n}\left(m_{k}\right), \boldsymbol{a}=\left[a_{1} \cdots a_{K}\right] \in \mathbb{F}_{\mathrm{q}}^{K}$
- Decoder: assigns an estimate $\hat{w}_{a}^{n} \in \mathbb{F}_{\mathrm{q}}^{n}$ to each $y^{n} \in \mathcal{Y}^{n}$.

Compute-Forward

Problem Statement:

- Messages: $m_{k} \in\left[2^{n R_{k}}\right] \triangleq\left\{0, \ldots, 2^{n R_{k}}-1\right\}, k=1, \ldots, K$.
- Encoders: mappings $\left(u_{k}^{n}, x_{k}^{n}\right)\left(m_{k}\right) \in \mathbb{F}_{\mathrm{q}}^{n} \times \mathcal{X}_{k}^{n}, k=1, \ldots, K$ such that $u_{k}^{n}\left(m_{k}\right)$ is bijective.
- Linear Combination: $w_{\boldsymbol{a}}^{n} \triangleq \bigoplus_{k} a_{k} u_{k}^{n}\left(m_{k}\right), \boldsymbol{a}=\left[a_{1} \cdots a_{K}\right] \in \mathbb{F}_{\mathrm{q}}^{K}$
- Decoder: assigns an estimate $\hat{w}_{a}^{n} \in \mathbb{F}_{\mathrm{q}}^{n}$ to each $y^{n} \in \mathcal{Y}^{n}$.
- Probability of Error: For uniformly distributed messages M_{1}, \ldots, M_{K}, want $\mathrm{P}\left\{\hat{W}_{a}^{n} \neq W_{a}^{n}\right\} \rightarrow 0$.

Two-User Compute-Forward

Theorem (Lim-Feng-Pastore-Nazer-Gastpar arXiv '16, ISIT '17)

Consider the case of $K=2$ transmitters and a receiver that wants to recover a linear combination with coefficient vector $\boldsymbol{a} \in \mathbb{F}_{\mathrm{q}}^{2}$. A rate pair is achievable if it is included in $\mathcal{R}_{\text {CF }}(\boldsymbol{a}) \cup \mathcal{R}_{\text {LMAC }}$ for some pmfs $p_{U_{1}}\left(u_{1}\right), p_{U_{2}}\left(u_{2}\right)$, symbol mappings $x_{1}\left(u_{1}\right), x_{2}\left(u_{2}\right)$ where

Two-User Compute-Forward

Theorem (Lim-Feng-Pastore-Nazer-Gastpar arXiv '16, ISIT '17)

Consider the case of $K=2$ transmitters and a receiver that wants to recover a linear combination with coefficient vector $\boldsymbol{a} \in \mathbb{F}_{\mathrm{q}}^{2}$. A rate pair is achievable if it is included in $\mathcal{R}_{C F}(\boldsymbol{a}) \cup \mathcal{R}_{\text {LMAC }}$ for some pmfs $p_{U_{1}}\left(u_{1}\right), p_{U_{2}}\left(u_{2}\right)$, symbol mappings $x_{1}\left(u_{1}\right), x_{2}\left(u_{2}\right)$ where
$\mathcal{R}_{C F}(\boldsymbol{a}) \triangleq\left\{\left(R_{1}, R_{2}\right): R_{k}<I_{C F, k}(\boldsymbol{a}) \triangleq H\left(U_{k}\right)-H\left(W_{\boldsymbol{a}} \mid Y\right), k=1,2\right\}$

Two-User Compute-Forward

Theorem (Lim-Feng-Pastore-Nazer-Gastpar arXiv '16, ISIT '17)

Consider the case of $K=2$ transmitters and a receiver that wants to recover a linear combination with coefficient vector $\boldsymbol{a} \in \mathbb{F}_{\mathrm{q}}^{2}$. A rate pair is achievable if it is included in $\mathcal{R}_{\text {CF }}(\boldsymbol{a}) \cup \mathcal{R}_{\text {LMAC }}$ for some pmfs $p_{U_{1}}\left(u_{1}\right), p_{U_{2}}\left(u_{2}\right)$, symbol mappings $x_{1}\left(u_{1}\right), x_{2}\left(u_{2}\right)$ where

$$
\begin{gathered}
\mathcal{R}_{C F}(\boldsymbol{a}) \triangleq\left\{\left(R_{1}, R_{2}\right): R_{k}<I_{C F, k}(\boldsymbol{a}) \triangleq H\left(U_{k}\right)-H\left(W_{\boldsymbol{a}} \mid Y\right), k=1,2\right\} \\
\mathcal{R}_{L M A C} \triangleq\left\{\left(R_{1}, R_{2}\right): \max \left\{R_{1}, R_{2}\right\}<\min _{b \in \mathbb{F}_{q}^{2}: b_{k} \neq 0} I\left(U_{k} ; Y, W_{\boldsymbol{b}}\right)\right. \\
R_{1}<I\left(U_{1} ; Y \mid U_{2}\right), \\
R_{2}<I\left(U_{2} ; Y \mid U_{1}\right), \\
\left.R_{1}+R_{2}<I\left(U_{1}, U_{2} ; Y\right)\right\}
\end{gathered}
$$

Two-User Compute-Forward

Compute-Forward Achievability via Linear Random Coding

Code Construction:

- \mathbf{q}-ary expansion \mathbf{m}_{k} of message $m_{k} \in\left[2^{n R_{k}}\right]$.
\square

Compute-Forward Achievability via Linear Random Coding

Code Construction:

- \mathbf{q}-ary expansion \mathbf{m}_{k} of message $m_{k} \in\left[2^{n R_{k}}\right]$.
- Auxiliary index $l_{k} \in\left[2^{n \hat{R}_{k}}\right]$ with q-ary expansions \mathbf{l}_{k}.

