
Towards an Algebraic Network Information Theory:

Part II. Simultaneous Decoding

Bobak Nazer
BU

Sung Hoon Lim Chen Feng Adriano Pastore Michael Gastpar
KIOST UBC CTTC EPFL

CISS 2018
March 23, 2018

Algebraic Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Algebraic Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Algebraic Approach:
• Utilize linear or lattice codebooks.

Algebraic Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Algebraic Approach:
• Utilize linear or lattice codebooks.

• Compelling examples starting from the work of Körner and Marton on
distributed compression and, more recently, many papers on physical-layer
network coding, distributed dirty-paper coding, and interference alignment.

Algebraic Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Algebraic Approach:
• Utilize linear or lattice codebooks.

• Compelling examples starting from the work of Körner and Marton on
distributed compression and, more recently, many papers on physical-layer
network coding, distributed dirty-paper coding, and interference alignment.

• Coding schemes exhibit behavior not found via i.i.d. ensembles.

Algebraic Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Algebraic Approach:
• Utilize linear or lattice codebooks.

• Compelling examples starting from the work of Körner and Marton on
distributed compression and, more recently, many papers on physical-layer
network coding, distributed dirty-paper coding, and interference alignment.

• Coding schemes exhibit behavior not found via i.i.d. ensembles.

• However, some classical coding techniques are still unavailable.

Algebraic Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Algebraic Approach:
• Utilize linear or lattice codebooks.

• Compelling examples starting from the work of Körner and Marton on
distributed compression and, more recently, many papers on physical-layer
network coding, distributed dirty-paper coding, and interference alignment.

• Coding schemes exhibit behavior not found via i.i.d. ensembles.

• However, some classical coding techniques are still unavailable.

• Most of the initial efforts have focused on Gaussian networks.

Algebraic Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Algebraic Approach:
• Utilize linear or lattice codebooks.

• Compelling examples starting from the work of Körner and Marton on
distributed compression and, more recently, many papers on physical-layer
network coding, distributed dirty-paper coding, and interference alignment.

• Coding schemes exhibit behavior not found via i.i.d. ensembles.

• However, some classical coding techniques are still unavailable.

• Most of the initial efforts have focused on Gaussian networks.

• Are these just a collection of intriguing examples or elements of a more
general theory?

Algebraic Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Algebraic Approach:
• Utilize linear or lattice codebooks.

• Compelling examples starting from the work of Körner and Marton on
distributed compression and, more recently, many papers on physical-layer
network coding, distributed dirty-paper coding, and interference alignment.

• Coding schemes exhibit behavior not found via i.i.d. ensembles.

• However, some classical coding techniques are still unavailable.

• Most of the initial efforts have focused on Gaussian networks.

• Are these just a collection of intriguing examples or elements of a more
general theory?

• Recent efforts, starting with Padakandla-Pradhan ’13, demonstrate that
nested linear codes can be brought into the powerful framework of
joint typicality encoding and decoding.

Multiple-Access Channels

M1 Encoder 1
Xn

1

...

MK Encoder K
Xn

K

pY |X1,...,XK
Y n

Decoder

M̂1
...

M̂K

Problem Statement:

• Transmitter k has a message mk ∈ [2nRk] ! {0, . . . , 2nRk − 1}

Multiple-Access Channels

M1 Encoder 1
Xn

1

...

MK Encoder K
Xn

K

pY |X1,...,XK
Y n

Decoder

M̂1
...

M̂K

Problem Statement:

• Transmitter k has a message mk ∈ [2nRk] ! {0, . . . , 2nRk − 1}

Multiple-Access Channels

M1 Encoder 1
Xn

1

...

MK Encoder K
Xn

K

pY |X1,...,XK
Y n

Decoder

M̂1
...

M̂K

Problem Statement:

• Transmitter k has a message mk ∈ [2nRk] ! {0, . . . , 2nRk − 1}

• Rk is the rate (in bits/channel use)

Multiple-Access Channels

M1 Encoder 1
Xn

1

...

MK Encoder K
Xn

K

pY |X1,...,XK
Y n

Decoder

M̂1
...

M̂K

Problem Statement:

• Transmitter k has a message mk ∈ [2nRk] ! {0, . . . , 2nRk − 1}

• Rk is the rate (in bits/channel use)

• Encoder k: assigns codeword xnk(mk) ∈ X n
k to each mk ∈ [2nRk]

Multiple-Access Channels

M1 Encoder 1
Xn

1

...

MK Encoder K
Xn

K

pY |X1,...,XK
Y n

Decoder

M̂1
...

M̂K

Problem Statement:

• Transmitter k has a message mk ∈ [2nRk] ! {0, . . . , 2nRk − 1}

• Rk is the rate (in bits/channel use)

• Encoder k: assigns codeword xnk(mk) ∈ X n
k to each mk ∈ [2nRk]

• Memoryless Channel: pY n|Xn
1
,Xn

2
(yn|xn

1 , x
n
2) =

n
∏

i=1

pY |X1,X2
(yi|x1,ix2,i)

Multiple-Access Channels

M1 Encoder 1
Xn

1

...

MK Encoder K
Xn

K

pY |X1,...,XK
Y n

Decoder

M̂1
...

M̂K

Problem Statement:

• Transmitter k has a message mk ∈ [2nRk] ! {0, . . . , 2nRk − 1}

• Rk is the rate (in bits/channel use)

• Encoder k: assigns codeword xnk(mk) ∈ X n
k to each mk ∈ [2nRk]

• Memoryless Channel: pY n|Xn
1
,Xn

2
(yn|xn

1 , x
n
2) =

n
∏

i=1

pY |X1,X2
(yi|x1,ix2,i)

• Decoder: assigns estimates (m̂1, m̂2) to each yn ∈ Yn

Multiple-Access Channels

M1 Encoder 1
Xn

1

...

