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• Strategy: First, decode and subtract interfering signals. Then,
recover desired codeword.

• Optimal if interference is very strong.
(Carleial ’75, Sato ’81, Han-Kobayashi ’81, Sankar-Erkip-Poor ’08)
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K-User Interference Channel – Problem Statement
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• Transmitter ℓ maps message wℓ ∈ {1, 2, . . . , 2
nRℓ} into

complex-valued codeword Xn
ℓ = (Xℓ[1], . . . ,Xℓ[n]) obeying power

constraint
∑n

i=1 |Xℓ[i]|
2 ≤ nP .

• Receiver k observes Yk[i] =
∑K

ℓ=1 hkℓXℓ[i] + Zk[i]. Noise Zk[i] is
i.i.d. CN (0, N).

• What rates R1, . . . , RK are sustainable with vanishing probability of
error P

(

{ŵ1 6= w1} ∪ · · · ∪ {ŵK 6= wK}
)

?
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K-User Interference Channel – Symmetric Case
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• Equal rates R1 = · · · = RK = R.

• Direct gains hkk = 1 and cross-gains hkℓ = β.

• Very Strong Case: β is large enough so that R = log(1 + P
N ).

• Weak Case: β is small enough so that receivers can treat
interference as noise.

• How do these thresholds on β scale with K?
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Symmetric Very Strong Case

• Receiver k must cancel out interference before decoding wk.

• Simple approach: Each receiver decodes all K − 1 undesired
messages and removes them.

• Multiple-access capacity region requires that:

R ≤
1

K − 1
log

(

1 +
β2(K − 1)P

N + P

)

• Set equal to R = log(1 + P
N ) and solve for β2:

β2 ≥

(

(1 + P
N )K−1 − 1

)

(N + P )

(K − 1)P

• β threshold increases exponentially with K.



Symmetric Weak Case

• Receiver treats all of the interference as noise. Resulting rate is

R = log

(

1 +
P

N + (K − 1)β2P

)

.

• Genie-aided bounds show this is the capacity if

P ≤

√

K−1
β2 − 2(K − 1)

2(K − 1)2β2

• Implies that β threshold must fall with K:

β2 ≤
1

4(K − 1)

• See Shang-Kramer-Chen ’07, Motahari-Khandani ’07,

Annapureddy-Veeravalli ’08 for more general results.
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Can each user get half the cake?
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• Is it possible for each user to communicate as if there is only one
other user?

RHALF
k =

1

2
log

(

1 +
2|hkk|

2P

N

)
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• Maddah-Ali - Motahari - Khandani ’08: Proposed interference alignment
for the MIMO X channel.

• Cadambe-Jafar ’08: Alignment can get “half the cake” for the
interference channel as the SNR→∞:

lim
P→∞

RIA
k

log (1 + P )
=

1

2
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Interference Alignment – Fixed Channels
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D2 ŵ2
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• Receiver see statistically equivalent channels: Yk =

K
∑

ℓ=1

Xℓ + Zk

• Interference channel capacity depends only on marginal channels.
=⇒ If one user can decode wℓ, they all can.

• Multiple-access capacity: R =
1

K
log

(

1 +
KP

N

)
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D2 ŵ2
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Interference Alignment – Time-Varying Channels
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• What about general fixed H? Only partially understood (e.g. high
SNR, special cases).

• Much more is known for time-varying channels.

• Assume every transmitter and receiver knows H[t] causally (i.e.
knows H[t] before time t).
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Interference Alignment – Time-Varying Channels
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Joint Coding

• t odd: Y1[t] = X1[t] +X2[t]−X3[t] + Z1[t]

• t even: Y1[t] = X1[t]−X2[t] +X3[t] + Z1[t]

• Joint Coding: Send new symbol every odd time.
Repeat symbols on even times.

• Decoding: Y1[t− 1] + Y1[t] = 2X1[t− 1] + Z1[t− 1] + Z1[t]

• Effective SNR: 4P/2N = 2P/N .

• Two channel uses per symbol: R =
1

2
log

(

1 +
2P

N

)

• Same strategy works for users 2 and 3.
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Main References

This section is almost entirely drawn from:

• V. Cadambe and S. A. Jafar, Interference Alignment and Degrees of
Freedom of the K-User Interference Channel. IEEE Transactions on
Information Theory, vol. 54, no. 8, pp. 3425-3441, August 2008.

For a comprehensive overview of interference alignment, see:

• Syed A. Jafar, Interference Alignment: A New Look at Signal
Dimensions in a Communication Network, Foundations and Trends
in Communications and Information Theory, Vol. 7, No. 1, pages:
1-136.



Interference Alignment – Time-Varying Channels

w1 E1
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• At each time t, each channel gain hkℓ[t] is drawn according to an
independent distribution with uniform phase.

• Milder assumptions possible.

• Every transmitter and receiver knows H[t] causally (i.e. knows H[t]
before time t).



Symbol Extension

• Joint coding over m time slots:

H[1] = {hkℓ[1]}
H[2] = {hkℓ[2]}

...
H[m] = {hkℓ[m]}

xℓ ,











Xℓ[1]
Xℓ[2]
...

