Towards an Algebraic Network Information Theory: Part II. Simultaneous Decoding

Bobak Nazer BU

Sung Hoon LimChen FengAdriano PastoreMichael GastparKIOSTUBCCTTCEPFL

CISS 2018 March 23, 2018

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

Algebraic Approach:

• Utilize linear or lattice codebooks.

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

- Utilize linear or lattice codebooks.
- Compelling examples starting from the work of Körner and Marton on distributed compression and, more recently, many papers on physical-layer network coding, distributed dirty-paper coding, and interference alignment.

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

- Utilize linear or lattice codebooks.
- Compelling examples starting from the work of Körner and Marton on distributed compression and, more recently, many papers on physical-layer network coding, distributed dirty-paper coding, and interference alignment.
- Coding schemes exhibit behavior not found via i.i.d. ensembles.

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

- Utilize linear or lattice codebooks.
- Compelling examples starting from the work of Körner and Marton on distributed compression and, more recently, many papers on physical-layer network coding, distributed dirty-paper coding, and interference alignment.
- Coding schemes exhibit behavior not found via i.i.d. ensembles.
- However, some classical coding techniques are still unavailable.

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

- Utilize linear or lattice codebooks.
- Compelling examples starting from the work of Körner and Marton on distributed compression and, more recently, many papers on physical-layer network coding, distributed dirty-paper coding, and interference alignment.
- Coding schemes exhibit behavior not found via i.i.d. ensembles.
- However, some classical coding techniques are still unavailable.
- Most of the initial efforts have focused on Gaussian networks.

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

- Utilize linear or lattice codebooks.
- Compelling examples starting from the work of Körner and Marton on distributed compression and, more recently, many papers on physical-layer network coding, distributed dirty-paper coding, and interference alignment.
- Coding schemes exhibit behavior not found via i.i.d. ensembles.
- However, some classical coding techniques are still unavailable.
- Most of the initial efforts have focused on Gaussian networks.
- Are these just a collection of intriguing examples or elements of a more general theory?

Goal: Roughly speaking, for a given network, determine necessary and sufficient conditions on the rates at which the sources (or some functions thereof) can be communicated to the destinations.

- Utilize linear or lattice codebooks.
- Compelling examples starting from the work of Körner and Marton on distributed compression and, more recently, many papers on physical-layer network coding, distributed dirty-paper coding, and interference alignment.
- Coding schemes exhibit behavior not found via i.i.d. ensembles.
- However, some classical coding techniques are still unavailable.
- Most of the initial efforts have focused on Gaussian networks.
- Are these just a collection of intriguing examples or elements of a more general theory?
- Recent efforts, starting with **Padakandla-Pradhan '13**, demonstrate that nested linear codes can be brought into the powerful framework of joint typicality encoding and decoding.

Problem Statement:

• Transmitter k has a message $m_k \in [2^{nR_k}] \triangleq \{0, \dots, 2^{nR_k} - 1\}$

Problem Statement:

• Transmitter k has a message $m_k \in [2^{nR_k}] \triangleq \{0, \dots, 2^{nR_k} - 1\}$

- Transmitter k has a message $m_k \in [2^{nR_k}] \triangleq \{0, \dots, 2^{nR_k} 1\}$
- R_k is the rate (in bits/channel use)

- Transmitter k has a message $m_k \in [2^{nR_k}] \triangleq \{0, \dots, 2^{nR_k} 1\}$
- R_k is the rate (in bits/channel use)
- Encoder k: assigns codeword $x_k^n(m_k) \in \mathcal{X}_k^n$ to each $m_k \in [2^{nR_k}]$

Problem Statement:

- Transmitter k has a message $m_k \in [2^{nR_k}] \triangleq \{0, \dots, 2^{nR_k} 1\}$
- R_k is the rate (in bits/channel use)
- Encoder k: assigns codeword $x_k^n(m_k) \in \mathcal{X}_k^n$ to each $m_k \in [2^{nR_k}]$

• Memoryless Channel: $p_{Y^n|X_1^n,X_2^n}(y^n|x_1^n,x_2^n) = \prod_{i=1}^n p_{Y|X_1,X_2}(y_i|x_{1,i}x_{2,i})$

Problem Statement:

- Transmitter k has a message $m_k \in [2^{nR_k}] \triangleq \{0, \dots, 2^{nR_k} 1\}$
- R_k is the rate (in bits/channel use)
- Encoder k: assigns codeword $x_k^n(m_k) \in \mathcal{X}_k^n$ to each $m_k \in [2^{nR_k}]$

• Memoryless Channel: $p_{Y^n|X_1^n,X_2^n}(y^n|x_1^n,x_2^n) = \prod_{i=1}^n p_{Y|X_1,X_2}(y_i|x_{1,i}x_{2,i})$

• Decoder: assigns estimates (\hat{m}_1, \hat{m}_2) to each $y^n \in \mathcal{Y}^n$

Problem Statement:

- Transmitter k has a message $m_k \in [2^{nR_k}] \triangleq \{0, \dots, 2^{nR_k} 1\}$
- *R_k* is the rate (in bits/channel use)
- Encoder k: assigns codeword $x_k^n(m_k) \in \mathcal{X}_k^n$ to each $m_k \in [2^{nR_k}]$

• Memoryless Channel: $p_{Y^n|X_1^n,X_2^n}(y^n|x_1^n,x_2^n) = \prod_{i=1}^n p_{Y|X_1,X_2}(y_i|x_{1,i}x_{2,i})$

- Decoder: assigns estimates (\hat{m}_1, \hat{m}_2) to each $y^n \in \mathcal{Y}^n$
- Average probability of error is $\mathsf{P}\{(\hat{M}_1, \dots, \hat{M}_K) \neq (M_1, \dots, M_K)\}\$ where M_1, \dots, M_K are drawn independently and uniformly.