MK Encoder K
Xn

K

pY |X1,...,XK
Y n

Decoder

M̂1
...

M̂K

Problem Statement:

• Transmitter k has a message mk ∈ [2nRk] ! {0, . . . , 2nRk − 1}

• Rk is the rate (in bits/channel use)

• Encoder k: assigns codeword xnk(mk) ∈ X n
k to each mk ∈ [2nRk]

• Memoryless Channel: pY n|Xn
1
,Xn

2
(yn|xn

1 , x
n
2) =

n
∏

i=1

pY |X1,X2
(yi|x1,ix2,i)

• Decoder: assigns estimates (m̂1, m̂2) to each yn ∈ Yn

• Average probability of error is P
{

(M̂1, . . . , M̂K) ̸= (M1, . . . ,MK)
}

where M1, . . . ,MK are drawn independently and uniformly.

Two-User Multiple-Access Channels

R1

R2

R1 +R2 = I(X1, X2;Y)

I(X1;Y |X2)

I(X2;Y |X1)

RMAC

Theorem (Ahlswede ’71, Liao ’72)

The multiple-access capacity region is the convex closure of all rate

pairs (R1, R2) satisfying

R1 < I(X1;Y |X2) R2 < I(X2;Y |X1) R1 +R2 < I(X1,X2;Y)

for some pX1
(x1)pX2

(x2).

MAC Achievability via I.I.D. Random Coding

X n
1

X n
2

Code Construction:

• For each message m1 ∈ [2nR1],
generate codeword Xn

1 (m1)
i.i.d. according to pX1

(x1).

• For each message m2 ∈ [2nR2],
generate codeword Xn

2 (m2)
i.i.d. according to pX2

(x2).

MAC Achievability via I.I.D. Random Coding

X n
1

T (n)
ϵ (X1)

X n
2

T (n)
ϵ (X2)

Code Construction:

• For each message m1 ∈ [2nR1],
generate codeword Xn

1 (m1)
i.i.d. according to pX1

(x1).

• For each message m2 ∈ [2nR2],
generate codeword Xn

2 (m2)
i.i.d. according to pX2

(x2).

• With high probability,
codewords are typical.

MAC Achievability via I.I.D. Random Coding

X n
1

T (n)
ϵ (X1)

X n
2

T (n)
ϵ (X2)

Code Construction:

• For each message m1 ∈ [2nR1],
generate codeword Xn

1 (m1)
i.i.d. according to pX1

(x1).

• For each message m2 ∈ [2nR2],
generate codeword Xn

2 (m2)
i.i.d. according to pX2

(x2).

• With high probability,
codewords are typical.

Encoding:

MAC Achievability via I.I.D. Random Coding

X n
1

T (n)
ϵ (X1)

X n
2

T (n)
ϵ (X2)

Code Construction:

• For each message m1 ∈ [2nR1],
generate codeword Xn

1 (m1)
i.i.d. according to pX1

(x1).

• For each message m2 ∈ [2nR2],
generate codeword Xn

2 (m2)
i.i.d. according to pX2

(x2).

• With high probability,
codewords are typical.

Encoding:

• User 1: Transmit Xn
1 (m1).

MAC Achievability via I.I.D. Random Coding

X n
1

T (n)
ϵ (X1)

X n
2

T (n)
ϵ (X2)

Code Construction:

• For each message m1 ∈ [2nR1],
generate codeword Xn

1 (m1)
i.i.d. according to pX1

(x1).

• For each message m2 ∈ [2nR2],
generate codeword Xn

2 (m2)
i.i.d. according to pX2

(x2).

• With high probability,
codewords are typical.

Encoding:

• User 1: Transmit Xn
1 (m1).

• User 2: Transmit Xn
2 (m2).

MAC Achievability via I.I.D. Random Coding

X n
1

T (n)
ϵ (X1)

X n
2

T (n)
ϵ (X2)

Yn T (n)
ϵ (Y)

Xn
1

Xn
2

pY |X1,X2

Y n

Decoding: Search for (m̂1, m̂2) such that

(Xn
1 (m̂1),Xn

1 (m̂1), Y n) ∈ T (n)
ϵ (X1,X2, Y n).

Output as estimate if unique.
Otherwise, declare an error.

MAC Achievability via I.I.D. Random Coding

X n
1

T (n)
ϵ (X1)

X n
2

T (n)
ϵ (X2)

Yn T (n)
ϵ (Y)

T (n)
ϵ (X1,X2, |yn)

Decoding: Search for (m̂1, m̂2) such that

(Xn
1 (m̂1),Xn

1 (m̂1), Y n) ∈ T (n)
ϵ (X1,X2, Y n).

Output as estimate if unique.
Otherwise, declare an error.

MAC Achievability via I.I.D. Random Coding

Error Analysis: Assume m1 = 0, m2 = 0 are selected messages.

E1 =
{

(Xn
1 (0), X

n
2 (0), Y

n) /∈ T (n)
ϵ (X1, X2, Y)

}

E2 =
{

(Xn
1 (m1), X

n
2 (0), Y

n) /∈ T (n)
ϵ (X1, X2, Y) for some m1 ̸= 0

}

E3 =
{

(Xn
1 (0), X

n
2 (m2), Y

n) /∈ T (n)
ϵ (X1, X2, Y) for some m2 ̸= 0

}

E4 =
{

(Xn
1 (m1), X

n
2 (m2), Y

n) /∈ T (n)
ϵ (X1, X2, Y) for some m1 ̸= 0,m2 ̸= 0

}

• By the Weak Law of Large Numbers, P{E1} → 0.