Xℓ[m]











yk ,











Yk[1]
Yk[2]
...

Yk[m]











• Convenient to represent this problem with diagonal matrices:

Dkℓ ,











hkℓ[1] 0 · · · 0
0 hkℓ[2] · · · 0
...

...
. . .

...
0 0 · · · hkℓ[m]











yk =

K
∑

ℓ=1

Dkℓxℓ + zk

• Can visualize m = 3 in 3D:

t = 1

t = 2

t = 3
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Non-Aligned Signaling over 3 Time Slots

Tx 1

Tx 2

Tx 3

Rx 1

Rx 2

Rx 3

Total Degrees of Freedom

DoF =
3 vectors

3 channel uses

= 1

Each user gets 1/3 the cake.
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Aligned Signaling over 3 Time Slots

Tx 1

Tx 2

Tx 3

Rx 1

Rx 2

Rx 3

Total Degrees of Freedom

DoF =
4 vectors

3 channel uses

=
4

3

Each user gets 4/9 the cake.
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Aligned Signaling over 3 Time Slots

Tx 1

v1A

v1B

Tx 2
v2

Tx 3

v3

Rx 1

Rx 2

Rx 3

• Set v1A = 1√
3
[ 1 1 1 ]T

• v2 aligns with v1A at Rx 3 :

D32v2 = D31v1A

v2 = D−1
32 D31v1A

• v3 aligns with v2 at Rx 1 :

D13v3 = D13v2

v3 = D−1
13 D12v2

• v1B aligns with v3 at Rx 2 :

D21v1B = D23v3

v1B = D−1
21 D23v3



Getting Half the Cake

• Collect signaling vectors into matrices Vℓ = [vℓ1 vℓ2 · · · vℓm].

• Receiver k allocates subspace Ik as interference space.

• Alignment conditions:

Receiver 1
D11V1 ∩ I1 = ∅
D12V2 ⊆ I1

...
D1KVK ⊆ I1

Receiver 2
D21V1 ⊆ I2

D22V2 ∩ I2 = ∅
...

D2KVK ⊆ I2

· · ·

Receiver K
DK1V1 ⊆ IK
DK2V2 ⊆ IK

...
DKKVK ∩ IK = ∅

• Want m/2 dimensions for Vk and Ik.

• Not feasible in general.



Getting Half the Cake – Asymptotic Alignment

• Enumerate all S , K(K − 1) cross-channels with a single index:

T =
{

Ti

}

=
{

Dkℓ : k 6= ℓ
}

• Use the same signaling vectors V(m) at every transmitter.

• Define signaling vectors recursively:

V(0) = {1}

V(m) =
{

vi, T1vi, . . . , TSvi : vi ∈ V
(m−1)

}

=
{

Tα1
1 Tα2

2 · · ·T
αS
S 1 : α1 + α2 + · · ·+ αS ≤ m

}

• Size of signaling space:

∣

∣

∣
V(m)

∣

∣

∣
=

(

m+ S

m

)



Getting Half the Cake – Asymptotic Alignment

• Interference space at receiver k is Ik =
⋃

ℓ 6=k

DkℓV
(m) ⊂ V(m+1)

• Desired signal space at receiver k is DkkV
(m).

• V(m) only contains products of cross-channels so there is no overlap
between desired signal space and interference space.

• Number of vectors is nearly the same for large m:

∣

∣

∣
V(m)

∣

∣

∣

∣

∣

∣
V(m+1)

∣

∣

∣

=

(m+S
m

)

(m+1+S
m+1

) =
m+ 1

m+ 1 + S

m→∞
−−−−→ 1

• Desired signal space asymptotically gets half the dimensions:

∣

∣

∣
DkkV

(m)
∣

∣

∣

∣

∣

∣
DkkV(m)

∣

∣

∣
+
∣

∣

∣
Ik

∣

∣

∣

m→∞
−−−−→

1

2
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Main Reference

This section is almost entirely drawn from:

• B. Nazer, M. Gastpar, S. A. Jafar, and S. Vishwanath, Ergodic
Interference Alignment,
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3. Otherwise, transmit new signals and wait for their HC .
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Ergodic Interference Alignment

Sum of channel observations is (nearly) interference-free:
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Sum of channel observations is (nearly) interference-free:

H+HC =







2h11 0
. . .

0 2hKK






± δ

Worst case SINR:

lim
δ↓0
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(

|hkk|
2 − 2δ(Re(hkk) + Im(hkk)) + δ2

)

1 + 4δ2(K − 1)P
=

2|hkk|
2P
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1. Quantize each channel coefficient to precision δ
(closest point in δ(Z + jZ)).



Pairing Up Channels

• We need to match up almost every matrix with its complement.

• Want a finite set of possible matrices Ĥ for analysis:
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Pairing Up Channels

• We need to match up almost every matrix with its complement.

• Want a finite set of possible matrices Ĥ for analysis:

1. Quantize each channel coefficient to precision δ
(closest point in δ(Z + jZ)).

2. Set threshold hMAX. Throw out any matrix with |hkℓ| > hMAX.

• Choose δ, hMAX to get desired rate gap.