Compute-Forward Achievability via Linear Random Coding

Code Construction:

- \mathbf{q}-ary expansion \mathbf{m}_{k} of message $m_{k} \in\left[2^{n R_{k}}\right]$.
- Auxiliary index $l_{k} \in\left[2^{n \hat{R}_{k}}\right]$ with q-ary expansions \mathbf{l}_{k}.
- Draw generator matrix $G \in \mathbb{F}_{\mathrm{q}}^{\kappa \times n}$ and dithers $\mathrm{d}_{1}^{n}, \mathrm{~d}_{2}^{n} \in \mathbb{F}_{\mathrm{q}}^{n}$ i.i.d. Unif $\left(\mathbb{F}_{\mathrm{q}}\right)$ where $\kappa=n\left(\max \left\{R_{1}+\hat{R}_{1}, R_{2}+\hat{R}_{2}\right\}\right) / \log (\mathbf{q})$.

Compute-Forward Achievability via Linear Random Coding

Code Construction:

- \mathbf{q}-ary expansion \mathbf{m}_{k} of message $m_{k} \in\left[2^{n R_{k}}\right]$.
- Auxiliary index $l_{k} \in\left[2^{n \hat{R}_{k}}\right]$ with q-ary expansions \mathbf{l}_{k}.
- Draw generator matrix $G \in \mathbb{F}_{\mathrm{q}}^{\kappa \times n}$ and dithers $\mathrm{d}_{1}^{n}, \mathrm{~d}_{2}^{n} \in \mathbb{F}_{\mathrm{q}}^{n}$ i.i.d. Unif $\left(\mathbb{F}_{\mathrm{q}}\right)$ where $\kappa=n\left(\max \left\{R_{1}+\hat{R}_{1}, R_{2}+\hat{R}_{2}\right\}\right) / \log (\mathbf{q})$.
- Linear codewords:
$u_{1}^{n}\left(m_{1}, l_{1}\right)=\left[\mathbf{m}_{1} \mathbf{l}_{1}\right] \mathbf{G} \oplus d_{1}^{n}$

Compute-Forward Achievability via Linear Random Coding

Code Construction:

- \mathbf{q}-ary expansion \mathbf{m}_{k} of message $m_{k} \in\left[2^{n R_{k}}\right]$.
- Auxiliary index $l_{k} \in\left[2^{n \hat{R}_{k}}\right]$ with q-ary expansions \mathbf{l}_{k}.
- Draw generator matrix $G \in \mathbb{F}_{\mathrm{q}}^{\kappa \times n}$ and
 dithers $\mathrm{d}_{1}^{n}, \mathrm{~d}_{2}^{n} \in \mathbb{F}_{\mathrm{q}}^{n}$ i.i.d. Unif $\left(\mathbb{F}_{\mathrm{q}}\right)$ where $\kappa=n\left(\max \left\{R_{1}+\hat{R}_{1}, R_{2}+\hat{R}_{2}\right\}\right) / \log (\mathbf{q})$.
- Linear codewords:
$u_{1}^{n}\left(m_{1}, l_{1}\right)=\left[\mathbf{m}_{1} \mathbf{l}_{1}\right] \mathbf{G} \oplus d_{1}^{n}$ $u_{2}^{n}\left(m_{2}, l_{2}\right)=\left[\begin{array}{lll}\mathbf{m}_{2} & \mathbf{l}_{2} & \mathbf{0}\end{array}\right] \mathrm{G} \oplus d_{2}^{n}$

Compute-Forward Achievability via Linear Random Coding

Code Construction:

- \mathbf{q}-ary expansion \mathbf{m}_{k} of message $m_{k} \in\left[2^{n R_{k}}\right]$.
- Auxiliary index $l_{k} \in\left[2^{n \hat{R}_{k}}\right]$ with q-ary expansions \mathbf{l}_{k}.
- Draw generator matrix $G \in \mathbb{F}_{\mathrm{q}}^{\kappa \times n}$ and
 dithers $\mathrm{d}_{1}^{n}, \mathrm{~d}_{2}^{n} \in \mathbb{F}_{\mathrm{q}}^{n}$ i.i.d. Unif $\left(\mathbb{F}_{\mathrm{q}}\right)$ where $\kappa=n\left(\max \left\{R_{1}+\hat{R}_{1}, R_{2}+\hat{R}_{2}\right\}\right) / \log (\mathbf{q})$.
- Linear codewords:
$u_{1}^{n}\left(m_{1}, l_{1}\right)=\left[\mathbf{m}_{1} \mathbf{l}_{1}\right] \mathbf{G} \oplus d_{1}^{n}$ $u_{2}^{n}\left(m_{2}, l_{2}\right)=\left[\begin{array}{lll}\mathbf{m}_{2} & \mathbf{l}_{2} & \mathbf{0}\end{array}\right] \mathrm{G} \oplus d_{2}^{n}$

Compute-Forward Achievability via Linear Random Coding

Code Construction:

- \mathbf{q}-ary expansion \mathbf{m}_{k} of message $m_{k} \in\left[2^{n R_{k}}\right]$.
- Auxiliary index $l_{k} \in\left[2^{n \hat{R}_{k}}\right]$ with q-ary expansions \mathbf{l}_{k}.
- Draw generator matrix $G \in \mathbb{F}_{\mathrm{q}}^{\kappa \times n}$ and
 dithers $\mathrm{d}_{1}^{n}, \mathrm{~d}_{2}^{n} \in \mathbb{F}_{\mathrm{q}}^{n}$ i.i.d. Unif $\left(\mathbb{F}_{\mathrm{q}}\right)$ where $\kappa=n\left(\max \left\{R_{1}+\hat{R}_{1}, R_{2}+\hat{R}_{2}\right\}\right) / \log (\mathbf{q})$.
- Linear codewords:
$u_{1}^{n}\left(m_{1}, l_{1}\right)=\left[\mathbf{m}_{1} \mathbf{l}_{1}\right] \mathbf{G} \oplus d_{1}^{n}$ $u_{2}^{n}\left(m_{2}, l_{2}\right)=\left[\begin{array}{lll}\mathbf{m}_{2} & \mathbf{l}_{2} & \mathbf{0}\end{array}\right] \mathrm{G} \oplus d_{2}^{n}$

Compute-Forward Achievability via Linear Random Coding

Encoding:

Compute-Forward Achievability via Linear Random Coding

Encoding:

- Fix pmfs $p\left(u_{1}\right), p\left(u_{2}\right)$,
mappings $x_{1}\left(u_{1}\right), x_{2}\left(u_{2}\right)$, and $0<\epsilon^{\prime}<\epsilon$.