• By the Packing Lemma, P{E2} → 0 if R1 < I(X1;Y |X2)− δ(ϵ).

• By the Packing Lemma, P{E3} → 0 if R2 < I(X2;Y |X1)− δ(ϵ).

• By the Packing Lemma, P{E4} → 0 if R1 +R2 < I(X1, X2;Y)− δ(ϵ).

Compute–Forward

M1

Encoder 1

Bijective
Mapping to F

n
q

Un
1

xn
1 (u

n
1)

Xn
1

...
...

MK

Encoder K

Bijective
Mapping to F

n
q

Un
K xn

K(un
K)

Xn
K

PY |X1,...,XK

Y n

Decoder Ŵ n
a

Compute–Forward

M1

Encoder 1

Bijective
Mapping to F

n
q

Un
1

xn
1 (u

n
1)

Xn
1

...
...

MK

Encoder K

Bijective
Mapping to F

n
q

Un
K xn

K(un
K)

Xn
K

PY |X1,...,XK

Y n

Decoder Ŵ n
a

Problem Statement:

• Messages: mk ∈ [2nRk] ! {0, . . . , 2nRk − 1}, k = 1, . . . ,K.

Compute–Forward

M1

Encoder 1

Bijective
Mapping to F

n
q

Un
1

xn
1 (u

n
1)

Xn
1

...
...

MK

Encoder K

Bijective
Mapping to F

n
q

Un
K xn

K(un
K)

Xn
K

PY |X1,...,XK

Y n

Decoder Ŵ n
a

Problem Statement:

• Messages: mk ∈ [2nRk] ! {0, . . . , 2nRk − 1}, k = 1, . . . ,K.

• Encoders: mappings (unk , x
n
k)(mk) ∈ Fn

q × X n
k , k = 1, . . . ,K

such that unk(mk) is bijective.

Compute–Forward

M1

Encoder 1

Bijective
Mapping to F

n
q

Un
1

xn
1 (u

n
1)

Xn
1

...
...

MK

Encoder K

Bijective
Mapping to F

n
q

Un
K xn

K(un
K)

Xn
K

PY |X1,...,XK

Y n

Decoder Ŵ n
a

Problem Statement:

• Messages: mk ∈ [2nRk] ! {0, . . . , 2nRk − 1}, k = 1, . . . ,K.

• Encoders: mappings (unk , x
n
k)(mk) ∈ Fn

q × X n
k , k = 1, . . . ,K

such that unk(mk) is bijective.

• Linear Combination: wn
a !

⊕

k aku
n
k(mk), a = [a1 · · · aK] ∈ FK

q

Compute–Forward

M1

Encoder 1

Bijective
Mapping to F

n
q

Un
1

xn
1 (u

n
1)

Xn
1

...
...

MK

Encoder K

Bijective
Mapping to F

n
q

Un
K xn

K(un
K)

Xn
K

PY |X1,...,XK

Y n

Decoder Ŵ n
a

Problem Statement:

• Messages: mk ∈ [2nRk] ! {0, . . . , 2nRk − 1}, k = 1, . . . ,K.

• Encoders: mappings (unk , x
n
k)(mk) ∈ Fn

q × X n
k , k = 1, . . . ,K

such that unk(mk) is bijective.

• Linear Combination: wn
a !

⊕

k aku
n
k(mk), a = [a1 · · · aK] ∈ FK

q

• Decoder: assigns an estimate ŵn
a ∈ Fn

q to each yn ∈ Yn.

Compute–Forward

M1

Encoder 1

Bijective
Mapping to F

n
q

Un
1

xn
1 (u

n
1)

Xn
1

...
...

MK

Encoder K

Bijective
Mapping to F

n
q

Un
K xn

K(un
K)

Xn
K

PY |X1,...,XK

Y n

Decoder Ŵ n
a

Problem Statement:

• Messages: mk ∈ [2nRk] ! {0, . . . , 2nRk − 1}, k = 1, . . . ,K.

• Encoders: mappings (unk , x
n
k)(mk) ∈ Fn

q × X n
k , k = 1, . . . ,K

such that unk(mk) is bijective.

• Linear Combination: wn
a !

⊕

k aku
n
k(mk), a = [a1 · · · aK] ∈ FK

q

• Decoder: assigns an estimate ŵn
a ∈ Fn

q to each yn ∈ Yn.

• Probability of Error: For uniformly distributed messages
M1, . . . ,MK , want P{Ŵ n

a ̸= W n
a } → 0.

Two-User Compute–Forward

Theorem (Lim-Feng-Pastore-Nazer-Gastpar arXiv ’16, ISIT ’17)

Consider the case of K = 2 transmitters and a receiver that wants to

recover a linear combination with coefficient vector a ∈ F2
q.

A rate pair is achievable if it is included in RCF(a) ∪RLMAC for some

pmfs pU1
(u1), pU2

(u2), symbol mappings x1(u1), x2(u2) where

Two-User Compute–Forward

Theorem (Lim-Feng-Pastore-Nazer-Gastpar arXiv ’16, ISIT ’17)

Consider the case of K = 2 transmitters and a receiver that wants to

recover a linear combination with coefficient vector a ∈ F2
q.

A rate pair is achievable if it is included in RCF(a) ∪RLMAC for some

pmfs pU1
(u1), pU2

(u2), symbol mappings x1(u1), x2(u2) where

RCF(a) !
{

(R1, R2) : Rk < ICF,k(a) ! H(Uk)−H(Wa|Y), k = 1, 2
}

Two-User Compute–Forward

Theorem (Lim-Feng-Pastore-Nazer-Gastpar arXiv ’16, ISIT ’17)

Consider the case of K = 2 transmitters and a receiver that wants to

recover a linear combination with coefficient vector a ∈ F2
q.

