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Algebraic Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Algebraic Approach:

Utilize linear or lattice codebooks.

Compelling examples starting from the work of Kérner and Marton on
distributed compression and, more recently, many papers on physical-layer
network coding, distributed dirty-paper coding, and interference alignment.

Coding schemes exhibit behavior not found via i.i.d. ensembles.
However, some classical coding techniques are still unavailable.
Most of the initial efforts have focused on Gaussian networks.

Are these just a collection of intriguing examples or elements of a more
general theory?

Recent efforts, starting with Padakandla-Pradhan 13, demonstrate that
nested linear codes can be brought into the powerful framework of
joint typicality encoding and decoding.
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X'ﬂ
Mi— Encoder 1 —\1 -
. y» M
: pY|X1,...,XK Decoder —
X7 y
M | Encoder K LS My
Problem Statement:
e Transmitter k has a message my, € [27%] £ {0,...,2"% — 1}

e Ry is the rate (in bits/channel use)

Encoder k: assigns codeword z%(my) € X' to each my, € [271%]

n
Memoryless Channel: Py X7, X7 (y™|zy, 28) = pr|X1,X2 (yilT1,im2,:)
i=1

Decoder: assigns estimates (7721, 72) to each y™ € V"

. is P{(Mi,...,My) # (Mi,...,Mg)}
where M, ..., Mk are drawn independently and uniformly.



Two-User Multiple-Access Channels

Ry
[(Xa; Y| X1 ) o
Ri+ Ry = I(X1,X2;Y)
yd
Rwmac
N R
[(X1: Y| Xo)

Theorem (Ahlswede '71, Liao '72)

The multiple-access capacity region is the convex closure of all rate
pairs (R1, Ry) satisfying

R < I(X17Y|X2) Ry < I(X27Y|X1) R+ Ry < I(Xl,XQ;Y)

for some px, (x1)px,(x2).
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Code Construction:

e For each message m; € [2"%1],
generate codeword X7{'(m)
i.i.d. according to px, (1).

e For each message my € [27%2],
generate codeword X7 (1m)
i.i.d. according to px,(z2).

o With high probability,
codewords are typical.

Encoding:
e User 1: Transmit X7 (mq).

e User 2: Transmit X' (ms).
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MAC Achievability via I.1.D. Random Coding

Error Analysis: Assume m; = 0, mo = 0 are selected messages.

&1 = {(X7(0), X3(0),Y™) ¢ T\ (X1, X5,Y)}

& = {(X](m1), X3(0),Y") ¢ T™ (X1, X,Y) for some m; # 0}

Es = {(X7(0), X5 (m2), Y™) ¢ TL™ (X1, X2,Y) for some ma # 0}

Ea = {(X](m1), X3 (m2),Y™) ¢ T\ (X1, X2,Y) for some my # 0,mz # 0}

By the Weak Law of Large Numbers, P{&1} — 0.

By the Packing Lemma, P{&2} — 0if Ry < I(X1;Y|X2) — d(e).

By the Packing Lemma, P{&} — 0 if Ry < I(X2;Y|X1) — d(e).

By the Packing Lemma, P{&,} — 0if Ry + Ro < I(X1,X2;Y) — d(e).
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* Decoder: assigns an estimate w, € Fy to each y" € ™.
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e Messages: my, € [2"%] £ {0,...,2"% — 1}, k=1,... K.
e Encoders: mappings (uy,zy)(my) € Fg x A k=1,... K

such that u}}(my) is bijective.

Linear Combination: w? £ @, axuf(my), a=[a; -

aK] S Fé{

Decoder: assigns an estimate w, € Fy to each y" € V™.