Compute-Forward Achievability via Linear Random Coding

Encoding:

- Fix pmfs $p\left(u_{1}\right), p\left(u_{2}\right)$,
mappings $x_{1}\left(u_{1}\right), x_{2}\left(u_{2}\right)$, and $0<\epsilon^{\prime}<\epsilon$.
- Multicoding:

Compute-Forward Achievability via Linear Random Coding

Encoding:

- Fix pmfs $p\left(u_{1}\right), p\left(u_{2}\right)$,
mappings $x_{1}\left(u_{1}\right), x_{2}\left(u_{2}\right)$, and $0<\epsilon^{\prime}<\epsilon$.
- Multicoding: For message m_{k},

Compute-Forward Achievability via Linear Random Coding

Encoding:

- Fix pmfs $p\left(u_{1}\right), p\left(u_{2}\right)$,
mappings $x_{1}\left(u_{1}\right), x_{2}\left(u_{2}\right)$, and $0<\epsilon^{\prime}<\epsilon$.
- Multicoding: For message m_{k}, find index l_{k} such that $u_{k}^{n}\left(m_{k}, l_{k}\right) \in \mathcal{T}_{\epsilon^{\prime}}^{(n)}\left(U_{k}\right)$. (If no such l_{k}, pick one randomly.)

Compute-Forward Achievability via Linear Random Coding

Encoding:

- Fix pmfs $p\left(u_{1}\right), p\left(u_{2}\right)$,
mappings $x_{1}\left(u_{1}\right), x_{2}\left(u_{2}\right)$, and $0<\epsilon^{\prime}<\epsilon$.
- Multicoding: For message m_{k}, find index l_{k} such that $u_{k}^{n}\left(m_{k}, l_{k}\right) \in \mathcal{T}_{\epsilon^{\prime}}^{(n)}\left(U_{k}\right)$. (If no such l_{k}, pick one randomly.)

- Succeeds w.h.p. if

$$
\hat{R}_{k}>D\left(p_{U_{k}} \| p_{\mathbf{q}}\right)+\delta\left(\epsilon^{\prime}\right)
$$

by Mismatched Covering Lemma where $p_{\mathrm{q}}=\operatorname{Unif}\left(\mathbb{F}_{\mathrm{q}}\right)$.

Compute-Forward Achievability via Linear Random Coding

Encoding:

- Fix pmfs $p\left(u_{1}\right), p\left(u_{2}\right)$,
mappings $x_{1}\left(u_{1}\right), x_{2}\left(u_{2}\right)$, and $0<\epsilon^{\prime}<\epsilon$.
- Multicoding: For message m_{k}, find index l_{k} such that $u_{k}^{n}\left(m_{k}, l_{k}\right) \in \mathcal{T}_{\epsilon^{\prime}}^{(n)}\left(U_{k}\right)$.
(If no such l_{k}, pick one randomly.)

- Succeeds w.h.p. if

$$
\hat{R}_{k}>D\left(p_{U_{k}} \| p_{\mathbf{q}}\right)+\delta\left(\epsilon^{\prime}\right)
$$

by Mismatched Covering Lemma where $p_{\mathrm{q}}=\operatorname{Unif}\left(\mathbb{F}_{\mathrm{q}}\right)$.

- At time i, transmit $x_{k i}=x_{k}\left(u_{k i}\left(m_{k}, l_{k}\right)\right)$.

Compute-Forward Achievability via Linear Random Coding

- For $m_{k} \in\left[2^{n R_{k}}\right], l_{k} \in\left[2^{n \hat{R}_{k}}\right]$, we can express the desired linear combination of codewords as

$$
w_{\boldsymbol{a}}^{n}=a_{1} u_{1}^{n}\left(m_{1}, l_{1}\right) \oplus a_{2} u_{2}^{n}\left(m_{2}, l_{2}\right)
$$

Compute-Forward Achievability via Linear Random Coding

- For $m_{k} \in\left[2^{n R_{k}}\right], l_{k} \in\left[2^{n \hat{R}_{k}}\right]$, we can express the desired linear combination of codewords as

$$
\begin{aligned}
w_{\boldsymbol{a}}^{n} & =a_{1} u_{1}^{n}\left(m_{1}, l_{1}\right) \oplus a_{2} u_{2}^{n}\left(m_{2}, l_{2}\right) \\
& \left.=\left[a_{1}\left[\mathbf{m}_{1} \mathbf{l}_{1}\right] \oplus a_{2}\left[\mathbf{m}_{2} \mathbf{l}_{2} \mathbf{0}\right]\right]\right] \mathrm{G} \oplus a_{1} d_{1}^{n} \oplus a_{2} d_{2}^{n}
\end{aligned}
$$

Compute-Forward Achievability via Linear Random Coding

- For $m_{k} \in\left[2^{n R_{k}}\right], l_{k} \in\left[2^{n \hat{R}_{k}}\right]$, we can express the desired linear combination of codewords as

$$
\begin{aligned}
w_{\boldsymbol{a}}^{n} & =a_{1} u_{1}^{n}\left(m_{1}, l_{1}\right) \oplus a_{2} u_{2}^{n}\left(m_{2}, l_{2}\right) \\
& =\left[a_{1}\left[\mathbf{m}_{1} \mathbf{l}_{1}\right] \oplus a_{2}\left[\mathbf{m}_{2} \mathbf{l}_{2} \mathbf{0}\right]\right] \mathrm{G} \oplus a_{1} d_{1}^{n} \oplus a_{2} d_{2}^{n} \\
& =\mathbf{s}_{\boldsymbol{a}} \mathrm{G} \oplus a_{1} d_{1}^{n} \oplus a_{2} d_{2}^{n}
\end{aligned}
$$

where $s_{\boldsymbol{a}} \in\left[2^{n \max \left\{R_{1}+\hat{R}_{1}, R_{2}+\hat{R}_{2}\right\}}\right]$ is the linear combination index corresponding to q-ary expansion $\mathbf{s}_{\boldsymbol{a}}$.