A rate pair is achievable if it is included in RCF(a) ∪RLMAC for some

pmfs pU1
(u1), pU2

(u2), symbol mappings x1(u1), x2(u2) where

RCF(a) !
{

(R1, R2) : Rk < ICF,k(a) ! H(Uk)−H(Wa|Y), k = 1, 2
}

RLMAC !
{

(R1, R2) : max{R1, R2} < min
b∈F2

q :bk ̸=0
I(Uk;Y,Wb)

R1 < I(U1;Y |U2),

R2 < I(U2;Y |U1),

R1 +R2 < I(U1, U2;Y)
}

Two-User Compute–Forward

R1

R2

I(X1, X2; Y)

−ICF,2(a)

ICF,1(a) I(X1;Y |X2)

I(X1, X2; Y)
−ICF,1(a)

I(X2;Y |X1)

ICF,2(a)

RCF(a)

R1

R2

R1 +R2 = I(X1, X2;Y)

I(X1, X2; Y)

−ICF,2(a)

ICF,1(a) I(X1;Y |X2)

I(X1, X2; Y)
−ICF,1(a)

I(X2;Y |X1)

ICF,2(a)

RLMAC

R1

R2

I(X1, X2; Y)

−ICF,2(a)

ICF,1(a) I(X1;Y |X2)

I(X1, X2; Y)
−ICF,1(a)

I(X2;Y |X1)

ICF,2(a)

RCF(a) ∪RLMAC

Compute–Forward Achievability via Linear Random Coding

Fn
q

Fn
q

Code Construction:

• q-ary expansion mk of message mk ∈ [2nRk].

Compute–Forward Achievability via Linear Random Coding

Fn
q

Fn
q

Code Construction:

• q-ary expansion mk of message mk ∈ [2nRk].

• Auxiliary index lk ∈ [2nR̂k] with
q-ary expansions lk.

Compute–Forward Achievability via Linear Random Coding

Fn
q

Fn
q

Code Construction:

• q-ary expansion mk of message mk ∈ [2nRk].

• Auxiliary index lk ∈ [2nR̂k] with
q-ary expansions lk.

• Draw generator matrix G ∈ Fκ×n
q and

dithers dn1 , d
n
2 ∈ Fn

q i.i.d. Unif(Fq) where

κ = n(max{R1 + R̂1, R2 + R̂2})/ log(q).

Compute–Forward Achievability via Linear Random Coding

Fn
q

Fn
q

Code Construction:

• q-ary expansion mk of message mk ∈ [2nRk].

• Auxiliary index lk ∈ [2nR̂k] with
q-ary expansions lk.

• Draw generator matrix G ∈ Fκ×n
q and

dithers dn1 , d
n
2 ∈ Fn

q i.i.d. Unif(Fq) where

κ = n(max{R1 + R̂1, R2 + R̂2})/ log(q).

• Linear codewords:
un1 (m1, l1) = [m1 l1]G⊕ dn1

Compute–Forward Achievability via Linear Random Coding

Fn
q

Fn
q

Code Construction:

• q-ary expansion mk of message mk ∈ [2nRk].

• Auxiliary index lk ∈ [2nR̂k] with
q-ary expansions lk.

• Draw generator matrix G ∈ Fκ×n
q and

dithers dn1 , d
n
2 ∈ Fn

q i.i.d. Unif(Fq) where

κ = n(max{R1 + R̂1, R2 + R̂2})/ log(q).

• Linear codewords:
un1 (m1, l1) = [m1 l1]G⊕ dn1
un2 (m2, l2) = [m2 l2 0]G⊕ dn2

Compute–Forward Achievability via Linear Random Coding

Fn
q

Fn
q

Code Construction:

• q-ary expansion mk of message mk ∈ [2nRk].

• Auxiliary index lk ∈ [2nR̂k] with
q-ary expansions lk.

• Draw generator matrix G ∈ Fκ×n
q and

dithers dn1 , d
n
2 ∈ Fn

q i.i.d. Unif(Fq) where

κ = n(max{R1 + R̂1, R2 + R̂2})/ log(q).

• Linear codewords:
un1 (m1, l1) = [m1 l1]G⊕ dn1
un2 (m2, l2) = [m2 l2 0]G⊕ dn2

Compute–Forward Achievability via Linear Random Coding

Fn
q

Fn
q

Code Construction:

• q-ary expansion mk of message mk ∈ [2nRk].

• Auxiliary index lk ∈ [2nR̂k] with
q-ary expansions lk.

• Draw generator matrix G ∈ Fκ×n
q and

dithers dn1 , d
n
2 ∈ Fn

q i.i.d. Unif(Fq) where

κ = n(max{R1 + R̂1, R2 + R̂2})/ log(q).

• Linear codewords:
un1 (m1, l1) = [m1 l1]G⊕ dn1
un2 (m2, l2) = [m2 l2 0]G⊕ dn2

Compute–Forward Achievability via Linear Random Coding

Fn
q

Fn
q

Encoding:

Compute–Forward Achievability via Linear Random Coding

Fn
q

Fn
q

Encoding:

• Fix pmfs p(u1), p(u2),
mappings x1(u1), x2(u2), and 0 < ϵ′ < ϵ.