For uniformly distributed messages

My, ..., Mg, want P{W2» # W2} — 0.
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Theorem (Lim-Feng-Pastore-Nazer-Gastpar arXiv '16, ISIT '17)

Consider the case of K = 2 transmitters and a receiver that wants to
recover a linear combination with coefficient vector a € F?‘.
A rate pair is achievable if it is included in Rcr(a) U Rppmac for some

pmfs py, (u1), pu,(uz), symbol mappings x1(uy), x2(u2) where

Rer(a) £ {(R1, Ra) : Ry < Icri(a) £ H(U,) — HW,|Y), k=1,2}

R £ {(Ry1, Ry) : max{Ry, Ra} < in  I(Uy; Y, W,
tmac = {(Ry, Rp) : max{Ry, Ry} be%lé{lf}l;ﬁ (Ug; Y, W)

Rl < I(Ul;Y‘Ug),
RQ < I(UQ;Y‘U]_),
R+ Ry < I(Ul,UQ;Y)}
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Code Construction:
e g-ary expansion my, of message my, € [27F].

e Auxiliary index I}, € [2”R’f] with
g-ary expansions I.

e Draw generator matrix G € Fg*" and
dithers df,d3 € Fy i.i.d. Unif(IFq) where
k= n(max{R; + R1, Ry + Ry})/log(q).

e Linear codewords:
u?(ml, ll) = [m1 l]]G (&) d?
ug(Tng,lg) = [m2 12 O]G D dg
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Encoding:
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e Multicoding: For message my,
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LN 2 /

Encoding:
e Fix pmfs p(uy), p(us),
mappings 1 (u1), 22(us), and 0 < € < e.
e Multicoding: For message 1., find index I,
such that ! (11, 1) € T.")(U},).
(If no such I, pick one randomly.)

e Succeeds w.h.p. if

Ry, > D(pu,llpq) + 8(')

by Mismatched Covering Lemma where
Pq = Unif (Fy).

o At time i, transmit y; = 2 (wki (M, Ig)).
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My

My

e For my, € [2"F%], I}, € [2"%], we can express the desired
linear combination of codewords as

Linear Multi- | |
Code coding
Linear Multi- ||
Code coding
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Y’I’L

wy = ajuy (mi,l) ® agusy (ma,la)
[al [m1 11] D ag[mg 1y 0] ] Go ald’f D agdg

Decoder
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e For my, € [2"F%], I}, € [2"%], we can express the desired
linear combination of codewords as

wy, = ajuy(ma, 1) ® aguy (ma, l2)
= [al [m1 11] D ag[mg 1y 0] ] Go ald’f D agdg
=84 G® a1d} & axdy

where sq4 € |

on max{R1 +R1,Ro +f22}]

is the linear combination index

corresponding to g-ary expansion Sq.
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X7

N\

W Linear Multi- Uln e (72 |

1 Code coding ()
Linear Multi- | U3 R

M, Code [ coding x2(u2)

Py x,x,

Y’I’L

/

X5

e For my, € [2"%], [} € [2”Rk], we can express the desired

linear combination of codewords as

wy, = ajuy(ma, 1) ® aguy (ma, l2)
= [al [m1 11] D ag[mg 1y 0] ] Go ald’f D agdg
=84 G® a1d} & axdy

where sq4 € |

on max{R1 +R1,Ro +f22}]

is the linear combination index

corresponding to g-ary expansion Sq.

Decoder

e Can view wg(s) as some linear codeword that belongs to 7:@([4/@).
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ai

a2

Uy

Wg = a1U" @ aUy is a linear codeword.
If (UP,UR, Y™ € TE (U, Us, Y,
then (W72, Y™) € T (Wq,Y).
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Decoding:

e Search for index 54 such that (W2(3,),Y") € ﬁ(n)(Wa,Y).
Output as estimate if unique. Otherwise, declare an error.
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7;(”) (H'Ta ‘yn)

YII,

Py iw,

Decoding:
e Search for index 54 such that (W2(3,),Y") € ﬁ(n)(Wa,Y).