Compute-Forward Achievability via Linear Random Coding

- For $m_{k} \in\left[2^{n R_{k}}\right], l_{k} \in\left[2^{n \hat{R}_{k}}\right]$, we can express the desired linear combination of codewords as

$$
\begin{aligned}
w_{\boldsymbol{a}}^{n} & =a_{1} u_{1}^{n}\left(m_{1}, l_{1}\right) \oplus a_{2} u_{2}^{n}\left(m_{2}, l_{2}\right) \\
& =\left[a_{1}\left[\mathbf{m}_{1} \mathbf{l}_{1}\right] \oplus a_{2}\left[\mathbf{m}_{2} \mathbf{l}_{2} \mathbf{0}\right]\right] \mathrm{G} \oplus a_{1} d_{1}^{n} \oplus a_{2} d_{2}^{n} \\
& =\mathbf{s}_{\boldsymbol{a}} \mathrm{G} \oplus a_{1} d_{1}^{n} \oplus a_{2} d_{2}^{n}
\end{aligned}
$$

where $s_{\boldsymbol{a}} \in\left[2^{n \max \left\{R_{1}+\hat{R}_{1}, R_{2}+\hat{R}_{2}\right\}}\right]$ is the linear combination index corresponding to q -ary expansion $\mathbf{s}_{\boldsymbol{a}}$.

- Can view $w_{\boldsymbol{a}}^{n}(s)$ as some linear codeword that belongs to $\mathcal{T}_{\epsilon^{\prime}}^{(n)}\left(W_{\boldsymbol{a}}\right)$.

Compute-Forward Achievability via Linear Random Coding

Compute-Forward Achievability via Linear Random Coding

Decoding:

- Search for index $\hat{s}_{\boldsymbol{a}}$ such that $\left(W_{\boldsymbol{a}}^{n}\left(\hat{s}_{\boldsymbol{a}}\right), Y^{n}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(W_{\boldsymbol{a}}, Y\right)$. Output as estimate if unique. Otherwise, declare an error.

Compute-Forward Achievability via Linear Random Coding

Decoding:

- Search for index $\hat{s}_{\boldsymbol{a}}$ such that $\left(W_{\boldsymbol{a}}^{n}\left(\hat{s}_{\boldsymbol{a}}\right), Y^{n}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(W_{\boldsymbol{a}}, Y\right)$. Output as estimate if unique. Otherwise, declare an error.
- Although the decoder searches for $W_{\boldsymbol{a}}^{\boldsymbol{n}}$ over the full linear codebook, it ignores codewords that fall outside the typical set $\mathcal{T}_{\epsilon}^{(n)}\left(W_{a}\right)$.

Compute-Forward Achievability via Linear Random Coding

Error Analysis: Assume $s_{\boldsymbol{a}}=0$ is selected linear combination index.

$$
\begin{aligned}
& \mathcal{E}_{1}=\left\{U_{k}^{n}\left(m_{k}, l_{k}\right) \notin \mathcal{T}_{\epsilon^{\prime}}^{(n)} \text { for all } l_{k}, \text { for some } m_{k}, k=1,2\right\} \\
& \mathcal{E}_{2}=\left\{\left(U_{1}^{n}\left(M_{1}, L_{1}\right), U_{2}^{n}\left(M_{2}, L_{2}\right), Y^{n}\right) \notin \mathcal{T}_{\epsilon}^{(n)}\right\} \\
& \mathcal{E}_{3}=\left\{\left(W_{\boldsymbol{a}}^{n}\left(s_{\boldsymbol{a}}\right), Y^{n}\right) \notin \mathcal{T}_{\epsilon}^{(n)}\left(W_{\boldsymbol{a}}, Y\right) \text { for some } s_{\boldsymbol{a}} \neq 0\right\}
\end{aligned}
$$

Compute-Forward Achievability via Linear Random Coding

Error Analysis: Assume $s_{\boldsymbol{a}}=0$ is selected linear combination index.

$$
\begin{aligned}
& \mathcal{E}_{1}=\left\{U_{k}^{n}\left(m_{k}, l_{k}\right) \notin \mathcal{T}_{\epsilon^{\prime}}^{(n)} \text { for all } l_{k}, \text { for some } m_{k}, k=1,2\right\} \\
& \mathcal{E}_{2}=\left\{\left(U_{1}^{n}\left(M_{1}, L_{1}\right), U_{2}^{n}\left(M_{2}, L_{2}\right), Y^{n}\right) \notin \mathcal{T}_{\epsilon}^{(n)}\right\} \\
& \mathcal{E}_{3}=\left\{\left(W_{\boldsymbol{a}}^{n}\left(s_{\boldsymbol{a}}\right), Y^{n}\right) \notin \mathcal{T}_{\epsilon}^{(n)}\left(W_{\boldsymbol{a}}, Y\right) \text { for some } s_{\boldsymbol{a}} \neq 0\right\}
\end{aligned}
$$

- By the Mismatched Covering Lemma, $\mathrm{P}\left\{\mathcal{E}_{1}\right\} \rightarrow 0$ if

$$
\hat{R}_{k}>D\left(p_{U_{k}} \| p_{\mathbf{q}}\right)+\delta\left(\epsilon^{\prime}\right) .
$$