Two-User Multiple-Access Channels

Theorem (Ahlswede '71, Liao '72)

The multiple-access capacity region is the convex closure of all rate pairs (R_1, R_2) satisfying

 $R_1 < I(X_1; Y | X_2) \qquad R_2 < I(X_2; Y | X_1) \qquad R_1 + R_2 < I(X_1, X_2; Y)$

for some $p_{X_1}(x_1)p_{X_2}(x_2)$.

Code Construction:

- For each message $m_1 \in [2^{nR_1}]$, generate codeword $X_1^n(m_1)$ i.i.d. according to $p_{X_1}(x_1)$.
- For each message $m_2 \in [2^{nR_2}]$, generate codeword $X_2^n(m_2)$ i.i.d. according to $p_{X_2}(x_2)$.

Code Construction:

- For each message $m_1 \in [2^{nR_1}]$, generate codeword $X_1^n(m_1)$ i.i.d. according to $p_{X_1}(x_1)$.
- For each message $m_2 \in [2^{nR_2}]$, generate codeword $X_2^n(m_2)$ i.i.d. according to $p_{X_2}(x_2)$.
- With high probability, codewords are typical.

Code Construction:

- For each message $m_1 \in [2^{nR_1}]$, generate codeword $X_1^n(m_1)$ i.i.d. according to $p_{X_1}(x_1)$.
- For each message $m_2 \in [2^{nR_2}]$, generate codeword $X_2^n(m_2)$ i.i.d. according to $p_{X_2}(x_2)$.
- With high probability, codewords are typical.

Encoding:

Code Construction:

- For each message $m_1 \in [2^{nR_1}]$, generate codeword $X_1^n(m_1)$ i.i.d. according to $p_{X_1}(x_1)$.
- For each message m₂ ∈ [2^{nR₂}], generate codeword Xⁿ₂(m₂)
 i.i.d. according to p_{X2}(x₂).
- With high probability, codewords are typical.

Encoding:

• User 1: Transmit $X_1^n(m_1)$.

Code Construction:

- For each message $m_1 \in [2^{nR_1}]$, generate codeword $X_1^n(m_1)$ i.i.d. according to $p_{X_1}(x_1)$.
- For each message m₂ ∈ [2^{nR₂}], generate codeword Xⁿ₂(m₂)
 i.i.d. according to p_{X2}(x₂).
- With high probability, codewords are typical.

Encoding:

- User 1: Transmit $X_1^n(m_1)$.
- User 2: Transmit $X_2^n(m_2)$.

Otherwise, declare an error.

Otherwise, declare an error.

Error Analysis: Assume $m_1 = 0$, $m_2 = 0$ are selected messages.

$$\begin{split} \mathcal{E}_1 &= \left\{ (X_1^n(0), X_2^n(0), Y^n) \notin \mathcal{T}_{\epsilon}^{(n)}(X_1, X_2, Y) \right\} \\ \mathcal{E}_2 &= \left\{ (X_1^n(m_1), X_2^n(0), Y^n) \notin \mathcal{T}_{\epsilon}^{(n)}(X_1, X_2, Y) \text{ for some } m_1 \neq 0 \right\} \\ \mathcal{E}_3 &= \left\{ (X_1^n(0), X_2^n(m_2), Y^n) \notin \mathcal{T}_{\epsilon}^{(n)}(X_1, X_2, Y) \text{ for some } m_2 \neq 0 \right\} \\ \mathcal{E}_4 &= \left\{ (X_1^n(m_1), X_2^n(m_2), Y^n) \notin \mathcal{T}_{\epsilon}^{(n)}(X_1, X_2, Y) \text{ for some } m_1 \neq 0, m_2 \neq 0 \right\} \end{split}$$

- By the Weak Law of Large Numbers, P{E₁} → 0.
- By the Packing Lemma, $\mathsf{P}\{\mathcal{E}_2\} \to 0$ if $R_1 < I(X_1; Y|X_2) \delta(\epsilon)$.
- By the Packing Lemma, $\mathsf{P}\{\mathcal{E}_3\} \to 0$ if $R_2 < I(X_2; Y|X_1) \delta(\epsilon)$.
- By the Packing Lemma, $\mathsf{P}\{\mathcal{E}_4\} \to 0$ if $R_1 + R_2 < I(X_1, X_2; Y) \delta(\epsilon)$.

Compute-Forward

• Messages: $m_k \in [2^{nR_k}] \triangleq \{0, \dots, 2^{nR_k} - 1\}, k = 1, \dots, K.$

- Messages: $m_k \in [2^{nR_k}] \triangleq \{0, \dots, 2^{nR_k} 1\}, \ k = 1, \dots, K.$
- Encoders: mappings $(u_k^n, x_k^n)(m_k) \in \mathbb{F}_q^n \times \mathcal{X}_k^n$, $k = 1, \dots, K$ such that $u_k^n(m_k)$ is bijective.