• Since phase is i.i.d. uniform, P(H) = P(HC).



Convergence in Type

Sequence of quantized channel matrices Ĥn is ǫ-typical if:

∣

∣

∣

∣

1

n
#(Ĥ|Ĥn)− P (Ĥ)

∣

∣

∣

∣

≤ ǫ ∀Ĥ ∈ Ĥ

Lemma (Csiszar-Körner 2.12)

For any i.i.d. sequence of quantized channel matrices, Ĥn, the
probability of the set of all ǫ-typical sequences, An

ǫ , is lower bounded
by:

P(An
ǫ ) ≥ 1−

|Ĥ|

4nǫ2
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Rate

Channel Thresholding

Channel QuantizationUnpaired Matrices



Achievable Rate

Theorem

Each user can achieve at least half its interference-free capacity at any
signal-to-noise ratio:

Rk =
1

2
E
[

log
(

1 + 2|hkk|
2Pk

)]

>
1

2
RFREE

k
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Rayleigh Fading
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Upper Bound

Ergodic Alignment

5 User TDMA

10 User TDMA

• Channel coefficients i.i.d. Rayleigh. Equal transmit power per user.



When does ergodic alignment reach capacity?

• If all channel gains have fixed, equal magnitudes (and time-varying
i.i.d. uniform phase), ergodic alignment reaches capacity:

C =
1

2
log

(

1 +
2P

N

)

Symmetric Case

• In general, we should waterfill power allocation over channel states.

• Is this enough?



When does ergodic alignment reach capacity?

• For Rayleigh fading, we get a very weak interference channel with
some constant probability ρ > 0.

• Ignore all interference in weak interference case. Get RWEAK
k .

• Otherwise, use ergodic alignment to get REA
k .

• Each user gets Rk = ρRWEAK
k + (1− ρ)REA

k > REA
k

• We need to mix between decoding, ignoring, and aligning
interference.

• Open Question: Does this come to within a constant gap of the
capacity region?



When does ergodic alignment reach capacity?

• Jafar ’09: Whenever the channel is in a bottleneck state, ergodic
alignment achieves the capacity.

• Example: K transmitter-receiver pairs randomly placed in a square.
Signal strength governed by distance. As K →∞, ergodic
alignment achieves capacity.
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Main References

Nested lattice framework in this section is almost entirely drawn from:

• U. Erez and R. Zamir, Achieving 1
2 log(1 + SNR) on the AWGN

channel with lattice encoding and decoding, IEEE Transactions on
Information Theory, vol. 50, pp. 2293-2314, October 2004.

• U. Erez, S. Litsyn, and R. Zamir, Lattices which are good for (al-
most) everything, IEEE Transactions on Information Theory, vol. 51,
pp. 3401-3416, October 2005.

• R. Zamir, Lattices are everywhere, in Proceedings of the 4th Annual
Workshop on Information Theory and its Applications, La Jolla, CA,
February 2009.

See Ram Zamir’s lattice tutorials (
http://www.eng.tau.ac.il/~zamir/ ) or my ISIT 2011 tutorial (
http://iss.bu.edu/bobak/tutorial_isit11.pdf ) for more
information.

http://www.eng.tau.ac.il/~zamir/
http://iss.bu.edu/bobak/tutorial_isit11.pdf


Point-to-Point Channels

w E
x pY |X

y
D ŵ

The Usual Suspects:

• Message w ∈ {0, 1}k

• Encoder E : {0, 1}k → X n

• Input x ∈ X n

• Estimate ŵ ∈ {0, 1}k

• Decoder D : Yn → {0, 1}k

• Output y ∈ Yn

• Memoryless Channel p(y|x) =
n
∏

i=1

p(yi|xi)

• Rate R =
k

n
.

• (Average) Probability of Error: P{ŵ 6= w} → 0 as n→∞. Assume
w is uniform over {0, 1}k .



i.i.d. Random Codes

• Generate 2nR codewords
x = [X1 X2 · · · Xn] independently
and elementwise i.i.d. according to
some distribution pX

p(x) =

n
∏

i=1

pX(xi)

• Bound the average error probability
for a random codebook.

• If the average performance over
codebooks is good, there must exist
at least one good fixed codebook.

0 1 2 3 4 · · · q − 1

0

1

2

3

4

...

q − 1



Joint Typicality Decoding

Decoder looks for a codeword that is jointly typical with the received
sequence y

Error Events

1. Transmitted codeword x is not jointly typical
with y.
=⇒ Low probability by the

Weak Law of Large Numbers.

2. Another codeword x̃ is jointly typical with y.

Cuckoo’s Egg Lemma

Let x̃ be an i.i.d. sequence that is independent from the received
sequence y.

P

{

(x̃,y) is jointly typical
}

≤ 2−n(I(X;Y )−3ǫ)

See Cover and Thomas.



Point-to-Point Capacity

• We can upper bound the probability of error via the union bound:

P{ŵ 6= w} ≤
∑

w̃ 6=w

P

{

(x(w̃),y) is jointly typical.
}

≤ 2−n(I(X;Y )−R−3ǫ) ← Cuckoo’s Egg Lemma

• If R < I(X;Y ), then the probability of error can be driven to zero
as the blocklength increases.