Output as estimate if unique. Otherwise, declare an error.

e Although the decoder searches for W/ over the full linear codebook,
it ignores codewords that fall outside the typical set 7. (Wy).
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Compute—Forward Achievability via Linear Random Coding
Error Analysis: Assume s, = 0 is selected linear combination index.
& = {U,?(mk,lk) & 7;@ for all I, for some my, k = 1,2}
&y = {(U"(My, L), U3 (My, Ly),Y") ¢ T}
&3 = {(Wi(sq),Y"™) ¢ T\ (Wa,Y) for some sq # 0}
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Compute—Forward Achievability via Linear Random Coding
Error Analysis: Assume s, = 0 is selected linear combination index.
& = {U,?(mk,lk) & 7;@ for all I, for some my, k = 1,2}
&y = {(U"(My, L), U3 (My, Ly),Y") ¢ T}
&= {(W(sa),Y"™) ¢ T\ (Wa,Y) for some sq # 0}
e By the Mismatched Covering Lemma, P{&;} — 0 if
Ry > D(pu|lpq) + 6(€).
e By the Markov Lemma for Nested Linear Codes, P{& N &f} — 0 if
Ry, > D(pu,llpq) + 6(€).

Subtle Issue: Ly and Lo are statistically dependent, since these multicoding
indices are chosen with respect to the same linear codebook.

e By the Mismatched Packing Lemma, P{€3NEF} — 0 if

Ry + 2Ry + Ry < I(Wa3;Y) + D(pw, |lpg) + D(pu, lpq) + D(pus |[pg) — 20(€)
Ry + Ry + 2Ry < I(Wa;Y) + D(pw, |Ipq) + D(pu, |pq) + D(pu,|Ipg) — 20(€)



Compute—Forward Achievability via Random Linear Codes

o Setting R}, = D(py,|Ipq) + 20(¢'), we find that a rate pair (Ry, Rs)
is achievable if

R, <H(U1)—H(WG|Y) Ry <H(U2)—H(WG|Y)

Ry
I(X2; Y| X1)4
Icr2(a)
I(X1, X2;Y) 1+
—Icr1(a) Rck ((1,)
L 1 Rl

I I
I(Xl,XQ;Y) Icpil(ll) ](Xl,Y‘Xz)
—Icr2(a)
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Compute—Forward Achievability via Random Linear Codes

What about the “multiple-access” rates, Rimac?
Decoding W directly does not achieve this rate region.

Instead, we can first decode U7* and U3’ by searching for a unique
index tuple (mq, 11, mo,l2) such that

(U (ma, 1), U (ma, 1), Y™) € T\ (U1, U, Y)
and afterwards form W} = a1U{"(mq, 1) & aU3 (ma, l2).

Rather than applying two decoders, we can write down a single
decoder, inspired by the simultaneous non-unique decoder of
Bandemer-El Gamal-Kim '15.

Specifically, we search for a unique index sq such that, for some
index tuple (mq,11, mo,l2) whose g-ary expansions satisfy

Sa = al[ml 11] ® ag[mg 12 0],

we have that (U7 (mq, 1), U (ma, o), Y™) € T& (U, Us, Y).



LMAC Bound Figure
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Key Issue: Some competing message pairs are
linearly dependent, e.g., (my,my) = (2my, 2msy).
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Compute—Forward Achievability via Linear Random Coding
Error Analysis: Assume index tuple (mq,l1,ma,l2) = (0,0,0,0) is
selected.
& = {U,?(mk,lk) & 7;5") for all I, for some my, k = 1,2}
52 = {(Uln(MhLl)v US(M% L2)>Yn) ¢ 7;(”)}
& = {(UT(m1,10), Ug (ma, o), Y™) & TS (U1, Ua, )
for some (mq,l1, mo,ls) # (0,0,0,0)}

e We already dealt with P{&;} and P{& N &f}.

e We handle P{&3 N &} with the Mismatched Packing Lemma and a
careful partitioning of error events to capture linearly dependent
competing codewords.