- Messages: $m_k \in [2^{nR_k}] \triangleq \{0, \dots, 2^{nR_k} 1\}, \ k = 1, \dots, K.$
- Encoders: mappings $(u_k^n, x_k^n)(m_k) \in \mathbb{F}_q^n \times \mathcal{X}_k^n$, $k = 1, \ldots, K$ such that $u_k^n(m_k)$ is bijective.
- Linear Combination: $w_a^n \triangleq \bigoplus_k a_k u_k^n(m_k)$, $a = [a_1 \cdots a_K] \in \mathbb{F}_q^K$

- Messages: $m_k \in [2^{nR_k}] \triangleq \{0, \dots, 2^{nR_k} 1\}, \ k = 1, \dots, K.$
- Encoders: mappings $(u_k^n, x_k^n)(m_k) \in \mathbb{F}_q^n \times \mathcal{X}_k^n$, $k = 1, \dots, K$ such that $u_k^n(m_k)$ is bijective.
- Linear Combination: $w_a^n \triangleq \bigoplus_k a_k u_k^n(m_k)$, $a = [a_1 \cdots a_K] \in \mathbb{F}_q^K$
- Decoder: assigns an estimate $\hat{w}^n_{a} \in \mathbb{F}^n_{q}$ to each $y^n \in \mathcal{Y}^n$.

- Messages: $m_k \in [2^{nR_k}] \triangleq \{0, \dots, 2^{nR_k} 1\}, \ k = 1, \dots, K.$
- Encoders: mappings $(u_k^n, x_k^n)(m_k) \in \mathbb{F}_q^n \times \mathcal{X}_k^n$, $k = 1, \dots, K$ such that $u_k^n(m_k)$ is bijective.
- Linear Combination: $w_a^n \triangleq \bigoplus_k a_k u_k^n(m_k)$, $a = [a_1 \cdots a_K] \in \mathbb{F}_q^K$
- Decoder: assigns an estimate $\hat{w}^n_{a} \in \mathbb{F}^n_{q}$ to each $y^n \in \mathcal{Y}^n$.
- Probability of Error: For uniformly distributed messages M_1, \ldots, M_K , want $\mathsf{P}\{\hat{W}^n_a \neq W^n_a\} \to 0.$

Theorem (Lim-Feng-Pastore-Nazer-Gastpar arXiv '16, ISIT '17)

Consider the case of K = 2 transmitters and a receiver that wants to recover a linear combination with coefficient vector $\mathbf{a} \in \mathbb{F}_q^2$. A rate pair is achievable if it is included in $\mathcal{R}_{CF}(\mathbf{a}) \cup \mathcal{R}_{LMAC}$ for some pmfs $p_{U_1}(u_1)$, $p_{U_2}(u_2)$, symbol mappings $x_1(u_1)$, $x_2(u_2)$ where

Two-User Compute–Forward

Theorem (Lim-Feng-Pastore-Nazer-Gastpar arXiv '16, ISIT '17)

Consider the case of K = 2 transmitters and a receiver that wants to recover a linear combination with coefficient vector $\mathbf{a} \in \mathbb{F}_q^2$. A rate pair is achievable if it is included in $\mathcal{R}_{CF}(\mathbf{a}) \cup \mathcal{R}_{LMAC}$ for some pmfs $p_{U_1}(u_1)$, $p_{U_2}(u_2)$, symbol mappings $x_1(u_1)$, $x_2(u_2)$ where

$$\mathcal{R}_{CF}(\boldsymbol{a}) \triangleq \left\{ (R_1, R_2) : R_k < I_{CF,k}(\boldsymbol{a}) \triangleq H(U_k) - H(W_{\boldsymbol{a}}|Y), \ k = 1, 2 \right\}$$

Two-User Compute-Forward

Theorem (Lim-Feng-Pastore-Nazer-Gastpar arXiv '16, ISIT '17)

Consider the case of K = 2 transmitters and a receiver that wants to recover a linear combination with coefficient vector $\mathbf{a} \in \mathbb{F}_q^2$. A rate pair is achievable if it is included in $\mathcal{R}_{CF}(\mathbf{a}) \cup \mathcal{R}_{LMAC}$ for some pmfs $p_{U_1}(u_1)$, $p_{U_2}(u_2)$, symbol mappings $x_1(u_1)$, $x_2(u_2)$ where

$$\begin{aligned} \mathcal{R}_{CF}(a) &\triangleq \left\{ (R_1, R_2) : R_k < I_{CF,k}(a) \triangleq H(U_k) - H(W_a | Y), \ k = 1, 2 \right\} \\ \mathcal{R}_{LMAC} &\triangleq \left\{ (R_1, R_2) : \max\{R_1, R_2\} < \min_{\substack{b \in \mathbb{F}_q^2 : b_k \neq 0}} I(U_k; Y, W_b) \\ R_1 < I(U_1; Y | U_2), \\ R_2 < I(U_2; Y | U_1), \\ R_1 + R_2 < I(U_1, U_2; Y) \right\} \end{aligned}$$

Compute-Forward Achievability via Linear Random Coding

Code Construction:

• q-ary expansion \mathbf{m}_k of message $m_k \in [2^{nR_k}]$.

- q-ary expansion \mathbf{m}_k of message $m_k \in [2^{nR_k}]$.
- Auxiliary index $l_k \in [2^{n\hat{R}_k}]$ with q-ary expansions \mathbf{l}_k .

- q-ary expansion \mathbf{m}_k of message $m_k \in [2^{nR_k}]$.
- Auxiliary index $l_k \in [2^{n\hat{R}_k}]$ with q-ary expansions \mathbf{l}_k .
- Draw generator matrix G ∈ ℝ^{κ×n}_q and dithers dⁿ₁, dⁿ₂ ∈ ℝⁿ_q i.i.d. Unif(ℝ_q) where κ = n(max{R₁ + R̂₁, R₂ + R̂₂})/log(q).