Theorem (Shannon ’48)

The capacity of a point-to-point channel is C = max
pX

I(X;Y ).



Linear Codes

• Linear Codebook: A linear map between messages and codewords
(instead of a lookup table).

q-ary Linear Codes

• Represent message w as a length-k vector over Fq.

• Codewords x are length-n vectors over Fq.

• Encoding process is just a matrix multiplication, x = Gw.











x1
x2
...
xn











=











g11 g12 · · · g1k
g21 g22 · · · g2k
...

...
. . .

...
gn1 gn2 · · · gnk





















w1

w2
...
wk











• Recall that, for prime q, operations over Fq are just mod q
operations over the reals.

• Rate R =
k

n
log q



Random Linear Codes

• Linear code looks like a regular
subsampling of the elements of Fn

q .

• Random linear code: Generate
each element gij of the generator
matrix G elementwise i.i.d.
according to a uniform distribution
over {0, 1, 2, . . . , q − 1}.

• How are the codewords distributed?
0 1 2 3 4 · · · q − 1
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q − 1

Fq
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Codeword Distribution

It is convenient to instead analyze the shifted ensemble x̄ = Gw ⊕ v

where v is an i.i.d. uniform sequence. (See Gallager.)

Shifted Codeword Properties

1. Marginally uniform over Fn
q . For a given message w, the codeword x̄

looks like an i.i.d. uniform sequence.

P{x̄ = x} =
1

qn
for all x ∈ F

n
q

2. Pairwise independent. For w1 6= w2, codewords x̄1, x̄2 are
independent.

P{x̄1 = x1, x̄2 = x2} =
1

q2n
= P{x̄1 = x1}P{x̄2 = x2}



Achievable Rates

• Cuckoo’s Egg Lemma only requires independence between the true
codeword x(w) and the other codeword x(w̃). From the union
bound:

P{ŵ 6= w} ≤
∑

w̃ 6=w

P

{

(x(w̃),y) is jointly typical.
}

≤ 2−n(I(X;Y )−R−3ǫ)

• This is exactly what we get from pairwise independence.

• Thus, there exists a good fixed generator matrix G and shift v for
any rate R < I(X;Y ) where X is uniform.



Removing the Shift

w E
x̄

z

ȳ
D ŵ

• For a binary symmetric channel (BSC), the output can be written as
the modulo sum of the input plus i.i.d. Bernoulli(p) noise,

ȳ = x̄⊕ z

ȳ = Gw ⊕ v ⊕ z

• Due to this symmetry, the probability of error depends only on the
realization of the noise vector z. For a BSC, x = Gw is a good code
as well.

• We can now assume the existence of good generator matrices for
channel coding.



Point-to-Point AWGN Channels

• Codewords must satisfy power
constraint:

‖x‖2 ≤ nP .

• i.i.d. Gaussian noise with variance
N :

z ∼ N (0, NI) .

• Shannon ’48: Channel capacity:

C =
1

2
log

(

1 +
P

N

)

w E
x

z
y

D ŵ

(Cover and Thomas,
Elements of Information Theory)

• In high dimensions, noise starts to look spherical.



Lattices

• A lattice Λ is a discrete subgroup of
R
n.

• Can write a lattice as a linear
transformation of the integer
vectors,

Λ = {Bs : s ∈ Z
n} ,

for some B ∈ R
n×n.

Lattice Properties

• Closed under addition:
λ1, λ2 ∈ Λ =⇒ λ1 + λ2 ∈ Λ.

• Symmetric: λ ∈ Λ =⇒ −λ ∈ Λ Z
n is a simple lattice.



Lattices

• A lattice Λ is a discrete subgroup of
R
n.

• Can write a lattice as a linear
transformation of the integer
vectors,

Λ = {Bs : s ∈ Z
n} ,

for some B ∈ R
n×n.

Lattice Properties

• Closed under addition:
λ1, λ2 ∈ Λ =⇒ λ1 + λ2 ∈ Λ.

• Symmetric: λ ∈ Λ =⇒ −λ ∈ Λ BZ
n



Voronoi Regions

• Nearest neighbor quantizer:

QΛ(x) = argmin
λ∈Λ

‖x− λ‖2

• The Voronoi region of a lattice point
is the set of all points that quantize
to that lattice point.

• Fundamental Voronoi region V:
points that quantize to the origin,

V = {x : QΛ(x) = 0}

• All Voronoi regions are just shifts of
V
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Nested Lattices

• Two lattices Λ and ΛFINE are nested
if Λ ⊂ ΛFINE

• Nested Lattice Code: All lattice
points from ΛFINE that fall in the
fundamental Voronoi region V of Λ.

• V acts like a power constraint

Rate =
1

n
log

(

Vol(V)

Vol(VFINE)

)
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Nested Lattices

• Two lattices Λ and ΛFINE are nested
if Λ ⊂ ΛFINE

• Nested Lattice Code: All lattice
points from ΛFINE that fall in the
fundamental Voronoi region V of Λ.

