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Abstract

Exploiting Interference through Algebraic Structure

by

Bobak Anthony Nazer

Doctor of Philosophy in Engineering—Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Michael C. Gastpar, Chair

In a network, interference between transmitters is usually viewed as highly undesirable
and clever algorithms and protocols have been devised to avoid it. Collectively, these strate-
gies transform the physical layer into a set of reliable bit pipes which can then be used
seamlessly by higher layers in the protocol stack. Unfortunately, interference avoidance re-
sults in sharply decreasing rates as the number of users increases. In this thesis, we develop a
new tool, computation coding, that allows receivers to reliably decode equations of transmit-
ted messages by harnessing the interference structure of the channel. Applied to a wireless
network, this enables relays to decode linear functions of the transmitted messages with coef-
ficients dictated by the fading realization. Relays can then forward these equations towards
the destinations which simply collect enough equations to solve for their desired messages.
Structured codes (such as lattices) ensure that these linear combinations can be decoded
reliably at the relays, often at far higher rates than the messages individually. Through ex-
amples drawn from cooperative communication including cellular uplink, distributed MIMO
and wireless network coding, we demonstrate that this compute-and-forward strategy can
improve end-to-end throughput in a network. As a consequence, we find that structured
codes can play an important role in approaching the capacity of networks. We also show
that our techniques can result in both energy and delay savings for distributed signal pro-
cessing over a sensor network. Finally, by viewing interference as implicit computation, we
provide a new perspective on the interference channel with time-varying fading. We describe
a simple interference alignment scheme that enables each user to achieve at least half its
interference-free capacity at any signal-to-noise ratio.
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Chapter 1

Introduction

Modern communication systems are designed and analyzed through a ubiquitous currency
of information: the bit. This is due to Claude Shannon’s groundbreaking 1948 treatise which
showed that communication of an information source over a noisy channel can be completely
understood in terms of bits [142]. Specifically, it is optimal to convert the noisy channel into
a reliable bit pipe (through a channel code), compress the information source into a repre-
sentation in bits (through a source code), and then connect these two components together.
Thus, from a theoretical perspective, bits can serve as a universal interface between a single
transmitter and a single receiver. In practice, this digital interface has fueled the successful
deployment of far larger systems consisting of many transmitters and many receivers, such
as cellular telephone networks and the Internet.

When designing a communication network, the usual approach is to establish reliable
bit pipes between pairs of users and then route information along the resulting graph of bit
pipes. This is a natural extension of the approach developed by Shannon for a single noisy
channel. However, in a wireless network, a transmission from a single node is heard not only
by the intended receiver, but also by all other nearby nodes; by analogy, any receiver not
only captures the signal from its designated transmitter, but from all other nearby transmit-
ters. The signal observed at each receiver can be modeled as a function of the transmitted
signals corrupted by some random noise process. For instance, a good approximation to a
narrowband wireless channel is that receivers observe a linear combination of the transmit-
ted signals plus Gaussian noise. Given this noisy function, the receiver attempts to extract
its desired signal while treating the other signals as unwanted interference. Thus, as the
number of active users increases, the signal-to-interference-and-noise ratio decreases and the
data rate available to each user plummets. Another alternative is for each user to take a
turn transmitting while the rest stay silent but this again results in decreasing data rates as
more users join the network.

In this thesis, we take an alternative view of interference as implicit computation. Rather
than trying to extract one message from the noisy combination of transmitted signals, the
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Chapter 1. Introduction

receiver attempts to reliably decode a function of the transmitted messages. We will show
that if the desired function is close enough to the function naturally provided by the channel,
then it can be recovered very efficiently. This approach is clearly quite useful in network
scenarios, such as sensor networks, where the objective is not to gather all the data but
just a function thereof. Our primary goal is to describe its applicability to data networks
where each user only wants to reliably recover one or more messages from other users. The
basic architecture is quite simple: users decode equations and pass them along towards the
intended destinations which, given sufficiently many equations, can recover their desired
messages. We will show that this compute-and-forward strategy can improve end-to-end bit
rates in wireless networks. As we will see, one fascinating by-product is that one must pay
close attention to the algebraic structure of codes in network information theory. Below, we
set forth the main themes of this thesis and our primary contributions towards them.

Themes

• Computation over Noisy Channels. Consider a destination that wants to com-
pute a function of data from several sources. If these users are separated by noisy,
interfering links, then the standard approach is to encode the data for reliable commu-
nication using a channel code and send it all to the destination which then computes
the desired function. Even though in some cases the channel may naturally provide
a noisy version of the desired function, it has been tacitly assumed that this could
not help the destination compute in an error-free fashion. Here, we show that noisy
functions can in fact be harnessed for reliable computation, provided the channel codes
are structured appropriately. We will investigate the fundamental limits of computing
a function over a channel, the computation capacity, and, though the problem is very
difficult in general, we find achievable strategies and outer bounds that match in some
special cases.

• Cooperative Communication. The basic idea underlying cooperative strategies is
the following: users in a network help each other achieve their respective objectives.
While it is not surprising that this is superior to a non-interference policy, the real
advantage lies in synergistic gains. In some important network scenarios, these gains
can be extremely large. Examples include:

• Distributed beam-forming : Helpful users in a wireless network listen for a transmis-
sion and then simultaneously transmit their (noisy) observations. The resulting
coherent combining of the original waveform provides a significant boost in the
receiver’s signal-to-noise ratio [55; 114; 97].