Compute–Forward Achievability via Linear Random Coding

T (n)
ϵ′ (U1)

Fn
q

T (n)
ϵ′ (U2)

Fn
q

Encoding:

• Fix pmfs p(u1), p(u2),
mappings x1(u1), x2(u2), and 0 < ϵ′ < ϵ.

• Multicoding:

Compute–Forward Achievability via Linear Random Coding

T (n)
ϵ′ (U1)

Fn
q

T (n)
ϵ′ (U2)

Fn
q

Encoding:

• Fix pmfs p(u1), p(u2),
mappings x1(u1), x2(u2), and 0 < ϵ′ < ϵ.

• Multicoding: For message mk,

Compute–Forward Achievability via Linear Random Coding

T (n)
ϵ′ (U1)

Fn
q

T (n)
ϵ′ (U2)

Fn
q

Encoding:

• Fix pmfs p(u1), p(u2),
mappings x1(u1), x2(u2), and 0 < ϵ′ < ϵ.

• Multicoding: For message mk, find index lk
such that unk(mk, lk) ∈ T (n)

ϵ′ (Uk).
(If no such lk, pick one randomly.)

Compute–Forward Achievability via Linear Random Coding

T (n)
ϵ′ (U1)

Fn
q

T (n)
ϵ′ (U2)

Fn
q

Encoding:

• Fix pmfs p(u1), p(u2),
mappings x1(u1), x2(u2), and 0 < ϵ′ < ϵ.

• Multicoding: For message mk, find index lk
such that unk(mk, lk) ∈ T (n)

ϵ′ (Uk).
(If no such lk, pick one randomly.)

• Succeeds w.h.p. if

R̂k > D(pUk
∥pq) + δ(ϵ′)

by Mismatched Covering Lemma where
pq = Unif(Fq).

Compute–Forward Achievability via Linear Random Coding

T (n)
ϵ′ (U1)

Fn
q

T (n)
ϵ′ (U2)

Fn
q

Encoding:

• Fix pmfs p(u1), p(u2),
mappings x1(u1), x2(u2), and 0 < ϵ′ < ϵ.

• Multicoding: For message mk, find index lk
such that unk(mk, lk) ∈ T (n)

ϵ′ (Uk).
(If no such lk, pick one randomly.)

• Succeeds w.h.p. if

R̂k > D(pUk
∥pq) + δ(ϵ′)

by Mismatched Covering Lemma where
pq = Unif(Fq).

• At time i, transmit xki = xk
(

uki(mk, lk)
)

.

Compute–Forward Achievability via Linear Random Coding

M1
Linear
Code

Multi-
coding

Un
1 x1(u1)

Xn
1

M2
Linear
Code

Multi-
coding

Un
2 x2(u2)

Xn
2

PY |X1X2

Y n

Decoder Ŝ

• For mk ∈ [2nRk], lk ∈ [2nR̂k], we can express the desired
linear combination of codewords as

wn
a = a1u

n
1 (m1, l1)⊕ a2u

n
2 (m2, l2)

Compute–Forward Achievability via Linear Random Coding

M1
Linear
Code

Multi-
coding

Un
1 x1(u1)

Xn
1

M2
Linear
Code

Multi-
coding

Un
2 x2(u2)

Xn
2

PY |X1X2

Y n

Decoder Ŝ

• For mk ∈ [2nRk], lk ∈ [2nR̂k], we can express the desired
linear combination of codewords as

wn
a = a1u

n
1 (m1, l1)⊕ a2u

n
2 (m2, l2)

=
[

a1[m1 l1]⊕ a2[m2 l2 0]
]

G⊕ a1d
n
1 ⊕ a2d

n
2

Compute–Forward Achievability via Linear Random Coding

M1
Linear
Code

Multi-
coding

Un
1 x1(u1)

Xn
1

M2
Linear
Code

Multi-
coding

Un
2 x2(u2)

Xn
2

PY |X1X2

Y n

Decoder Ŝ

• For mk ∈ [2nRk], lk ∈ [2nR̂k], we can express the desired
linear combination of codewords as

wn
a = a1u

n
1 (m1, l1)⊕ a2u

n
2 (m2, l2)

=
[

a1[m1 l1]⊕ a2[m2 l2 0]
]

G⊕ a1d
n
1 ⊕ a2d

n
2

= sa G⊕ a1d
n
1 ⊕ a2d

n
2

where sa ∈ [2nmax{R1+R̂1,R2+R̂2}] is the linear combination index
corresponding to q-ary expansion sa.

Compute–Forward Achievability via Linear Random Coding

M1
Linear
Code

Multi-
coding

Un
1 x1(u1)

Xn
1

M2
Linear
Code

Multi-
coding

Un
2 x2(u2)

Xn
2

PY |X1X2

Y n

Decoder Ŝ

• For mk ∈ [2nRk], lk ∈ [2nR̂k], we can express the desired
linear combination of codewords as

wn
a = a1u

n
1 (m1, l1)⊕ a2u

n
2 (m2, l2)

=
[

a1[m1 l1]⊕ a2[m2 l2 0]
]

G⊕ a1d
n
1 ⊕ a2d

n
2

= sa G⊕ a1d
n
1 ⊕ a2d

n
2

where sa ∈ [2nmax{R1+R̂1,R2+R̂2}] is the linear combination index
corresponding to q-ary expansion sa.

• Can view wn
a(s) as some linear codeword that belongs to T (n)

ϵ′ (Wa).

Compute–Forward Achievability via Linear Random Coding

T (n)
ϵ (U1)

Fn
q

T (n)
ϵ (U2)

Fn
q

T (n)
ϵ (Wa)

Fn
q

Un
1

Un
2

a1

a2

W n
a

W n
a = a1Un

1 ⊕ a2Un
2 is a linear codeword.