$\mathbb{F}^n_{\mathbf{q}}$

- q-ary expansion \mathbf{m}_k of message $m_k \in [2^{nR_k}]$.
- Auxiliary index $l_k \in [2^{n\hat{R}_k}]$ with q-ary expansions \mathbf{l}_k .
- Draw generator matrix $G \in \mathbb{F}_q^{\kappa \times n}$ and dithers $d_1^n, d_2^n \in \mathbb{F}_q^n$ i.i.d. $\text{Unif}(\mathbb{F}_q)$ where $\kappa = n(\max\{R_1 + \hat{R}_1, R_2 + \hat{R}_2\})/\log(q).$
- Linear codewords:
 - $u_1^n(m_1,l_1) = [\mathbf{m}_1 \ \mathbf{l}_1] \mathbf{G} \oplus d_1^n$

- q-ary expansion \mathbf{m}_k of message $m_k \in [2^{nR_k}]$.
- Auxiliary index $l_k \in [2^{n\hat{R}_k}]$ with q-ary expansions \mathbf{l}_k .
- Draw generator matrix $G \in \mathbb{F}_q^{\kappa \times n}$ and dithers $d_1^n, d_2^n \in \mathbb{F}_q^n$ i.i.d. $\text{Unif}(\mathbb{F}_q)$ where $\kappa = n(\max\{R_1 + \hat{R}_1, R_2 + \hat{R}_2\})/\log(q).$
- Linear codewords:
 - $u_1^n(m_1, l_1) = [\mathbf{m}_1 \ \mathbf{l}_1] \mathbf{G} \oplus d_1^n$ $u_2^n(m_2, l_2) = [\mathbf{m}_2 \ \mathbf{l}_2 \ \mathbf{0}] \mathbf{G} \oplus d_2^n$

- q-ary expansion \mathbf{m}_k of message $m_k \in [2^{nR_k}]$.
- Auxiliary index $l_k \in [2^{n\hat{R}_k}]$ with q-ary expansions \mathbf{l}_k .
- Draw generator matrix $G \in \mathbb{F}_q^{\kappa \times n}$ and dithers $d_1^n, d_2^n \in \mathbb{F}_q^n$ i.i.d. $\text{Unif}(\mathbb{F}_q)$ where $\kappa = n(\max\{R_1 + \hat{R}_1, R_2 + \hat{R}_2\})/\log(q).$
- Linear codewords:
 - $u_1^n(m_1, l_1) = [\mathbf{m}_1 \ \mathbf{l}_1] \mathbf{G} \oplus d_1^n$ $u_2^n(m_2, l_2) = [\mathbf{m}_2 \ \mathbf{l}_2 \ \mathbf{0}] \mathbf{G} \oplus d_2^n$

\mathbb{F}_{q}^{n}

- q-ary expansion \mathbf{m}_k of message $m_k \in [2^{nR_k}]$.
- Auxiliary index $l_k \in [2^{n\hat{R}_k}]$ with q-ary expansions \mathbf{l}_k .
- Draw generator matrix $G \in \mathbb{F}_q^{\kappa \times n}$ and dithers $d_1^n, d_2^n \in \mathbb{F}_q^n$ i.i.d. $\text{Unif}(\mathbb{F}_q)$ where $\kappa = n(\max\{R_1 + \hat{R}_1, R_2 + \hat{R}_2\})/\log(q).$
- Linear codewords:
 - $u_1^n(m_1, l_1) = [\mathbf{m}_1 \ \mathbf{l}_1] \mathbf{G} \oplus d_1^n$ $u_2^n(m_2, l_2) = [\mathbf{m}_2 \ \mathbf{l}_2 \ \mathbf{0}] \mathbf{G} \oplus d_2^n$

Encoding:

• Fix pmfs $p(u_1)$, $p(u_2)$, mappings $x_1(u_1)$, $x_2(u_2)$, and $0 < \epsilon' < \epsilon$.

- Fix pmfs $p(u_1)$, $p(u_2)$, mappings $x_1(u_1)$, $x_2(u_2)$, and $0 < \epsilon' < \epsilon$.
- Multicoding:

- Fix pmfs $p(u_1)$, $p(u_2)$, mappings $x_1(u_1)$, $x_2(u_2)$, and $0 < \epsilon' < \epsilon$.
- Multicoding: For message m_k ,

- Fix pmfs $p(u_1)$, $p(u_2)$, mappings $x_1(u_1)$, $x_2(u_2)$, and $0 < \epsilon' < \epsilon$.
- Multicoding: For message m_k, find index l_k such that uⁿ_k(m_k, l_k) ∈ T⁽ⁿ⁾_{ϵ'}(U_k). (If no such l_k, pick one randomly.)

Encoding:

- Fix pmfs $p(u_1)$, $p(u_2)$, mappings $x_1(u_1)$, $x_2(u_2)$, and $0 < \epsilon' < \epsilon$.
- Multicoding: For message m_k, find index l_k such that uⁿ_k(m_k, l_k) ∈ T⁽ⁿ⁾_{ε'}(U_k). (If no such l_k, pick one randomly.)
- Succeeds w.h.p. if

$$\hat{R}_k > D(p_{U_k} \| p_{\mathsf{q}}) + \delta(\epsilon')$$

by Mismatched Covering Lemma where $p_{q} = \text{Unif}(\mathbb{F}_{q}).$

\mathbb{F}_{q}^{n}

Encoding:

- Fix pmfs $p(u_1)$, $p(u_2)$, mappings $x_1(u_1)$, $x_2(u_2)$, and $0 < \epsilon' < \epsilon$.
- Multicoding: For message m_k, find index l_k such that uⁿ_k(m_k, l_k) ∈ T⁽ⁿ⁾_{ε'}(U_k). (If no such l_k, pick one randomly.)
- Succeeds w.h.p. if

$$\hat{R}_k > D(p_{U_k} \| p_{\mathsf{q}}) + \delta(\epsilon')$$

by Mismatched Covering Lemma where $p_{q} = \text{Unif}(\mathbb{F}_{q}).$

• At time *i*, transmit $x_{ki} = x_k (u_{ki}(m_k, l_k))$.