Compute-Forward Achievability via Linear Random Coding

Error Analysis: Assume $s_{\boldsymbol{a}}=0$ is selected linear combination index.

$$
\begin{aligned}
& \mathcal{E}_{1}=\left\{U_{k}^{n}\left(m_{k}, l_{k}\right) \notin \mathcal{T}_{\epsilon^{\prime}}^{(n)} \text { for all } l_{k}, \text { for some } m_{k}, k=1,2\right\} \\
& \mathcal{E}_{2}=\left\{\left(U_{1}^{n}\left(M_{1}, L_{1}\right), U_{2}^{n}\left(M_{2}, L_{2}\right), Y^{n}\right) \notin \mathcal{T}_{\epsilon}^{(n)}\right\} \\
& \mathcal{E}_{3}=\left\{\left(W_{\boldsymbol{a}}^{n}\left(s_{\boldsymbol{a}}\right), Y^{n}\right) \notin \mathcal{T}_{\epsilon}^{(n)}\left(W_{\boldsymbol{a}}, Y\right) \text { for some } s_{\boldsymbol{a}} \neq 0\right\}
\end{aligned}
$$

- By the Mismatched Covering Lemma, $\mathrm{P}\left\{\mathcal{E}_{1}\right\} \rightarrow 0$ if

$$
\hat{R}_{k}>D\left(p_{U_{k}} \| p_{\mathbf{q}}\right)+\delta\left(\epsilon^{\prime}\right) .
$$

- By the Markov Lemma for Nested Linear Codes, $\mathrm{P}\left\{\mathcal{E}_{2} \cap \mathcal{E}_{1}^{c}\right\} \rightarrow 0$ if

$$
\hat{R}_{k}>D\left(p_{U_{k}} \| p_{\mathbf{q}}\right)+\delta\left(\epsilon^{\prime}\right) .
$$

Subtle Issue: L_{1} and L_{2} are statistically dependent, since these multicoding indices are chosen with respect to the same linear codebook.

Compute-Forward Achievability via Linear Random Coding

Error Analysis: Assume $s_{\boldsymbol{a}}=0$ is selected linear combination index.

$$
\begin{aligned}
& \mathcal{E}_{1}=\left\{U_{k}^{n}\left(m_{k}, l_{k}\right) \notin \mathcal{T}_{\epsilon^{\prime}}^{(n)} \text { for all } l_{k}, \text { for some } m_{k}, k=1,2\right\} \\
& \mathcal{E}_{2}=\left\{\left(U_{1}^{n}\left(M_{1}, L_{1}\right), U_{2}^{n}\left(M_{2}, L_{2}\right), Y^{n}\right) \notin \mathcal{T}_{\epsilon}^{(n)}\right\} \\
& \mathcal{E}_{3}=\left\{\left(W_{\boldsymbol{a}}^{n}\left(s_{\boldsymbol{a}}\right), Y^{n}\right) \notin \mathcal{T}_{\epsilon}^{(n)}\left(W_{\boldsymbol{a}}, Y\right) \text { for some } s_{\boldsymbol{a}} \neq 0\right\}
\end{aligned}
$$

- By the Mismatched Covering Lemma, $\mathrm{P}\left\{\mathcal{E}_{1}\right\} \rightarrow 0$ if

$$
\hat{R}_{k}>D\left(p_{U_{k}} \| p_{\mathbf{q}}\right)+\delta\left(\epsilon^{\prime}\right)
$$

- By the Markov Lemma for Nested Linear Codes, $\mathrm{P}\left\{\mathcal{E}_{2} \cap \mathcal{E}_{1}^{c}\right\} \rightarrow 0$ if

$$
\hat{R}_{k}>D\left(p_{U_{k}} \| p_{\mathbf{q}}\right)+\delta\left(\epsilon^{\prime}\right)
$$

Subtle Issue: L_{1} and L_{2} are statistically dependent, since these multicoding indices are chosen with respect to the same linear codebook.

- By the Mismatched Packing Lemma, $\mathrm{P}\left\{\mathcal{E}_{3} \cap \mathcal{E}_{1}^{c}\right\} \rightarrow 0$ if

$$
\begin{aligned}
& R_{1}+2 \hat{R}_{1}+\hat{R}_{2}<I\left(W_{\boldsymbol{a}} ; Y\right)+D\left(p_{W_{a}} \| p_{\mathbf{q}}\right)+D\left(p_{U_{1}} \| p_{\mathbf{q}}\right)+D\left(p_{U_{2}} \| p_{\mathbf{q}}\right)-2 \delta(\epsilon) \\
& R_{2}+\hat{R}_{1}+2 \hat{R}_{2}<I\left(W_{\boldsymbol{a}} ; Y\right)+D\left(p_{W_{a}} \| p_{\mathbf{q}}\right)+D\left(p_{U_{1}} \| p_{\mathbf{q}}\right)+D\left(p_{U_{2}} \| p_{\mathbf{q}}\right)-2 \delta(\epsilon)
\end{aligned}
$$

Compute-Forward Achievability via Random Linear Codes

- Setting $\hat{R}_{k}=D\left(p_{U_{k}} \| p_{\mathrm{q}}\right)+2 \delta\left(\epsilon^{\prime}\right)$, we find that a rate pair $\left(R_{1}, R_{2}\right)$ is achievable if

$$
R_{1}<H\left(U_{1}\right)-H\left(W_{\boldsymbol{a}} \mid Y\right) \quad R_{2}<H\left(U_{2}\right)-H\left(W_{\boldsymbol{a}} \mid Y\right)
$$

Compute-Forward Achievability via Random Linear Codes

- What about the "multiple-access" rates, $\mathcal{R}_{\text {LMAC }}$?

Compute-Forward Achievability via Random Linear Codes

- What about the "multiple-access" rates, $\mathcal{R}_{\text {LMAC }}$?
- Decoding W_{a}^{n} directly does not achieve this rate region.