If (Un
1 , U

n
2 , Y

n) ∈ T (n)
ϵ (U1, U2, Y),

then (W n
a , Y

n) ∈ T (n)
ϵ (Wa, Y).

Compute–Forward Achievability via Linear Random Coding

T (n)
ϵ (Wa)

Fn
q Yn T (n)

ϵ (Y)

W n
a pY |Wa

Y n

Decoding:

• Search for index ŝa such that (W n
a (ŝa), Y

n) ∈ T (n)
ϵ (Wa, Y).

Output as estimate if unique. Otherwise, declare an error.

Compute–Forward Achievability via Linear Random Coding

T (n)
ϵ (Wa)

Fn
q Yn T (n)

ϵ (Y)

W n
a pY |Wa

Y n

T (n)
ϵ (Wa|yn)

Decoding:

• Search for index ŝa such that (W n
a (ŝa), Y

n) ∈ T (n)
ϵ (Wa, Y).

Output as estimate if unique. Otherwise, declare an error.

• Although the decoder searches for W n
a over the full linear codebook,

it ignores codewords that fall outside the typical set T (n)
ϵ (Wa).

Compute–Forward Achievability via Linear Random Coding

Error Analysis: Assume sa = 0 is selected linear combination index.

E1 =
{

Un
k (mk, lk) ̸∈ T (n)

ϵ′ for all lk, for some mk, k = 1, 2
}

E2 =
{

(Un
1 (M1, L1), U

n
2 (M2, L2), Y

n) ̸∈ T (n)
ϵ

}

E3 =
{

(W n
a (sa), Y

n) /∈ T (n)
ϵ (Wa, Y) for some sa ̸= 0

}

Compute–Forward Achievability via Linear Random Coding

Error Analysis: Assume sa = 0 is selected linear combination index.

E1 =
{

Un
k (mk, lk) ̸∈ T (n)

ϵ′ for all lk, for some mk, k = 1, 2
}

E2 =
{

(Un
1 (M1, L1), U

n
2 (M2, L2), Y

n) ̸∈ T (n)
ϵ

}

E3 =
{

(W n
a (sa), Y

n) /∈ T (n)
ϵ (Wa, Y) for some sa ̸= 0

}

• By the Mismatched Covering Lemma, P{E1} → 0 if

R̂k > D(pUk
∥pq) + δ(ϵ′).

Compute–Forward Achievability via Linear Random Coding

Error Analysis: Assume sa = 0 is selected linear combination index.

E1 =
{

Un
k (mk, lk) ̸∈ T (n)

ϵ′ for all lk, for some mk, k = 1, 2
}

E2 =
{

(Un
1 (M1, L1), U

n
2 (M2, L2), Y

n) ̸∈ T (n)
ϵ

}

E3 =
{

(W n
a (sa), Y

n) /∈ T (n)
ϵ (Wa, Y) for some sa ̸= 0

}

• By the Mismatched Covering Lemma, P{E1} → 0 if

R̂k > D(pUk
∥pq) + δ(ϵ′).

• By the Markov Lemma for Nested Linear Codes, P{E2 ∩ Ec
1} → 0 if

R̂k > D(pUk
∥pq) + δ(ϵ′).

Subtle Issue: L1 and L2 are statistically dependent, since these multicoding

indices are chosen with respect to the same linear codebook.

Compute–Forward Achievability via Linear Random Coding

Error Analysis: Assume sa = 0 is selected linear combination index.

E1 =
{

Un
k (mk, lk) ̸∈ T (n)

ϵ′ for all lk, for some mk, k = 1, 2
}

E2 =
{

(Un
1 (M1, L1), U

n
2 (M2, L2), Y

n) ̸∈ T (n)
ϵ

}

E3 =
{

(W n
a (sa), Y

n) /∈ T (n)
ϵ (Wa, Y) for some sa ̸= 0

}

• By the Mismatched Covering Lemma, P{E1} → 0 if

R̂k > D(pUk
∥pq) + δ(ϵ′).

• By the Markov Lemma for Nested Linear Codes, P{E2 ∩ Ec
1} → 0 if

R̂k > D(pUk
∥pq) + δ(ϵ′).

Subtle Issue: L1 and L2 are statistically dependent, since these multicoding

indices are chosen with respect to the same linear codebook.

• By the Mismatched Packing Lemma, P{E3 ∩ Ec
1} → 0 if

R1 + 2R̂1 + R̂2 < I(Wa;Y) +D(pWa
∥pq) +D(pU1

∥pq) +D(pU2
∥pq)− 2δ(ϵ)

R2 + R̂1 + 2R̂2 < I(Wa;Y) +D(pWa
∥pq) +D(pU1

∥pq) +D(pU2
∥pq)− 2δ(ϵ)

Compute–Forward Achievability via Random Linear Codes

• Setting R̂k = D(pUk
∥pq) + 2δ(ϵ′), we find that a rate pair (R1, R2)

is achievable if

R1 < H(U1)−H(Wa|Y) R2 < H(U2)−H(Wa|Y)

R1

R2

I(X1, X2;Y)

−ICF,2(a)

ICF,1(a) I(X1;Y |X2)

I(X1, X2;Y)
−ICF,1(a)

I(X2;Y |X1)

ICF,2(a)

RCF(a)

Compute–Forward Achievability via Random Linear Codes

• What about the “multiple-access” rates, RLMAC?

Compute–Forward Achievability via Random Linear Codes

• What about the “multiple-access” rates, RLMAC?

• Decoding W n
a directly does not achieve this rate region.

Compute–Forward Achievability via Random Linear Codes

• What about the “multiple-access” rates, RLMAC?