• For $m_k \in [2^{nR_k}]$, $l_k \in [2^{n\hat{R}_k}]$, we can express the desired linear combination of codewords as

$$w_{\boldsymbol{a}}^n = a_1 u_1^n(m_1, l_1) \oplus a_2 u_2^n(m_2, l_2)$$

• For $m_k \in [2^{nR_k}]$, $l_k \in [2^{n\hat{R}_k}]$, we can express the desired linear combination of codewords as

$$w_{\boldsymbol{a}}^{n} = a_{1}u_{1}^{n}(m_{1}, l_{1}) \oplus a_{2}u_{2}^{n}(m_{2}, l_{2})$$

= $\begin{bmatrix} a_{1}[\mathbf{m}_{1} \ \mathbf{l}_{1}] \oplus a_{2}[\mathbf{m}_{2} \ \mathbf{l}_{2} \ \mathbf{0}] \end{bmatrix} \mathbf{G} \oplus a_{1}d_{1}^{n} \oplus a_{2}d_{2}^{n}$

• For $m_k \in [2^{nR_k}]$, $l_k \in [2^{n\hat{R}_k}]$, we can express the desired linear combination of codewords as

$$w_{\boldsymbol{a}}^{n} = a_{1}u_{1}^{n}(m_{1}, l_{1}) \oplus a_{2}u_{2}^{n}(m_{2}, l_{2})$$

= $\begin{bmatrix} a_{1}[\mathbf{m}_{1} \ \mathbf{l}_{1}] \oplus a_{2}[\mathbf{m}_{2} \ \mathbf{l}_{2} \ \mathbf{0} \end{bmatrix} \mathbf{G} \oplus a_{1}d_{1}^{n} \oplus a_{2}d_{2}^{n}$
= $\mathbf{s}_{\boldsymbol{a}} \mathbf{G} \oplus a_{1}d_{1}^{n} \oplus a_{2}d_{2}^{n}$

where $s_a \in [2^{n \max\{R_1 + \hat{R}_1, R_2 + \hat{R}_2\}}]$ is the linear combination index corresponding to q-ary expansion s_a .

• For $m_k \in [2^{nR_k}]$, $l_k \in [2^{n\hat{R}_k}]$, we can express the desired linear combination of codewords as

$$w_{\boldsymbol{a}}^{n} = a_{1}u_{1}^{n}(m_{1}, l_{1}) \oplus a_{2}u_{2}^{n}(m_{2}, l_{2})$$

= $\begin{bmatrix} a_{1}[\mathbf{m}_{1} \ \mathbf{l}_{1}] \oplus a_{2}[\mathbf{m}_{2} \ \mathbf{l}_{2} \ \mathbf{0} \end{bmatrix} \mathbf{G} \oplus a_{1}d_{1}^{n} \oplus a_{2}d_{2}^{n}$
= $\mathbf{s}_{\boldsymbol{a}} \mathbf{G} \oplus a_{1}d_{1}^{n} \oplus a_{2}d_{2}^{n}$

where $s_a \in [2^{n \max\{R_1 + \hat{R}_1, R_2 + \hat{R}_2\}}]$ is the linear combination index corresponding to q-ary expansion s_a .

• Can view $w^n_{a}(s)$ as some linear codeword that belongs to $\mathcal{T}^{(n)}_{\epsilon'}(W_{a})$.

Decoding:

• Search for index \hat{s}_a such that $(W^n_a(\hat{s}_a), Y^n) \in \mathcal{T}_{\epsilon}^{(n)}(W_a, Y)$. Output as estimate if unique. Otherwise, declare an error.

Decoding:

- Search for index ŝ_a such that (Wⁿ_a(ŝ_a), Yⁿ) ∈ T⁽ⁿ⁾_ϵ(W_a, Y). Output as estimate if unique. Otherwise, declare an error.
- Although the decoder searches for W^n_a over the full linear codebook, it ignores codewords that fall outside the typical set $\mathcal{T}^{(n)}_{\epsilon}(W_a)$.

Error Analysis: Assume $s_a = 0$ is selected linear combination index.

$$\begin{split} \mathcal{E}_1 &= \left\{ U_k^n(m_k, l_k) \not\in \mathcal{T}_{\epsilon'}^{(n)} \text{ for all } l_k, \text{ for some } m_k, k = 1, 2 \right\} \\ \mathcal{E}_2 &= \left\{ (U_1^n(M_1, L_1), U_2^n(M_2, L_2), Y^n) \not\in \mathcal{T}_{\epsilon}^{(n)} \right\} \\ \mathcal{E}_3 &= \left\{ (W_{\boldsymbol{a}}^n(s_{\boldsymbol{a}}), Y^n) \notin \mathcal{T}_{\epsilon}^{(n)}(W_{\boldsymbol{a}}, Y) \text{ for some } s_{\boldsymbol{a}} \neq 0 \right\} \end{split}$$

Error Analysis: Assume $s_a = 0$ is selected linear combination index.