Compute-Forward Achievability via Random Linear Codes

- What about the "multiple-access" rates, $\mathcal{R}_{\text {LMAC }}$?
- Decoding W_{a}^{n} directly does not achieve this rate region.
- Instead, we can first decode U_{1}^{n} and U_{2}^{n} by searching for a unique index tuple ($m_{1}, l_{1}, m_{2}, l_{2}$) such that

$$
\left(U_{1}^{n}\left(m_{1}, l_{1}\right), U_{2}^{n}\left(m_{2}, l_{2}\right), Y^{n}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(U_{1}, U_{2}, Y\right)
$$

and afterwards form $W_{\boldsymbol{a}}^{n}=a_{1} U_{1}^{n}\left(m_{1}, l_{1}\right) \oplus a_{2} U_{2}^{n}\left(m_{2}, l_{2}\right)$.

Compute-Forward Achievability via Random Linear Codes

- What about the "multiple-access" rates, $\mathcal{R}_{\text {LMAC }}$?
- Decoding W_{a}^{n} directly does not achieve this rate region.
- Instead, we can first decode U_{1}^{n} and U_{2}^{n} by searching for a unique index tuple ($m_{1}, l_{1}, m_{2}, l_{2}$) such that

$$
\left(U_{1}^{n}\left(m_{1}, l_{1}\right), U_{2}^{n}\left(m_{2}, l_{2}\right), Y^{n}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(U_{1}, U_{2}, Y\right)
$$

and afterwards form $W_{\boldsymbol{a}}^{n}=a_{1} U_{1}^{n}\left(m_{1}, l_{1}\right) \oplus a_{2} U_{2}^{n}\left(m_{2}, l_{2}\right)$.

- Rather than applying two decoders, we can write down a single decoder, inspired by the simultaneous non-unique decoder of Bandemer-EI Gamal-Kim '15.

Compute-Forward Achievability via Random Linear Codes

- What about the "multiple-access" rates, $\mathcal{R}_{\text {LMAC }}$?
- Decoding W_{a}^{n} directly does not achieve this rate region.
- Instead, we can first decode U_{1}^{n} and U_{2}^{n} by searching for a unique index tuple ($m_{1}, l_{1}, m_{2}, l_{2}$) such that

$$
\left(U_{1}^{n}\left(m_{1}, l_{1}\right), U_{2}^{n}\left(m_{2}, l_{2}\right), Y^{n}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(U_{1}, U_{2}, Y\right)
$$

and afterwards form $W_{\boldsymbol{a}}^{n}=a_{1} U_{1}^{n}\left(m_{1}, l_{1}\right) \oplus a_{2} U_{2}^{n}\left(m_{2}, l_{2}\right)$.

- Rather than applying two decoders, we can write down a single decoder, inspired by the simultaneous non-unique decoder of Bandemer-El Gamal-Kim '15.
- Specifically, we search for a unique index $s_{\boldsymbol{a}}$ such that, for some index tuple ($m_{1}, l_{1}, m_{2}, l_{2}$) whose q-ary expansions satisfy

$$
\mathbf{s}_{\boldsymbol{a}}=a_{1}\left[\mathbf{m}_{1} \mathbf{l}_{1}\right] \oplus a_{2}\left[\mathbf{m}_{2} \mathbf{l}_{2} \mathbf{0}\right]
$$

we have that $\left(U_{1}^{n}\left(m_{1}, l_{1}\right), U_{2}^{n}\left(m_{2}, l_{2}\right), Y^{n}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(U_{1}, U_{2}, Y\right)$.

LMAC Bound Figure

LMAC Bound Figure

Key Issue: Some competing message pairs are linearly dependent, e.g., $\left(\tilde{\mathbf{m}}_{1}, \tilde{\mathbf{m}}_{2}\right)=\left(2 \mathbf{m}_{1}, 2 \mathbf{m}_{2}\right)$.

Compute-Forward Achievability via Linear Random Coding

Error Analysis: Assume index tuple $\left(m_{1}, l_{1}, m_{2}, l_{2}\right)=(0,0,0,0)$ is selected.

$$
\begin{aligned}
& \mathcal{E}_{1}=\left\{U_{k}^{n}\left(m_{k}, l_{k}\right) \notin \mathcal{T}_{\epsilon^{\prime}}^{(n)} \text { for all } l_{k}, \text { for some } m_{k}, k=1,2\right\} \\
& \mathcal{E}_{2}=\left\{\left(U_{1}^{n}\left(M_{1}, L_{1}\right), U_{2}^{n}\left(M_{2}, L_{2}\right), Y^{n}\right) \notin \mathcal{T}_{\epsilon}^{(n)}\right\} \\
& \mathcal{E}_{3}=\left\{\left(U_{1}^{n}\left(m_{1}, l_{1}\right), U_{2}^{n}\left(m_{2}, l_{2}\right), Y^{n}\right) \notin \mathcal{T}_{\epsilon}^{(n)}\left(U_{1}, U_{2}, Y\right)\right. \\
&\left.\quad \text { for some }\left(m_{1}, l_{1}, m_{2}, l_{2}\right) \neq(0,0,0,0)\right\}
\end{aligned}
$$

Compute-Forward Achievability via Linear Random Coding

Error Analysis: Assume index tuple $\left(m_{1}, l_{1}, m_{2}, l_{2}\right)=(0,0,0,0)$ is selected.

$$
\begin{aligned}
& \mathcal{E}_{1}=\left\{U_{k}^{n}\left(m_{k}, l_{k}\right) \notin \mathcal{T}_{\epsilon^{\prime}}^{(n)} \text { for all } l_{k}, \text { for some } m_{k}, k=1,2\right\} \\
& \mathcal{E}_{2}=\left\{\left(U_{1}^{n}\left(M_{1}, L_{1}\right), U_{2}^{n}\left(M_{2}, L_{2}\right), Y^{n}\right) \notin \mathcal{T}_{\epsilon}^{(n)}\right\} \\
& \mathcal{E}_{3}=\left\{\left(U_{1}^{n}\left(m_{1}, l_{1}\right), U_{2}^{n}\left(m_{2}, l_{2}\right), Y^{n}\right) \notin \mathcal{T}_{\epsilon}^{(n)}\left(U_{1}, U_{2}, Y\right)\right. \\
&\text { for some } \left.\left(m_{1}, l_{1}, m_{2}, l_{2}\right) \neq(0,0,0,0)\right\}
\end{aligned}
$$

- We already dealt with $\operatorname{P}\left\{\mathcal{E}_{1}\right\}$ and $\operatorname{P}\left\{\mathcal{E}_{2} \cap \mathcal{E}_{1}^{c}\right\}$.