• Decoding W n
a directly does not achieve this rate region.

• Instead, we can first decode Un
1 and Un

2 by searching for a unique
index tuple (m1, l1,m2, l2) such that

(Un
1 (m1, l1), U

n
2 (m2, l2), Y

n) ∈ T (n)
ϵ (U1, U2, Y)

and afterwards form W n
a = a1Un

1 (m1, l1)⊕ a2Un
2 (m2, l2).

Compute–Forward Achievability via Random Linear Codes

• What about the “multiple-access” rates, RLMAC?

• Decoding W n
a directly does not achieve this rate region.

• Instead, we can first decode Un
1 and Un

2 by searching for a unique
index tuple (m1, l1,m2, l2) such that

(Un
1 (m1, l1), U

n
2 (m2, l2), Y

n) ∈ T (n)
ϵ (U1, U2, Y)

and afterwards form W n
a = a1Un

1 (m1, l1)⊕ a2Un
2 (m2, l2).

• Rather than applying two decoders, we can write down a single
decoder, inspired by the simultaneous non-unique decoder of
Bandemer-El Gamal-Kim ’15.

Compute–Forward Achievability via Random Linear Codes

• What about the “multiple-access” rates, RLMAC?

• Decoding W n
a directly does not achieve this rate region.

• Instead, we can first decode Un
1 and Un

2 by searching for a unique
index tuple (m1, l1,m2, l2) such that

(Un
1 (m1, l1), U

n
2 (m2, l2), Y

n) ∈ T (n)
ϵ (U1, U2, Y)

and afterwards form W n
a = a1Un

1 (m1, l1)⊕ a2Un
2 (m2, l2).

• Rather than applying two decoders, we can write down a single
decoder, inspired by the simultaneous non-unique decoder of
Bandemer-El Gamal-Kim ’15.

• Specifically, we search for a unique index sa such that, for some
index tuple (m1, l1,m2, l2) whose q-ary expansions satisfy

sa = a1[m1 l1]⊕ a2[m2 l2 0],

we have that (Un
1 (m1, l1), Un

2 (m2, l2), Y n) ∈ T (n)
ϵ (U1, U2, Y).

LMAC Bound Figure

T (n)
ϵ (U1)

Fn
q

T (n)
ϵ (U2)

Fn
q

Yn T (n)
ϵ (Y)

Un
1

Un
2

pY |U1,U2

Y n

Key Issue: Some competing message pairs are
linearly dependent, e.g., (m̃1, m̃2) = (2m1, 2m2).

LMAC Bound Figure

T (n)
ϵ (U1)

Fn
q

T (n)
ϵ (U2)

Fn
q

Yn T (n)
ϵ (Y)

T (n)
ϵ (U1, U2, |yn)

Key Issue: Some competing message pairs are
linearly dependent, e.g., (m̃1, m̃2) = (2m1, 2m2).

Compute–Forward Achievability via Linear Random Coding

Error Analysis: Assume index tuple (m1, l1,m2, l2) = (0, 0, 0, 0) is
selected.

E1 =
{

Un
k (mk, lk) ̸∈ T (n)

ϵ′ for all lk, for some mk, k = 1, 2
}

E2 =
{

(Un
1 (M1, L1), U

n
2 (M2, L2), Y

n) ̸∈ T (n)
ϵ

}

E3 =
{

(Un
1 (m1, l1), U

n
2 (m2, l2), Y

n) /∈ T (n)
ϵ (U1, U2, Y)

for some (m1, l1,m2, l2) ̸= (0, 0, 0, 0)
}

Compute–Forward Achievability via Linear Random Coding

Error Analysis: Assume index tuple (m1, l1,m2, l2) = (0, 0, 0, 0) is
selected.

E1 =
{

Un
k (mk, lk) ̸∈ T (n)

ϵ′ for all lk, for some mk, k = 1, 2
}

E2 =
{

(Un
1 (M1, L1), U

n
2 (M2, L2), Y

n) ̸∈ T (n)
ϵ

}

E3 =
{

(Un
1 (m1, l1), U

n
2 (m2, l2), Y

n) /∈ T (n)
ϵ (U1, U2, Y)

for some (m1, l1,m2, l2) ̸= (0, 0, 0, 0)
}

• We already dealt with P{E1} and P{E2 ∩ Ec
1}.

Compute–Forward Achievability via Linear Random Coding

Error Analysis: Assume index tuple (m1, l1,m2, l2) = (0, 0, 0, 0) is
selected.

E1 =
{

Un
k (mk, lk) ̸∈ T (n)

ϵ′ for all lk, for some mk, k = 1, 2
}

E2 =
{

(Un
1 (M1, L1), U

n
2 (M2, L2), Y

n) ̸∈ T (n)
ϵ

}

E3 =
{

(Un
1 (m1, l1), U

n
2 (m2, l2), Y

n) /∈ T (n)
ϵ (U1, U2, Y)

for some (m1, l1,m2, l2) ̸= (0, 0, 0, 0)
}

• We already dealt with P{E1} and P{E2 ∩ Ec
1}.

• We handle P{E3 ∩ Ec
1} with the Mismatched Packing Lemma and a

careful partitioning of error events to capture linearly dependent
competing codewords.