$$\begin{split} \mathcal{E}_1 &= \left\{ U_k^n(m_k, l_k) \not\in \mathcal{T}_{\epsilon'}^{(n)} \text{ for all } l_k, \text{ for some } m_k, k = 1, 2 \right\} \\ \mathcal{E}_2 &= \left\{ (U_1^n(M_1, L_1), U_2^n(M_2, L_2), Y^n) \notin \mathcal{T}_{\epsilon}^{(n)} \right\} \\ \mathcal{E}_3 &= \left\{ (W_{\boldsymbol{a}}^n(s_{\boldsymbol{a}}), Y^n) \notin \mathcal{T}_{\epsilon}^{(n)}(W_{\boldsymbol{a}}, Y) \text{ for some } s_{\boldsymbol{a}} \neq 0 \right\} \end{split}$$

- By the Mismatched Covering Lemma, $\mathsf{P}\{\mathcal{E}_1\}\to 0$ if

$$\hat{R}_k > D(p_{U_k} \| p_{\mathsf{q}}) + \delta(\epsilon').$$

Error Analysis: Assume $s_a = 0$ is selected linear combination index.

$$\begin{aligned} \mathcal{E}_1 &= \left\{ U_k^n(m_k, l_k) \notin \mathcal{T}_{\epsilon'}^{(n)} \text{ for all } l_k, \text{ for some } m_k, k = 1, 2 \right\} \\ \mathcal{E}_2 &= \left\{ (U_1^n(M_1, L_1), U_2^n(M_2, L_2), Y^n) \notin \mathcal{T}_{\epsilon}^{(n)} \right\} \\ \mathcal{E}_3 &= \left\{ (W_{\boldsymbol{a}}^n(s_{\boldsymbol{a}}), Y^n) \notin \mathcal{T}_{\epsilon}^{(n)}(W_{\boldsymbol{a}}, Y) \text{ for some } s_{\boldsymbol{a}} \neq 0 \right\} \end{aligned}$$

- By the Mismatched Covering Lemma, P{ \mathcal{E}_1 } $\to 0$ if $\hat{R}_k > D(p_{U_k} \| p_q) + \delta(\epsilon').$
- By the Markov Lemma for Nested Linear Codes, $P\{\mathcal{E}_2 \cap \mathcal{E}_1^c\} \to 0$ if $\hat{R}_k > D(p_{U_k} || p_q) + \delta(\epsilon').$

Subtle Issue: L_1 and L_2 are statistically dependent, since these multicoding indices are chosen with respect to the same linear codebook.

Error Analysis: Assume $s_a = 0$ is selected linear combination index.

$$\begin{aligned} \mathcal{E}_1 &= \left\{ U_k^n(m_k, l_k) \notin \mathcal{T}_{\epsilon'}^{(n)} \text{ for all } l_k, \text{ for some } m_k, k = 1, 2 \right\} \\ \mathcal{E}_2 &= \left\{ (U_1^n(M_1, L_1), U_2^n(M_2, L_2), Y^n) \notin \mathcal{T}_{\epsilon}^{(n)} \right\} \\ \mathcal{E}_3 &= \left\{ (W_{\boldsymbol{a}}^n(s_{\boldsymbol{a}}), Y^n) \notin \mathcal{T}_{\epsilon}^{(n)}(W_{\boldsymbol{a}}, Y) \text{ for some } s_{\boldsymbol{a}} \neq 0 \right\} \end{aligned}$$

- By the Mismatched Covering Lemma, P{ \mathcal{E}_1 } $\to 0$ if $\hat{R}_k > D(p_{U_k} \| p_q) + \delta(\epsilon').$
- By the Markov Lemma for Nested Linear Codes, $\mathsf{P}\{\mathcal{E}_2 \cap \mathcal{E}_1^c\} \to 0$ if $\hat{R}_k > D(p_{U_k} \| p_q) + \delta(\epsilon').$

Subtle Issue: L_1 and L_2 are statistically dependent, since these multicoding indices are chosen with respect to the same linear codebook.

• By the Mismatched Packing Lemma, $P\{\mathcal{E}_3 \cap \mathcal{E}_1^c\} \to 0$ if $R_1 + 2\hat{R}_1 + \hat{R}_2 < I(W_a; Y) + D(p_{W_a} \| p_q) + D(p_{U_1} \| p_q) + D(p_{U_2} \| p_q) - 2\delta(\epsilon)$ $R_2 + \hat{R}_1 + 2\hat{R}_2 < I(W_a; Y) + D(p_{W_a} \| p_q) + D(p_{U_1} \| p_q) + D(p_{U_2} \| p_q) - 2\delta(\epsilon)$

• Setting $\hat{R}_k = D(p_{U_k} \| p_q) + 2\delta(\epsilon')$, we find that a rate pair (R_1, R_2) is achievable if

 $R_1 < H(U_1) - H(W_a|Y)$ $R_2 < H(U_2) - H(W_a|Y)$

• What about the "multiple-access" rates, \mathcal{R}_{LMAC} ?

- What about the "multiple-access" rates, \mathcal{R}_{LMAC} ?
- Decoding W^n_a directly does not achieve this rate region.

- What about the "multiple-access" rates, \mathcal{R}_{LMAC} ?
- Decoding W^n_a directly does not achieve this rate region.
- Instead, we can first decode U_1^n and U_2^n by searching for a unique index tuple (m_1,l_1,m_2,l_2) such that

 $(U_1^n(m_1, l_1), U_2^n(m_2, l_2), Y^n) \in \mathcal{T}_{\epsilon}^{(n)}(U_1, U_2, Y)$

and afterwards form $W_{\boldsymbol{a}}^n = a_1 U_1^n(m_1, l_1) \oplus a_2 U_2^n(m_2, l_2).$

- What about the "multiple-access" rates, \mathcal{R}_{LMAC} ?
- Decoding W^n_a directly does not achieve this rate region.
- Instead, we can first decode U_1^n and U_2^n by searching for a unique index tuple (m_1,l_1,m_2,l_2) such that

 $(U_1^n(m_1, l_1), U_2^n(m_2, l_2), Y^n) \in \mathcal{T}_{\epsilon}^{(n)}(U_1, U_2, Y)$

and afterwards form $W_{a}^{n} = a_{1}U_{1}^{n}(m_{1}, l_{1}) \oplus a_{2}U_{2}^{n}(m_{2}, l_{2}).$

• Rather than applying two decoders, we can write down a single decoder, inspired by the simultaneous non-unique decoder of Bandemer-El Gamal-Kim '15.