Compute—Forward Achievability via Linear Random Coding

.A = {(ml,ll,mg,lg) (ml,ll,mg,lg) 75 (0 0 0 0)}

Ar = {(ma, li,ma,l2) : (ma, 1) # (0,0), (me,l2) = (0,0)},

Az = {(ma, l1,ma,l2) : (ma, 1) = (0,0), (me,l2) # (0,0)},

Az = {(m1,l1,ma,12) : (ma, 1) # (0,0), (ma, l2) # (0,0)},
L ={(mq,l1,ma,ls) € A1z : [my 11],[my 1, 0] are linearly dependent},
L= {(m1,l1,ma,l3) € Ajz: [my 1], [my 15 0] are linearly independent}

Further, for some b € Fg such that b # 0, define

ﬁl(b) = {(ml,ll,mg,lg) eL: bl[ml 11] D b2[m2 Iy 0] 75 0},
L‘,Q(b) = {(ml,ll,m2,l2) eL: bl[ml 11] D bg[mg | D) 0] = 0}.

Simplifying, we find that any rate (R1, R2) € Rimac is achievable via
“multiple-access” decoding.



Rate Region
Ry
I(X2;Y|X1) 4

Icr2(a)

I(X1,X2;Y)+
—Icri(a) RCF(G)

N

Ry

T T
I(X1,X2;Y) Icri(a) I(X1;Y[X2)

—Icr2(a)

I(X2;Y|X1)A -

Icrp(a)f——————

(X1, X0 Y)4+——————

—Icr(a) Rimac

N\
N\

Ry .

I(X2;Y|X1)
Icr2(a)4———
I(X1, Xo; V)4 — - =
—Icr,1(a) Rer

|
\\<\—|-R1 + Ry = I(X1,Xp;Y)

I(X1,X2;Y) Icra(a) I(X1;Y([X2)

—Icr2(a)

T
I(X1,X2;Y) Icra(a)
—lcr2(a)

T
I(X1;Y|X5)
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Gaussian Compute—Forward via Discretization

e Can we use these discrete memoryless results to recover the
Gaussian compute—forward region from Nazer - Gastpar '117

e Yes! However, the proof requires some new ingredients, since the
region is in terms of entropies, rather than mutual informations.

e How about from 2 to K users, i.e., recovering L linear combinations
out of K users?

e Yes!



K-User Compute—Forward

e For A € FL*¥, want to compute
ur
Uk

e For some full rank matrices B € F&&*X C e phexte
0 < Lc < Lg < K (with ranks Lg and Lc, respectively) and sets
S, T C[1: K], define Zp(B,C,S,T) as the set of rate tuples
satisfying the inequality

> Ry < H{U(T)) — HWg(s)|Y, Wee).
keT

where Wg = B[U1,...,Uk]".



K-User Compute—Forward

Theorem

A rate tuple (Ry, ..., Rk) is achievable for computing the A-linear
combinations if it is contained in

UNUN%vo®B,C.s,7)

B C S T

for some 1, p(ux) and mappings mk(uk)k: €l: K] The set
operations are over all tuples (B,C,S,T) with the following
constraints:
@ B c F5*" are full rank matrices satisfying span(A) C span(B),

@ C e FE*"® are full rank matrices (including empty matrices), where
0< Lc < Lg,

© S C[1: Lg] are sets of size |S| = Lg — Lc such that rank ({ I(?S) }) = Lg,

@O 7 C K are sets of size |T| = Lg — Lc such that rank ({ I(IE(QS%‘) }) =K.



Example: Noisy Additive Channel

X1
e

X2 n i/ Y
Qe 2l ey

X3 ez PO "o g

X, ={0,1}, ¥ ={0,1,2,3}
Y is the sum of X1, X5, X3 passed through quaternary symmetric
channel

Fix p(zx) ~ Bern(1/2), Uy = X
Crossover probability p = 0.1



General A-Computation Example

e Compute A =1, 1, 1]
e Rank1: B=A
1,1,0 _
e Rank 2: B_{O,O,I}B_

e Rank 3: B=1

|



General A-Computation Example
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Example: Gaussian Channel

e Consider a K = 3 user Gaussian MAC with channel gain

1 1.5 0.75
H=)| 07 1 1.5
1.5 07 1

)

e P=2and A=1]1, 1, 1]
e Compare with sequential decoding points B =[1, 1, 1] and

100
B_{o 1 1}’



Example: Gaussian Channel