• V acts like a power constraint

Rate =
1

n
log

(

Vol(V)

Vol(VFINE)

)



Nested Lattice Codes from q-ary Linear Codes

• Choose an n× k generator
matrix G ∈ F

n×k
q for q-ary code.

• Integers serve as coarse lattice,
Λ = Z

n.

• Map elements {0, 1, 2, . . . , q − 1}
to equally spaced points between
−1/2 and 1/2.

• Place codewords x = Gw into
the fundamental Voronoi region
V = [−1/2, 1/2)n

0 1 2 3 4 · · · q − 1

0

1

2

3

4

...

q − 1

Fq

Fq

(− 1
2
,− 1

2
) ( 1

2
,− 1

2
)

(− 1
2
, 1
2
) ( 1

2
, 1
2
)



Modulo Operation

• Modulo operation with respect to
lattice Λ is just the residual
quantization error,

[x] mod Λ = x−QΛ(x) .

• Mimics the role of mod q in q-ary
alphabet.

• Distributive Law:
[

x1 + [x2] mod Λ
]

mod Λ

= [x1 + x2] mod Λ
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mod Λ AWGN Channel

w E
x

z
y

mod Λ
ỹ

D ŵ

• Codebook lives on Voronoi region V of coarse lattice Λ.

• Take mod Λ of received signal prior to decoding.

• What is the capacity of the mod Λ channel?

Using random codes: C =
1

n
max
p(x)

I(x; ỹ)
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mod Λ AWGN Channel Capacity
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nC = max
p(x)

I(x; ỹ)

= max
p(x)

(

h(ỹ)− h(ỹ|x)
)
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mod Λ AWGN Channel Capacity

w E
x

z
y

mod Λ
ỹ

D ŵ

nC = max
p(x)

I(x; ỹ)

= max
p(x)

(

h(ỹ)− h(ỹ|x)
)

= max
p(x)

(

h(ỹ)− h
(

[z] mod Λ
))

Distributive Law

≥ max
p(x)

(

h(ỹ)− h(z)
)

Point Symmetry of Voronoi Region

= max
p(x)

(

h(ỹ)−
n

2
log(2πeN)

)

Entropy of Gaussian Noise



mod Λ AWGN Channel Capacity

w E
x

z
y

mod Λ
ỹ

D ŵ

• Channel output entropy upper bounded by the logarithm of the
Voronoi region volume:

h(ỹ) ≤ log(Vol(V)) with equality if ỹ ∼ Unif(V)

• ỹ = [x+ z] mod Λ is uniform over V if x is uniform over V.

• Random coding over the Voronoi region V can achieve:

C =
1

n
log(Vol(V)) −

1

2
log(2πeN)



Power Constraints and Second Moments

w E
x

z
y

mod Λ
ỹ

D ŵ

• Must scale lattice Λ so that the uniform distribution over the
Voronoi region V meets the power constraint P .

• Set second moment σ2
Λ =

1

nVol(V)

∫

V
‖x‖2dx equal to P .

Normalized Second Moment: G(Λ) =
σ2
Λ

(Vol(V))2/n

=⇒
1

n
log(Vol(V)) =

1

2
log

(

σ2
Λ

G(Λ)

)

=
1

2
log

(

P

G(Λ)

)



mod Λ AWGN Channel Capacity

w E
x

z
y

mod Λ
ỹ

D ŵ

• Usual i.i.d. random coding over V combined with the union bound:

C ≥
1

n
log(Vol(V))−

1

2
log(2πeN)

=
1

2
log

(

P

G(Λ)

)

−
1

2
log(2πeN)

=
1

2
log

(

P

N

)

−
1

2
log(2πeG(Λ))



What is G(Λ)?

w E
x

z
y

mod Λ
ỹ

D ŵ

• The normalized second moment G(Λ) is a dimensionless quantity
that captures the shaping gain.

• Integer lattice is not so bad, G(Zn) = 1/12.

• Capacity under mod Z
n is at least

C ≥
1

2
log

(

P

N

)

−
1

2
log

(

2πe

12

)

≈
1

2
log

(

P

N

)

− 0.255



Asymptotically Good G(Λ)

Theorem (Zamir-Feder-Poltyrev ’94)

There exists a sequence of lattices Λ(n) such that lim
n→∞

G(Λ(n)) =
1

2πe
.

n = 1 n = 2

· · ·

n→∞

• Best possible normalized second moment is that of a sphere.

• Using a sequence Λ(n) with an asymptotically good G(Λ(N)) allows
to approach

R =
1

2
log

(

P

N

)

−
1

2
log

(

2πe

2πe

)

=
1

2
log

(

P

N

)



Linear Codes for mod Λ Channels

• Instead of an “inner” random
codes, we can use a q-ary linear
code.

• This is exactly a nested lattice.

• Each codeword has a uniform
marginal distribution over the
grid.

• Rate loss due to finite
constellation which goes to 0 as
q →∞.

• Codewords are pairwise
independent so we can apply the
union bound.

0 1 2 3 4 · · · q − 1
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MMSE Scaling

• Erez-Zamir ’04: Prior to taking mod Λ, scale by α.