- What about the "multiple-access" rates, \mathcal{R}_{LMAC} ?
- Decoding W^n_a directly does not achieve this rate region.
- Instead, we can first decode U_1^n and U_2^n by searching for a unique index tuple (m_1,l_1,m_2,l_2) such that

 $(U_1^n(m_1, l_1), U_2^n(m_2, l_2), Y^n) \in \mathcal{T}_{\epsilon}^{(n)}(U_1, U_2, Y)$

and afterwards form $W_{\boldsymbol{a}}^n = a_1 U_1^n(m_1, l_1) \oplus a_2 U_2^n(m_2, l_2).$

- Rather than applying two decoders, we can write down a single decoder, inspired by the simultaneous non-unique decoder of Bandemer-El Gamal-Kim '15.
- Specifically, we search for a unique index s_a such that, for some index tuple (m_1, l_1, m_2, l_2) whose q-ary expansions satisfy

 $\mathbf{s}_{\boldsymbol{a}} = a_1[\mathbf{m}_1 \ \mathbf{l}_1] \oplus a_2[\mathbf{m}_2 \ \mathbf{l}_2 \ \mathbf{0}],$

we have that $(U_1^n(m_1, l_1), U_2^n(m_2, l_2), Y^n) \in \mathcal{T}_{\epsilon}^{(n)}(U_1, U_2, Y).$

LMAC Bound Figure

LMAC Bound Figure

Error Analysis: Assume index tuple $(m_1, l_1, m_2, l_2) = (0, 0, 0, 0)$ is selected.

Error Analysis: Assume index tuple $(m_1, l_1, m_2, l_2) = (0, 0, 0, 0)$ is selected.

• We already dealt with $\mathsf{P}\{\mathcal{E}_1\}$ and $\mathsf{P}\{\mathcal{E}_2 \cap \mathcal{E}_1^c\}$.

Error Analysis: Assume index tuple $(m_1, l_1, m_2, l_2) = (0, 0, 0, 0)$ is selected.

$$\begin{split} \mathcal{E}_1 &= \left\{ U_k^n(m_k, l_k) \not\in \mathcal{T}_{\epsilon'}^{(n)} \text{ for all } l_k, \text{ for some } m_k, k = 1, 2 \right\} \\ \mathcal{E}_2 &= \left\{ (U_1^n(M_1, L_1), U_2^n(M_2, L_2), Y^n) \not\in \mathcal{T}_{\epsilon}^{(n)} \right\} \\ \mathcal{E}_3 &= \left\{ (U_1^n(m_1, l_1), U_2^n(m_2, l_2), Y^n) \notin \mathcal{T}_{\epsilon}^{(n)}(U_1, U_2, Y) \\ \text{ for some } (m_1, l_1, m_2, l_2) \neq (0, 0, 0, 0) \right\} \end{split}$$

- We already dealt with $\mathsf{P}\{\mathcal{E}_1\}$ and $\mathsf{P}\{\mathcal{E}_2 \cap \mathcal{E}_1^c\}$.
- We handle P{E₃ ∩ E₁^c} with the Mismatched Packing Lemma and a careful partitioning of error events to capture linearly dependent competing codewords.

$$\begin{split} \mathcal{A} &= \{(m_1, l_1, m_2, l_2) : (m_1, l_1, m_2, l_2) \neq (0, 0, 0, 0)\}, \\ \mathcal{A}_1 &= \{(m_1, l_1, m_2, l_2) : (m_1, l_1) \neq (0, 0), (m_2, l_2) = (0, 0)\}, \\ \mathcal{A}_2 &= \{(m_1, l_1, m_2, l_2) : (m_1, l_1) = (0, 0), (m_2, l_2) \neq (0, 0)\}, \\ \mathcal{A}_{12} &= \{(m_1, l_1, m_2, l_2) : (m_1, l_1) \neq (0, 0), (m_2, l_2) \neq (0, 0)\}, \\ \mathcal{L} &= \{(m_1, l_1, m_2, l_2) \in \mathcal{A}_{12} : [\mathbf{m_1} \ \mathbf{l_1}], [\mathbf{m_2} \ \mathbf{l_2} \ \mathbf{0}] \text{ are linearly dependent}\}, \\ \mathcal{L}^c &= \{(m_1, l_1, m_2, l_2) \in \mathcal{A}_{12} : [\mathbf{m_1} \ \mathbf{l_1}], [\mathbf{m_2} \ \mathbf{l_2} \ \mathbf{0}] \text{ are linearly independent}\}, \end{split}$$

Further, for some $m{b} \in \mathbb{F}_q^2$ such that $m{b}
eq m{0}$, define

$$\mathcal{L}_{1}(\mathbf{b}) = \{ (m_{1}, l_{1}, m_{2}, l_{2}) \in \mathcal{L} : b_{1}[\mathbf{m}_{1} \ \mathbf{l}_{1}] \oplus b_{2}[\mathbf{m}_{2} \ \mathbf{l}_{2} \ \mathbf{0}] \neq \mathbf{0} \}, \\ \mathcal{L}_{2}(\mathbf{b}) = \{ (m_{1}, l_{1}, m_{2}, l_{2}) \in \mathcal{L} : b_{1}[\mathbf{m}_{1} \ \mathbf{l}_{1}] \oplus b_{2}[\mathbf{m}_{2} \ \mathbf{l}_{2} \ \mathbf{0}] = \mathbf{0} \}.$$

Simplifying, we find that any rate $(R_1, R_2) \in \mathcal{R}_{LMAC}$ is achievable via "multiple-access" decoding.