Compute-Forward Achievability via Linear Random Coding

Error Analysis: Assume index tuple $\left(m_{1}, l_{1}, m_{2}, l_{2}\right)=(0,0,0,0)$ is selected.

$$
\begin{aligned}
& \mathcal{E}_{1}=\left\{U_{k}^{n}\left(m_{k}, l_{k}\right) \notin \mathcal{T}_{\epsilon^{\prime}}^{(n)} \text { for all } l_{k}, \text { for some } m_{k}, k=1,2\right\} \\
& \mathcal{E}_{2}=\left\{\left(U_{1}^{n}\left(M_{1}, L_{1}\right), U_{2}^{n}\left(M_{2}, L_{2}\right), Y^{n}\right) \notin \mathcal{T}_{\epsilon}^{(n)}\right\} \\
& \mathcal{E}_{3}=\left\{\left(U_{1}^{n}\left(m_{1}, l_{1}\right), U_{2}^{n}\left(m_{2}, l_{2}\right), Y^{n}\right) \notin \mathcal{T}_{\epsilon}^{(n)}\left(U_{1}, U_{2}, Y\right)\right. \\
&\text { for some } \left.\left(m_{1}, l_{1}, m_{2}, l_{2}\right) \neq(0,0,0,0)\right\}
\end{aligned}
$$

- We already dealt with $\mathrm{P}\left\{\mathcal{E}_{1}\right\}$ and $\mathrm{P}\left\{\mathcal{E}_{2} \cap \mathcal{E}_{1}^{c}\right\}$.
- We handle $\mathrm{P}\left\{\mathcal{E}_{3} \cap \mathcal{E}_{1}^{c}\right\}$ with the Mismatched Packing Lemma and a careful partitioning of error events to capture linearly dependent competing codewords.

Compute-Forward Achievability via Linear Random Coding

$$
\begin{aligned}
\mathcal{A} & =\left\{\left(m_{1}, l_{1}, m_{2}, l_{2}\right):\left(m_{1}, l_{1}, m_{2}, l_{2}\right) \neq(0,0,0,0)\right\}, \\
\mathcal{A}_{1} & =\left\{\left(m_{1}, l_{1}, m_{2}, l_{2}\right):\left(m_{1}, l_{1}\right) \neq(0,0),\left(m_{2}, l_{2}\right)=(0,0)\right\}, \\
\mathcal{A}_{2} & =\left\{\left(m_{1}, l_{1}, m_{2}, l_{2}\right):\left(m_{1}, l_{1}\right)=(0,0),\left(m_{2}, l_{2}\right) \neq(0,0)\right\}, \\
\mathcal{A}_{12} & =\left\{\left(m_{1}, l_{1}, m_{2}, l_{2}\right):\left(m_{1}, l_{1}\right) \neq(0,0),\left(m_{2}, l_{2}\right) \neq(0,0)\right\}, \\
\mathcal{L} & =\left\{\left(m_{1}, l_{1}, m_{2}, l_{2}\right) \in \mathcal{A}_{12}:\left[\mathbf{m}_{1} \mathbf{l}_{\mathbf{1}}\right],\left[\mathbf{m}_{2} \mathbf{l}_{2} \mathbf{0}\right] \text { are linearly dependent }\right\}, \\
\mathcal{L}^{c} & =\left\{\left(m_{1}, l_{1}, m_{2}, l_{2}\right) \in \mathcal{A}_{12}:\left[\mathbf{m}_{1} \mathbf{l}_{\mathbf{1}}\right],\left[\mathbf{m}_{2} \mathbf{l}_{2} \mathbf{0}\right] \text { are linearly independent }\right\}
\end{aligned}
$$

Further, for some $\boldsymbol{b} \in \mathbb{F}_{\mathrm{q}}^{2}$ such that $\boldsymbol{b} \neq \mathbf{0}$, define

$$
\begin{aligned}
& \mathcal{L}_{1}(\boldsymbol{b})=\left\{\left(m_{1}, l_{1}, m_{2}, l_{2}\right) \in \mathcal{L}: b_{1}\left[\mathbf{m}_{1} \mathbf{l}_{\mathbf{1}}\right] \oplus b_{2}\left[\mathbf{m}_{2} \mathbf{l}_{2} \mathbf{0}\right] \neq \mathbf{0}\right\}, \\
& \mathcal{L}_{2}(\boldsymbol{b})=\left\{\left(m_{1}, l_{1}, m_{2}, l_{2}\right) \in \mathcal{L}: b_{1}\left[\mathbf{m}_{1} \mathbf{l}_{\mathbf{1}}\right] \oplus b_{2}\left[\mathbf{m}_{2} \mathbf{l}_{2} \mathbf{0}\right]=\mathbf{0}\right\} .
\end{aligned}
$$

Simplifying, we find that any rate $\left(R_{1}, R_{2}\right) \in \mathcal{R}_{\text {LMAC }}$ is achievable via "multiple-access" decoding.

Rate Region

Gaussian Compute-Forward via Discretization

- Can we use these discrete memoryless results to recover the Gaussian compute-forward region from Nazer - Gastpar '11?