ỹ = [αy] mod Λ

= [αx+ αz] mod Λ

= [x+ αz− (1− α)x] mod Λ

Effective Noise

• For now, ignore that the effective noise is not independent of the
codeword. Effective noise variance NEFFEC = α2N + (1− α)2P .

• Optimal choice of α is the MMSE coefficient αMMSE =
P

N + P
.

NEFFEC = α2
MMSEN + (1− αMMSE)

2P =
PN

N + P

C =
1

2
log

(

P

NEFFEC

)

=
1

2
log

(

1 +
P

N

)



Dithering

• Now the noise is dependent on the codeword.

• Dithering can solve this problem (just as in the discrete case).

• Map message to a codeword t.

• Generate a random dither vector d uniformly over V.

• Transmitter sends a dithered codeword:

x = [t+ d] mod Λ

• x is now independent of the codeword t.



Decoding – Remove Dither First

• Transmitter sends dithered codeword x = [t+ d] mod Λ.

• After scaling the channel output y by α, the decoder subtracts the
dither d.

ỹ = [αy − d] mod Λ

= [αx+ αz− d] mod Λ

= [x− d+ αz− (1− α)x] mod Λ

=
[

[t+ d] mod Λ− d+ αz− (1− α)x
]

mod Λ

= [t+ αz− (1− α)x] mod Λ Distributive Law

• Effective noise is now independent from the codeword t.

• By the probabilistic method, (at least) one good fixed dither exists.
No common randomness necessary.



Summary

• Linear code embedded in the integer lattice:

R =
1

2
log

(

P

N

)

−
1

2
log

(

2πe

12

)

• Linear code embedded in the integer lattice, MMSE scaling:

R =
1

2
log

(

1+
P

N

)

−
1

2
log

(

2πe

12

)

• Linear code embedded in a good shaping lattice, MMSE scaling:

R =
1

2
log

(

1+
P

N

)

Theorem (Erez-Zamir ’04)

Nested lattice codes can achieve the AWGN capacity.



Two-Way Relay Channel

w1Has

Wants w2 w1

Has

Wants

w2Relay



Two-Way Relay Channel – Time-Division

w1 w2

w1 w2w1
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w1 w1 w2w1 w2
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Two-Way Relay Channel – Network Coding
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Two-Way Relay Channel – Physical-Layer Network Coding
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AWGN Two-Way Relay Channel – Symmetric Rates

w1Has

Wants w2 w1

Has

Wants

w2Relay

• Upper Bound:

R ≤
1

2
log

(

1 +
P

N

)

• Decode-and-Forward: Relay decodes w1,w2 and transmits w1 ⊕w2.

R =
1

4
log

(

1 +
2P

N

)

• Compress-and-Forward: Relay transmits quantized y.

R =
1

2
log

(

1 +
P

N

P

3P +N

)



AWGN Two-Way Relay Channel – Symmetric Rates

zMAC

yMAC

Relay

xBC

z2z1

User 1

x1w1

ŵ2

User 2

x2 w2

ŵ1

• Equal power constraints P .

• Equal noise variances N .

• Equal rates R.

• Upper Bound:

R ≤
1

2
log

(

1 +
P

N

)

• Decode-and-Forward: Relay decodes w1,w2 and transmits w1 ⊕w2.

R =
1

4
log

(

1 +
2P

N

)

• Compress-and-Forward: Relay transmits quantized y.

R =
1

2
log

(

1 +
P

N

P

3P +N

)



AWGN Two-Way Relay Channel – Symmetric Rates
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Decoding the Sum of Lattice Codewords

Encoders use the same nested
lattice codebook.

Transmit dithered codewords:

x1 = t1

x2 = t2

t1 E1
x1

t2 E2
x2

z

y
D v̂

v = [t1 + t2] mod Λ

Decoder recovers modulo sum.

[y] mod Λ

= [x1 + x2 + z] mod Λ

= [t1 + t2 + z] mod Λ

=
[

[t1 + t2] mod Λ + z
]

mod Λ Distributive Law

= [v + z] mod Λ

R =
1

2
log

(

P

N

)



Decoding the Sum of Lattice Codewords – MMSE Scaling

Encoders use the same nested
lattice codebook.

Transmit dithered codewords:

x1 = [t1 + d1] mod Λ

x2 = [t2 + d2] mod Λ

t1 E1
x1

t2 E2
x2

z

y
D v̂

v = [t1 + t2] mod Λ

Decoder scales by α, removes dithers, recovers modulo sum.

[αy − d1 − d2] mod Λ

= [α(x1 + x2 + z)− d1 − d2] mod Λ

= [x1 + x2 − (1− α)(x1 + x2) + z− d1 − d2] mod Λ

=
[

[t1 + t2] mod Λ− (1− α)(x1 + x2) + z
]

mod Λ

= [v − (1− α)(x1 + x2) + z] mod Λ

Effective Noise NEFFEC = (1− α)22P + α2N



Decoding the Sum of Lattice Codewords – MMSE Scaling

• Effective noise after scaling is NEFFEC = (1− α)22P + α2N .

