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distributed compression and, more recently, many papers on physical-layer
network coding, distributed dirty-paper coding, and interference alignment.

• Coding schemes exhibit behavior not found via i.i.d. ensembles.

• However, some classical coding techniques are still unavailable.

• Most of the initial efforts have focused on Gaussian networks.

• Are these just a collection of intriguing examples or elements of a more
general theory?

• Recent efforts, starting with Padakandla-Pradhan ’13, demonstrate that
nested linear codes can be brought into the powerful framework of
joint typicality encoding and decoding.
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• Decoder: assigns estimates (m̂1, m̂2) to each yn ∈ Yn

• Average probability of error is P
{

(M̂1, . . . , M̂K) ̸= (M1, . . . ,MK)
}

where M1, . . . ,MK are drawn independently and uniformly.
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Error Analysis: Assume m1 = 0, m2 = 0 are selected messages.

E1 =
{

(Xn
1 (0), X

n
2 (0), Y

n) /∈ T (n)
ϵ (X1, X2, Y )

}

E2 =
{

(Xn
1 (m1), X

n
2 (0), Y

n) /∈ T (n)
ϵ (X1, X2, Y ) for some m1 ̸= 0

}

E3 =
{

(Xn
1 (0), X

n
2 (m2), Y

n) /∈ T (n)
ϵ (X1, X2, Y ) for some m2 ̸= 0

}

E4 =
{

(Xn
1 (m1), X

n
2 (m2), Y

n) /∈ T (n)
ϵ (X1, X2, Y ) for some m1 ̸= 0,m2 ̸= 0

}

• By the Weak Law of Large Numbers, P{E1} → 0.

• By the Packing Lemma, P{E2} → 0 if R1 < I(X1;Y |X2)− δ(ϵ).

• By the Packing Lemma, P{E3} → 0 if R2 < I(X2;Y |X1)− δ(ϵ).

• By the Packing Lemma, P{E4} → 0 if R1 +R2 < I(X1, X2;Y )− δ(ϵ).
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a

Problem Statement:

• Messages: mk ∈ [2nRk ] ! {0, . . . , 2nRk − 1}, k = 1, . . . ,K.

• Encoders: mappings (unk , x
n
k)(mk) ∈ Fn

q × X n
k , k = 1, . . . ,K

such that unk(mk) is bijective.

• Linear Combination: wn
a !

⊕

k aku
n
k(mk), a = [a1 · · · aK ] ∈ FK

q

• Decoder: assigns an estimate ŵn
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Encoding:

• Fix pmfs p(u1), p(u2),
mappings x1(u1), x2(u2), and 0 < ϵ′ < ϵ.

• Multicoding: For message mk, find index lk
such that unk(mk, lk) ∈ T (n)

ϵ′ (Uk).
(If no such lk, pick one randomly.)

• Succeeds w.h.p. if

R̂k > D(pUk
∥pq) + δ(ϵ′)

by Mismatched Covering Lemma where
pq = Unif(Fq).

• At time i, transmit xki = xk
(

uki(mk, lk)
)

.
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where sa ∈ [2nmax{R1+R̂1,R2+R̂2}] is the linear combination index
corresponding to q-ary expansion sa.
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where sa ∈ [2nmax{R1+R̂1,R2+R̂2}] is the linear combination index
corresponding to q-ary expansion sa.

• Can view wn
a(s) as some linear codeword that belongs to T (n)

ϵ′ (Wa).
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Decoding:

• Search for index ŝa such that (W n
a (ŝa), Y

n) ∈ T (n)
ϵ (Wa, Y ).

Output as estimate if unique. Otherwise, declare an error.

• Although the decoder searches for W n
a over the full linear codebook,

it ignores codewords that fall outside the typical set T (n)
ϵ (Wa).
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∥pq) + δ(ϵ′).

• By the Markov Lemma for Nested Linear Codes, P{E2 ∩ Ec
1} → 0 if

R̂k > D(pUk
∥pq) + δ(ϵ′).

Subtle Issue: L1 and L2 are statistically dependent, since these multicoding

indices are chosen with respect to the same linear codebook.

• By the Mismatched Packing Lemma, P{E3 ∩ Ec
1} → 0 if

R1 + 2R̂1 + R̂2 < I(Wa;Y ) +D(pWa
∥pq) +D(pU1

∥pq) +D(pU2
∥pq)− 2δ(ϵ)

R2 + R̂1 + 2R̂2 < I(Wa;Y ) +D(pWa
∥pq) +D(pU1

∥pq) +D(pU2
∥pq)− 2δ(ϵ)
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• Setting R̂k = D(pUk
∥pq) + 2δ(ϵ′), we find that a rate pair (R1, R2)

is achievable if

R1 < H(U1)−H(Wa|Y ) R2 < H(U2)−H(Wa|Y )

R1

R2

I(X1, X2;Y )

−ICF,2(a)

ICF,1(a) I(X1;Y |X2)

I(X1, X2;Y )
−ICF,1(a)

I(X2;Y |X1)

ICF,2(a)

RCF(a)
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• What about the “multiple-access” rates, RLMAC?

• Decoding W n
a directly does not achieve this rate region.