Compute–Forward Achievability via Linear Random Coding

A = {(m1, l1,m2, l2) : (m1, l1,m2, l2) ̸= (0, 0, 0, 0)},

A1 = {(m1, l1,m2, l2) : (m1, l1) ̸= (0, 0), (m2, l2) = (0, 0)},

A2 = {(m1, l1,m2, l2) : (m1, l1) = (0, 0), (m2, l2) ̸= (0, 0)},

A12 = {(m1, l1,m2, l2) : (m1, l1) ̸= (0, 0), (m2, l2) ̸= (0, 0)},

L = {(m1, l1,m2, l2) ∈ A12 : [m1 l1], [m2 l2 0] are linearly dependent},

Lc = {(m1, l1,m2, l2) ∈ A12 : [m1 l1], [m2 l2 0] are linearly independent}

Further, for some b ∈ F2
q such that b ̸= 0, define

L1(b) = {(m1, l1,m2, l2) ∈ L : b1[m1 l1]⊕ b2[m2 l2 0] ̸= 0},

L2(b) = {(m1, l1,m2, l2) ∈ L : b1[m1 l1]⊕ b2[m2 l2 0] = 0}.

Simplifying, we find that any rate (R1, R2) ∈ RLMAC is achievable via
“multiple-access” decoding.

Rate Region

R1

R2

I(X1, X2; Y)

−ICF,2(a)

ICF,1(a) I(X1;Y |X2)

I(X1, X2; Y)
−ICF,1(a)

I(X2;Y |X1)

ICF,2(a)

RCF(a)

R1

R2

R1 +R2 = I(X1, X2;Y)

I(X1, X2; Y)

−ICF,2(a)

ICF,1(a) I(X1;Y |X2)

I(X1, X2; Y)
−ICF,1(a)

I(X2;Y |X1)

ICF,2(a)

RLMAC

R1

R2

I(X1, X2; Y)

−ICF,2(a)

ICF,1(a) I(X1;Y |X2)

I(X1, X2; Y)
−ICF,1(a)

I(X2;Y |X1)

ICF,2(a)

RCF(a) ∪RLMAC

Gaussian Compute–Forward via Discretization

• Can we use these discrete memoryless results to recover the
Gaussian compute–forward region from Nazer - Gastpar ’11?

Gaussian Compute–Forward via Discretization

• Can we use these discrete memoryless results to recover the
Gaussian compute–forward region from Nazer - Gastpar ’11?

• Yes! However, the proof requires some new ingredients, since the
region is in terms of entropies, rather than mutual informations.

Gaussian Compute–Forward via Discretization

• Can we use these discrete memoryless results to recover the
Gaussian compute–forward region from Nazer - Gastpar ’11?

• Yes! However, the proof requires some new ingredients, since the
region is in terms of entropies, rather than mutual informations.

• How about from 2 to K users, i.e., recovering L linear combinations
out of K users?

Gaussian Compute–Forward via Discretization

• Can we use these discrete memoryless results to recover the
Gaussian compute–forward region from Nazer - Gastpar ’11?

• Yes! However, the proof requires some new ingredients, since the
region is in terms of entropies, rather than mutual informations.

• How about from 2 to K users, i.e., recovering L linear combinations
out of K users?

• Yes!

K-User Compute–Forward

• For A ∈ FL×K
q , want to compute

W n
A = A

⎡

⎢

⎣

Un
1
...

Un
K

⎤

⎥

⎦

• For some full rank matrices B ∈ F
LB×K
q , C ∈ F

LC×LB
q ,

0 ≤ LC < LB ≤ K (with ranks LB and LC, respectively) and sets
S,T ⊆ [1 : K], define RD(B,C,S,T) as the set of rate tuples
satisfying the inequality

∑

k∈T

Rk < H(U(T))−H(WB(S)|Y,WCB).

where WB = B[U1, . . . , UK]T .

K-User Compute–Forward

Theorem

A rate tuple (R1, . . . , RK) is achievable for computing the A-linear
combinations if it is contained in

⋃

B

⋂

C

⋃

S

⋂

T

RD(B,C,S,T)

for some
∏K

k=1 p(uk) and mappings xk(uk), k ∈ [1 : K]. The set
operations are over all tuples (B,C,S,T) with the following
constraints:

1 B ∈ F
LB×K
q are full rank matrices satisfying span(A) ⊆ span(B),

2 C ∈ F
LC×LB
q are full rank matrices (including empty matrices), where

0 ≤ LC < LB,

3 S ⊆ [1 : LB] are sets of size |S| = LB − LC such that rank

([

C

I(S)

])

= LB,

4 T ⊆ K are sets of size |T | = LB − LC such that rank

([

B(S)
I(K \ T)

])

= K.

Example: Noisy Additive Channel

00

11

22

33

Y

1− p

p/3

X1

X2

X3

• Xk = {0, 1}, Y = {0, 1, 2, 3}

• Y is the sum of X1,X2,X3 passed through quaternary symmetric
channel

• Fix p(xk) ∼ Bern(1/2), Uk = Xk

• Crossover probability p = 0.1

General A-Computation Example

• Compute A = [1, 1, 1]

• Rank 1: B = A

• Rank 2: B =

[

1, 1, 0
0, 0, 1

]

, B =

[

1, 0, 1
0, 1, 0

]

, B =

[

0, 1, 1
1, 0, 0

]

,

• Rank 3: B = I

General A-Computation Example

Example: Gaussian Channel

• Consider a K = 3 user Gaussian MAC with channel gain

H =

⎡

⎣

1 1.5 0.75
0.75 1 1.5
1.5 0.75 1

⎤

⎦ ,

• P = 2, and A = [1, 1, 1]

• Compare with sequential decoding points B = [1, 1, 1] and

B =

[

1 0 0
0 1 1

]

,

Example: Gaussian Channel

0

0.50
0

0.2

0.4

0.6

10.5

0.8

1

1

1.2

1.5

1.4

1.5

1.6

1.8

R1R2

R
3

A

B