• Minimized by setting α to be the MMSE coefficient:

αMMSE =
2P

N + 2P

• Plugging in, get

NEFFEC =
2NP

N + 2P

• Resulting rate is

R =
1

2
log

(

P

NEFFEC

)

=
1

2
log

(

1

2
+

P

N

)

• Getting the full “one plus” term is an open challenge. Does not
seem possible with nested lattices.



Finite Field Computation over a Gaussian MAC

Map messages to lattice points:

t1 = φ(w1)

t2 = φ(w2)

Transmit dithered codewords:

x1 = [t1 + d1] mod Λ

x2 = [t2 + d2] mod Λ

w1 E1
x1

w2 E2
x2

z

y
D û

u = w1 ⊕w2

• Integer coarse lattice Λ = Z
n, φ(w) = [γGw] mod Z

n where γ is
a scalar and G is the generator matrix for the q-ary code.

• General coarse lattice Λ = BZ
n, φ(w) = [BγGw] mod Λ

• Mapping between finite field messages and lattice codewords
preserves linearity:

φ−1
(

[t1 + t2] mod Λ
)

= w1 ⊕w2



AWGN Two-Way Relay Channel – Symmetric Rates

w1Has

Wants w2 w1

Has

Wants

w2Relay

• Equal power constraints P .

• Equal noise variances N .

• Equal rates R.

• Upper Bound:

R ≤
1

2
log

(

1 +
P

N

)

• Compute-and-Forward: Relay decodes w1 ⊕w2 and retransmits.

R =
1

2
log

(

1

2
+

P

N

)

• See Wilson-Narayanan-Pfister-Sprintson ’10.
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AWGN Two-Way Relay Channel – Symmetric Rates
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Compute-and-Forward Illustration

w2

w1
x1

x2

z

y
w1 ⊕w2



Compute-and-Forward Illustration

w2

w1
x1

x2

z

y
w1 ⊕w2



Random i.i.d. codes are not good for computation

2nR codewords each. 2n2R possible sums of codewords.
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Unequal Power Constraints – Double Nesting

• What if the power constraints
are not equal?

• Idea from
Nam-Chung-Lee ’10:

• Draw the codewords from the
same fine lattice ΛFINE.

• Use two nested coarse lattices
Λ1 and Λ2 to enforce the
power constraints P1 and P2.
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• What if the power constraints
are not equal?
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Unequal Power Constraints – Double Nesting

t1 E1
x1

t2 E2
x2

z

y
D v̂

v = [t1 + t2] mod Λ2

• Encoder 1 sends x1 = [t1 + d1] mod Λ1. Coarse lattice Λ1 has
second moment P1.

• Encoder 2 sends x2 = [t2 + d2] mod Λ2. Coarse lattice Λ2 has
second moment P2 > P1.

• Decoder performs MMSE scaling, remove dithers, recovers mod Λ2

sum.

R1 =
1

2
log

(

P1

P1 + P2
+

P1

N

)

R2 =
1

2
log

(

P2

P1 + P2
+

P2

N

)



AWGN Two-Way Relay Channel

zMAC

yMAC

Relay

xBC

z2z1

User 1

x1w1

ŵ2

User 2

x2 w2

ŵ1

• User powers P1, P2.

• MAC noise variance NMAC.

• Relay power PBC .

• Broadcast noise variances

N1, N2.

Theorem (Nam-Chung-Lee ’10)

Rate region is within 1/2 bit of:

R1 ≤ min

(

1

2
log

(

P1

P1 + P2

+
P1

NMAC

)

,
1

2
log

(

1 +
PBC

N2

))

R2 ≤ min

(

1

2
log

(

P2

P1 + P2

+
P2

NMAC

)

,
1

2
log

(

1 +
PBC

N1

))

Moreover, “constant gap” goes to zero as powers increase.



Many-to-One Interference Channel – Symmetric Very Strong Case

• Equal rates R.

• Only receiver 1 sees
interference:

y1 = x1 + β
K
∑

ℓ=2

xℓ + z1

• How big does β have to be to
achieve R = 1

2 log
(

1 + P
N

)

?
(i.e. “very strong” case)

w1 E1
x1

w2 E2
x2

β

wK EK
xK

β
.

.

.

.

.

.

z1
y1

z2
y2

zK
yK

D1 ŵ1

D2 ŵ2

DK ŵK

• Scheme A: Decode w2, . . . ,wK at receiver 1 and remove prior to
decoding w1.

R ≤
1

2(K − 1)
log

(

1 +
β2(K − 1)P

N + P

)

• Scheme B: Decode w2 ⊕ · · · ⊕wK at receiver 1 and remove prior to
decoding w1.



Many-to-One Interference Channel – Symmetric Very Strong Case

Encoders use the same nested
lattice codebook.

Transmit dithered codewords:

xℓ = [tℓ + dℓ] mod Λ

w1 E1
x1

w2 E2
x2

β

wK EK
xK

β
.

.

.

.

.

.

z1
y1

z2
y2

zK
yK

D1 ŵ1

D2 ŵ2

DK ŵK

Decoder scales by β−1, removes dithers, recovers modulo sum.