• Instead, we can first decode Un
1 and Un

2 by searching for a unique
index tuple (m1, l1,m2, l2) such that

(Un
1 (m1, l1), U
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2 (m2, l2), Y

n) ∈ T (n)
ϵ (U1, U2, Y )

and afterwards form W n
a = a1Un

1 (m1, l1)⊕ a2Un
2 (m2, l2).

• Rather than applying two decoders, we can write down a single
decoder, inspired by the simultaneous non-unique decoder of
Bandemer-El Gamal-Kim ’15.

• Specifically, we search for a unique index sa such that, for some
index tuple (m1, l1,m2, l2) whose q-ary expansions satisfy

sa = a1[m1 l1]⊕ a2[m2 l2 0],

we have that (Un
1 (m1, l1), Un

2 (m2, l2), Y n) ∈ T (n)
ϵ (U1, U2, Y ).
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Error Analysis: Assume index tuple (m1, l1,m2, l2) = (0, 0, 0, 0) is
selected.
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for some (m1, l1,m2, l2) ̸= (0, 0, 0, 0)
}

• We already dealt with P{E1} and P{E2 ∩ Ec
1}.

• We handle P{E3 ∩ Ec
1} with the Mismatched Packing Lemma and a

careful partitioning of error events to capture linearly dependent
competing codewords.
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A = {(m1, l1,m2, l2) : (m1, l1,m2, l2) ̸= (0, 0, 0, 0)},

A1 = {(m1, l1,m2, l2) : (m1, l1) ̸= (0, 0), (m2, l2) = (0, 0)},

A2 = {(m1, l1,m2, l2) : (m1, l1) = (0, 0), (m2, l2) ̸= (0, 0)},

A12 = {(m1, l1,m2, l2) : (m1, l1) ̸= (0, 0), (m2, l2) ̸= (0, 0)},

L = {(m1, l1,m2, l2) ∈ A12 : [m1 l1], [m2 l2 0] are linearly dependent},

Lc = {(m1, l1,m2, l2) ∈ A12 : [m1 l1], [m2 l2 0] are linearly independent}

Further, for some b ∈ F2
q such that b ̸= 0, define

L1(b) = {(m1, l1,m2, l2) ∈ L : b1[m1 l1]⊕ b2[m2 l2 0] ̸= 0},

L2(b) = {(m1, l1,m2, l2) ∈ L : b1[m1 l1]⊕ b2[m2 l2 0] = 0}.

Simplifying, we find that any rate (R1, R2) ∈ RLMAC is achievable via
“multiple-access” decoding.
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• Can we use these discrete memoryless results to recover the
Gaussian compute–forward region from Nazer - Gastpar ’11?

• Yes! However, the proof requires some new ingredients, since the
region is in terms of entropies, rather than mutual informations.

• How about from 2 to K users, i.e., recovering L linear combinations
out of K users?

• Yes!



K-User Compute–Forward

• For A ∈ FL×K
q , want to compute

W n
A = A

⎡

⎢

⎣

Un
1
...

Un
K

⎤

⎥

⎦

• For some full rank matrices B ∈ F
LB×K
q , C ∈ F

LC×LB
q ,

0 ≤ LC < LB ≤ K (with ranks LB and LC, respectively) and sets
S,T ⊆ [1 : K], define RD(B,C,S,T ) as the set of rate tuples
satisfying the inequality

∑

k∈T

Rk < H(U(T ))−H(WB(S)|Y,WCB).

where WB = B[U1, . . . , UK ]T .



K-User Compute–Forward

Theorem

A rate tuple (R1, . . . , RK) is achievable for computing the A-linear
combinations if it is contained in

⋃

B

⋂

C

⋃

S

⋂

T

RD(B,C,S,T )

for some
∏K

k=1 p(uk) and mappings xk(uk), k ∈ [1 : K]. The set
operations are over all tuples (B,C,S,T ) with the following
constraints:

1 B ∈ F
LB×K
q are full rank matrices satisfying span(A) ⊆ span(B),

2 C ∈ F
LC×LB
q are full rank matrices (including empty matrices), where

0 ≤ LC < LB,

3 S ⊆ [1 : LB] are sets of size |S| = LB − LC such that rank

([

C

I(S)

])

= LB,

4 T ⊆ K are sets of size |T | = LB − LC such that rank

([

B(S)
I(K \ T )

])

= K.



Example: Noisy Additive Channel

00
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33

Y

1− p

p/3
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X3

• Xk = {0, 1}, Y = {0, 1, 2, 3}

• Y is the sum of X1,X2,X3 passed through quaternary symmetric
channel

• Fix p(xk) ∼ Bern(1/2), Uk = Xk

• Crossover probability p = 0.1



General A-Computation Example

• Compute A = [1, 1, 1]

• Rank 1: B = A

• Rank 2: B =

[

1, 1, 0
0, 0, 1

]

, B =

[

1, 0, 1
0, 1, 0

]

, B =

[

0, 1, 1
1, 0, 0

]

,

• Rank 3: B = I



General A-Computation Example



Example: Gaussian Channel

• Consider a K = 3 user Gaussian MAC with channel gain

H =

⎡

⎣

1 1.5 0.75
0.75 1 1.5
1.5 0.75 1

⎤

⎦ ,

• P = 2, and A = [1, 1, 1]

• Compare with sequential decoding points B = [1, 1, 1] and

B =

[

1 0 0
0 1 1

]

,



Example: Gaussian Channel
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