• Can we use these discrete memoryless results to recover the Gaussian compute-forward region from Nazer - Gastpar '11?

- Can we use these discrete memoryless results to recover the Gaussian compute-forward region from Nazer Gastpar '11?
- Yes! However, the proof requires some new ingredients, since the region is in terms of entropies, rather than mutual informations.

- Can we use these discrete memoryless results to recover the Gaussian compute-forward region from Nazer Gastpar '11?
- Yes! However, the proof requires some new ingredients, since the region is in terms of entropies, rather than mutual informations.
- How about from 2 to K users, i.e., recovering L linear combinations out of K users?

- Can we use these discrete memoryless results to recover the Gaussian compute-forward region from Nazer Gastpar '11?
- Yes! However, the proof requires some new ingredients, since the region is in terms of entropies, rather than mutual informations.
- How about from 2 to K users, i.e., recovering L linear combinations out of K users?
- Yes!

K-User Compute–Forward

• For $\mathsf{A} \in \mathbb{F}_{\mathsf{q}}^{L \times K}$, want to compute

$$W_{\mathsf{A}}^{n} = \mathsf{A} \begin{bmatrix} U_{1}^{n} \\ \vdots \\ U_{K}^{n} \end{bmatrix}$$

• For some full rank matrices $\mathsf{B} \in \mathbb{F}_q^{L_\mathsf{B} \times K}$, $\mathsf{C} \in \mathbb{F}_q^{L_\mathsf{C} \times L_\mathsf{B}}$, $0 \leq L_\mathsf{C} < L_\mathsf{B} \leq K$ (with ranks L_B and L_C , respectively) and sets $\mathcal{S}, \mathcal{T} \subseteq [1:K]$, define $\mathscr{R}_\mathsf{D}(\mathsf{B},\mathsf{C},\mathcal{S},\mathcal{T})$ as the set of rate tuples satisfying the inequality

$$\sum_{k \in \mathcal{T}} R_k < H(U(\mathcal{T})) - H(W_{\mathsf{B}(\mathcal{S})} | Y, W_{\mathsf{CB}}).$$

where $W_{\mathsf{B}} = \mathsf{B}[U_1, \ldots, U_K]^T$.

K-User Compute–Forward

Theorem

A rate tuple (R_1, \ldots, R_K) is achievable for computing the A-linear combinations if it is contained in

$$\bigcup_{B} \bigcap_{C} \bigcup_{\mathcal{S}} \bigcap_{\mathcal{T}} \mathscr{R}_{D}(B,C,\mathcal{S},\mathcal{T})$$

for some $\prod_{k=1}^{K} p(u_k)$ and mappings $x_k(u_k)$, $k \in [1 : K]$. The set operations are over all tuples (B, C, S, T) with the following constraints:

- **1** $B \in \mathbb{F}_{q}^{L_{B} \times K}$ are full rank matrices satisfying $\operatorname{span}(A) \subseteq \operatorname{span}(B)$,
- **2** $C \in \mathbb{F}_{q}^{L_{C} \times L_{B}}$ are full rank matrices (including empty matrices), where $0 \leq L_{C} < L_{B}$,

3 $S \subseteq [1: L_B]$ are sets of size $|S| = L_B - L_C$ such that $\operatorname{rank}\left(\begin{bmatrix} \mathsf{C} \\ \mathsf{I}(S) \end{bmatrix}\right) = L_B$, **4** $\mathcal{T} \subseteq \mathcal{K}$ are sets of size $|\mathcal{T}| = L_B - L_C$ such that $\operatorname{rank}\left(\begin{bmatrix} \mathsf{B}(S) \\ \mathsf{I}(\mathcal{K} \setminus \mathcal{T}) \end{bmatrix}\right) = K$.

Example: Noisy Additive Channel

- $\mathcal{X}_k = \{0, 1\}, \ \mathcal{Y} = \{0, 1, 2, 3\}$
- *Y* is the sum of *X*₁, *X*₂, *X*₃ passed through quaternary symmetric channel
- Fix $p(x_k) \sim \text{Bern}(1/2)$, $U_k = X_k$
- Crossover probability p = 0.1

- Compute A = [1, 1, 1]
 - Rank 1: B = A

• Rank 2:
$$B = \begin{bmatrix} 1, 1, 0 \\ 0, 0, 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1, 0, 1 \\ 0, 1, 0 \end{bmatrix}$, $B = \begin{bmatrix} 0, 1, 1 \\ 1, 0, 0 \end{bmatrix}$,

• Rank 3: B = I

General A-Computation Example

• Consider a ${\cal K}=3$ user Gaussian MAC with channel gain

$$\mathbf{H} = \begin{bmatrix} 1 & 1.5 & 0.75 \\ 0.75 & 1 & 1.5 \\ 1.5 & 0.75 & 1 \end{bmatrix},$$

•
$$P = 2$$
, and $A = [1, 1, 1]$

- Compare with sequential decoding points $\mathsf{B} = [1,\,1,\,1]$ and

$$\mathsf{B} = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 1 \end{array} \right],$$

Example: Gaussian Channel