[

β−1y1 −
K
∑

ℓ=2

dℓ

]

mod Λ =

[ K
∑

ℓ=2

(xℓ − dℓ) + β−1(x1 + z1)

]

mod Λ

=

[

[

K
∑

ℓ=2

tℓ

]

mod Λ + β−1(x1 + z1)

]

mod Λ



Many-to-One Interference Channel – Symmetric Very Strong Case

[

β−1y1 −
K
∑

ℓ=2

dℓ

]

mod Λ =

[

[

K
∑

ℓ=2

tℓ

]

mod Λ + β−1(x1 + z1)

]

mod Λ

• Effective noise variance NEFFEC = β−2(P +N).

• Can decode mod Λ sum of lattice points at rate R = 1
2 log

( β2P
P+N

)

.

• Setting equal to “very strong” condition R = 1
2 log

(

1 + P
N

)

we get

β2 =
(P +N)2

PN

• How can we recover w1?

• We need to first subtract the real sum of the codewords. So far, we
only have the modulo-sum.



Successive Cancellation of Sums

• First, add back in dithers to get modulo sum of codewords:
[

[

K
∑

ℓ=2

tℓ

]

mod Λ +
[

K
∑

ℓ=2

dℓ

]

mod Λ

]

mod Λ =
[

K
∑

ℓ=2

xℓ

]

mod Λ

• Subtract from y1 to expose the coarse lattice point nearest to the
real sum

∑K
ℓ=2 xℓ:

β−1y1 −
[

K
∑

ℓ=2

xℓ

]

mod Λ = QΛ

(

K
∑

ℓ=2

xℓ

)

+ β−1(x1 + z1)

• Coarse lattice point easier to decode than fine lattice point:

QΛ

(

QΛ

(

K
∑

ℓ=2

xℓ

)

+ β−1(x1 + z1)

)

= QΛ

(

K
∑

ℓ=2

xℓ

)

w.h.p.

• Finally, get back the real sum

[

K
∑

ℓ=2

xℓ

]

mod Λ +QΛ

(

K
∑

ℓ=2

xℓ

)

=

K
∑

ℓ=2

xℓ



Successive Cancellation of Sums

• We now have the sum of interfering codewords and can cancel its
effects:

y1 − β

K
∑

ℓ=2

xℓ = x1 + z1

• Can apply standard MMSE lattice decoding to recover lattice point
t1 and then map back to w1.

• Overall, structured coding permits

β2 ≥
(P +N)2

PN

• Compare to decoding interfering codewords in their entirety:

β2 ≥

(

(1 + P
N )K−1 − 1

)

(N + P )

(K − 1)P

• Originally shown in Sridharan-Jafarian-Vishwanath-Jafar ’08 using
spherical shaping region. Nested lattice scheme is new.



Many-to-One Interference Channel – Approximate Capacity

w1 E1
x1 h11

w2 E2
x2

h12

...
...

wK EK
xK hKK

h1K

h22

z1
y1

z2
y2

zK
yK

D1 ŵ1

D2 ŵ2

DK ŵK

Lattice Codes

...
...

• Deterministic model by Avestimehr-Diggavi-Tse ’11 shows how to
decompose by signal scale.

Theorem (Bresler-Parekh-Tse ’10)

Lattices codes combined with the deterministic model can approach
the capacity region to within (3K + 3)(1 + log(K + 1)) bits per user.



Interference Channel – Symmetric Very Strong Case

w1 E1
x1

w2 E2
x2

...

wK EK
xK

H

z1
y1

z2
y2

zK
yK

D1 ŵ1

D2 ŵ2

...

DK ŵK

• Equal rates R. How big does β have to be to achieve
R = 1

2 log
(

1 + P
N

)

? (i.e. “very strong” case)

• Can use the many-to-one decoder at every receiver to get

β2 ≥
(P +N)2

PN
Does not depend on K.

• What about asymmetric interference channels?



Interference Channel – Symmetric Very Strong Case

w1 E1
x1

w2 E2
x2

...

wK EK
xK

1 β · · · β

β 1 · · · β
...

...
. . .

...

β β · · · 1

z1
y1

z2
y2

zK
yK

D1 ŵ1

D2 ŵ2

...

DK ŵK

• Equal rates R. How big does β have to be to achieve
R = 1

2 log
(

1 + P
N

)

? (i.e. “very strong” case)

• Can use the many-to-one decoder at every receiver to get

β2 ≥
(P +N)2

PN
Does not depend on K.

• What about asymmetric interference channels?



Interference Channel

w1 E1
x1

w2 E2
x2

...

wK EK
xK

H

z1
y1

z2
y2

zK
yK

D1 ŵ1

D2 ŵ2

...

DK ŵK

• Not clear how to map to a deterministic model using lattices.

• “Real” interference alignment scheme of Motahari et al. ’08 uses a
lattice structure to get K/2 DoF (up to a set of measure one)

• Some special cases at finite SNR: Jafarian-Viswanath ’09,’10,

Ordentlich-Erez ’11



Conclusions

• Interference alignment can lead to dramatically higher rates for
interference channels.

• Many unanswered questions: delay, channel state information, etc.

• Many other applications: secrecy (see work of Ulukus and Yener),
distributed storage, etc.
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