Gaussian Compute-Forward via Discretization

- Can we use these discrete memoryless results to recover the Gaussian compute-forward region from Nazer - Gastpar '11?
- Yes! However, the proof requires some new ingredients, since the region is in terms of entropies, rather than mutual informations.

Gaussian Compute-Forward via Discretization

- Can we use these discrete memoryless results to recover the Gaussian compute-forward region from Nazer - Gastpar '11?
- Yes! However, the proof requires some new ingredients, since the region is in terms of entropies, rather than mutual informations.
- How about from 2 to K users, i.e., recovering L linear combinations out of K users?

Gaussian Compute-Forward via Discretization

- Can we use these discrete memoryless results to recover the Gaussian compute-forward region from Nazer - Gastpar '11?
- Yes! However, the proof requires some new ingredients, since the region is in terms of entropies, rather than mutual informations.
- How about from 2 to K users, i.e., recovering L linear combinations out of K users?
- Yes!

K-User Compute-Forward

- For $\mathrm{A} \in \mathbb{F}_{\mathrm{q}}^{L \times K}$, want to compute

$$
W_{\mathrm{A}}^{n}=\mathrm{A}\left[\begin{array}{c}
U_{1}^{n} \\
\vdots \\
U_{K}^{n}
\end{array}\right]
$$

- For some full rank matrices $\mathrm{B} \in \mathbb{F}_{\mathrm{q}}^{L_{\mathrm{B}} \times K}, \mathrm{C} \in \mathbb{F}_{\mathrm{q}}^{L_{\mathrm{C}} \times L_{\mathrm{B}}}$, $0 \leq L_{\mathrm{C}}<L_{\mathrm{B}} \leq K$ (with ranks L_{B} and L_{C}, respectively) and sets $\mathcal{S}, \mathcal{T} \subseteq[1: K]$, define $\mathscr{R}_{\mathrm{D}}(\mathrm{B}, \mathrm{C}, \mathcal{S}, \mathcal{T})$ as the set of rate tuples satisfying the inequality

$$
\sum_{k \in \mathcal{T}} R_{k}<H(U(\mathcal{T}))-H\left(W_{\mathrm{B}(\mathcal{S})} \mid Y, W_{\mathrm{CB}}\right)
$$

where $W_{\mathrm{B}}=\mathrm{B}\left[U_{1}, \ldots, U_{K}\right]^{T}$.

K-User Compute-Forward

Theorem

A rate tuple $\left(R_{1}, \ldots, R_{K}\right)$ is achievable for computing the A-linear combinations if it is contained in

$$
\bigcup_{\mathrm{B}} \bigcap_{\mathrm{C}} \bigcup_{\mathcal{S}} \bigcap_{\mathcal{T}} \mathscr{R}_{\mathrm{D}}(\mathrm{~B}, \mathrm{C}, \mathcal{S}, \mathcal{T})
$$

for some $\prod_{k=1}^{K} p\left(u_{k}\right)$ and mappings $x_{k}\left(u_{k}\right), k \in[1: K]$. The set operations are over all tuples ($\mathrm{B}, \mathrm{C}, \mathcal{S}, \mathcal{T}$) with the following constraints:
(1) $\mathrm{B} \in \mathbb{F}_{\mathrm{q}}^{L_{\mathrm{B}} \times K}$ are full rank matrices satisfying $\operatorname{span}(\mathrm{A}) \subseteq \operatorname{span}(\mathrm{B})$,
(2) $C \in \mathbb{F}_{\mathrm{q}}^{L_{C} \times L_{\mathrm{B}}}$ are full rank matrices (including empty matrices), where $0 \leq L_{\mathrm{C}}<L_{\mathrm{B}}$,
(3) $\mathcal{S} \subseteq\left[1: L_{\mathrm{B}}\right]$ are sets of size $|\mathcal{S}|=L_{\mathrm{B}}-L_{\mathrm{C}}$ such that $\operatorname{rank}\left(\left[\begin{array}{c}\mathrm{C} \\ \mathrm{I}(\mathcal{S})\end{array}\right]\right)=L_{\mathrm{B}}$,
(4) $\mathcal{T} \subseteq \mathcal{K}$ are sets of size $|\mathcal{T}|=L_{\mathrm{B}}-L_{\mathrm{C}}$ such that $\operatorname{rank}\left(\left[\begin{array}{c}\mathrm{B}(\mathcal{S}) \\ \mathrm{I}(\mathcal{K} \backslash \mathcal{T})\end{array}\right]\right)=K$.

Example: Noisy Additive Channel

- $\mathcal{X}_{k}=\{0,1\}, \mathcal{Y}=\{0,1,2,3\}$
- Y is the sum of X_{1}, X_{2}, X_{3} passed through quaternary symmetric channel
- Fix $p\left(x_{k}\right) \sim \operatorname{Bern}(1 / 2), U_{k}=X_{k}$
- Crossover probability $p=0.1$

General A-Computation Example

- Compute $\mathrm{A}=[1,1,1]$
- Rank 1: $\mathrm{B}=\mathrm{A}$
- Rank 2: $\mathrm{B}=\left[\begin{array}{l}1,1,0 \\ 0,0,1\end{array}\right], \mathrm{B}=\left[\begin{array}{l}1,0,1 \\ 0,1,0\end{array}\right], \mathrm{B}=\left[\begin{array}{l}0,1,1 \\ 1,0,0\end{array}\right]$,
- Rank 3: $\mathrm{B}=\mathrm{I}$

General A-Computation Example

Example: Gaussian Channel

- Consider a $K=3$ user Gaussian MAC with channel gain

$$
\mathbf{H}=\left[\begin{array}{ccc}
1 & 1.5 & 0.75 \\
0.75 & 1 & 1.5 \\
1.5 & 0.75 & 1
\end{array}\right]
$$

- $P=2$, and $\mathrm{A}=[1,1,1]$
- Compare with sequential decoding points $B=[1,1,1]$ and

$$
\mathrm{B}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right],
$$

Example: Gaussian Channel