• Distributed MIMO (multiple-input and multiple-output): Users in an ad hoc net-
work team up to form distributed multiple-antenna arrays to benefit from the
well-known MIMO antenna gain [36; 130; 118].
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Chapter 1. Introduction

• Cooperative diversity : Two users in a wireless network learn each other’s messages
and then transmit both messages jointly. If one user is in a deep fade, the other
may still be able to relay its message to the receiver [83; 137].

• Network coding : Users collect packets and, rather than simply forwarding them,
mix them according to a linear equation and forward the outcome. This increases
throughput rates by satisfying many demands concurrently [4; 76; 69].

At a relatively small scale, it is becoming increasingly clear how to implement these
cooperative techniques in practice [87; 98]. What is unclear is how to weave these
strategies into the fabric of a larger network. Substantial research advocates using a
cross-layer design that dispenses with the illusion of bit pipes and gives higher layers
in the network stack direct access to the physical medium. However, this would negate
many of the advantages of a modular design [70]. The strategies developed in this
thesis provide a natural solution to this problem by permitting a slight revision of the
physical layer. Instead of forcing the wireless medium to be a set of reliable bit pipes,
we can transform it to a system of reliable linear equations. Through several case
studies, we will show we can reap many of the advantages of cooperative strategies
while retaining a notion of modularity.

• Network Information Theory. The maximum rate of reliable communication across
a point-to-point channel (also referred to as the capacity) was completely character-
ized by Shannon [142]. For the past several decades, researchers have attempted to
generalize this result to find the capacity region of networks with several transmitters
and receivers. There have been several successes including the multiple-access channel
(many-to-one) [3; 86] and the stochastically degraded broadcast channel (one-to-many)
[31]. However, in general, the problem is still wide open. We will argue that this is,
in part, due to a “missing ingredient” in the standard achievability proofs: algebraic
structure.

• Distributed Signal Processing. There is an emerging body of work on how to
implement centralized signal processing algorithms in a decentralized fashion over a
communication network. Many of these studies use a bit pipe abstraction of the physi-
cal layer and then develop quantization schemes to run the algorithm over the network.
Using the tools developed in this thesis, some of the required computations can be car-
ried out directly on the channel. In some cases, this leads to new distributed signal
processing methods that significantly reduce the total energy and delay costs.

Contributions

• Computation Codes. Standard channel codes are designed to keep users’ messages
separated as they pass through a common channel. We propose a new set of coding
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Chapter 1. Introduction

techniques, computation codes, that provide error protection while harnessing the nat-
ural computation performed by the channel. Take the case of M transmitters that
communicate across a noisy adder to a receiver that wants the error-free sum of the
messages. In this example, our computation coding strategy assigns the same linear
code to all transmitters. Since the sum of codewords in a linear code is itself a code-
word, the sum of the messages will be afforded protection against noise as it traverses
the channel. For this example, this leads to an M-fold gain in rate over standard
strategies which require sending all the data to the receiver. We develop computation
codes for discrete alphabet channels in Chapter 3 and additive white Gaussian noise
channels (AWGN) in Chapter 4.

• Compute-and-Forward. As mentioned above, cooperative communication schemes
have users in a network act as relays to send messages from sources to destinations.
Usually, the relay is given the choice of either decoding some part of the message
(decode-and-forward) or working directly with the analog observations of messages
from the wireless channel (compress-and-forward, amplify-and-forward). Our contri-
bution is that using computation codes relays can also choose to decode a linear func-
tion of the messages and send these towards the destination. This provides a digital
framework, compute-and-forward, for implementing cooperative schemes. In Chapters
3 and 4, we provide the foundations of compute-and-forward for discrete and con-
tinuous alphabet channels. One key feature is that channel state information at the
transmitters is not required. We explore applications of compute-and-forward in Chap-
ter 5 including network coding over wireless networks, distributed MIMO, and cellular
uplink.

• The Role of Structured Codes. In order to show the existence of codes that can
approach the capacity region of a given channel, most proofs (starting with Shannon’s)
have relied on the probabilistic method [7]. By evaluating the performance of a random
codebook in expectation, one can easily show that at least one good code must exist.
The key is to choose the right ensemble of codebooks to randomize over. For a point-
to-point channel, it suffices to use a codebook comprised of independent and identically
distributed (i.i.d.) codewords [142]. Given a capacity theorem, it is often of interest to
demonstrate the existence of a capacity-achieving linear code as this is one step towards
a practical implementation of the scheme. However, the conditions for algebraically
structured random codes1 to be capacity-achieving are often more restrictive than
those for unrestricted random codes. For instance, linear codes achieve capacity for
point-to-point channels only when the noise is symmetric [35; 2]. Thus, it is tempting
to believe that i.i.d.. random codes are a strictly more powerful tool for proving

1For brevity, we will often shorten “algebraically structured random codes” to “structured random codes”
or “structured codes.”
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Chapter 1. Introduction

capacity theorems. However, an elegant multiterminal problem developed by Körner
and Marton showed that purely random code constructions are not always sufficient
[77]; structured random codes may be required on the achievability side of the proof.
In their problem, a decoder wishes to reconstruct the parity of two correlated binary
sources seen by separate encoders. Here, we generalize this observation to show that
in a network setting, even if we are only interested in communicating bits from one
end to another, structured random codes (especially linear and lattice codes) can be
more powerful than purely random codes.

• Physical-Layer Network Coding. The seminal paper of Ahlswede et al. demon-
strated that mixing packets at relays or network coding is required to achieve the
multicast capacity of wired networks [4]. For wireless networks, the gain from net-
work coding may be even larger than the gain for wired ones due to the broadcast
and multiple-access phenomena. Specifically, when a user transmits a signal, it is
seen (multiplied by some amplitude and phase) by all nearby users. Thus, users are
automatically given access to many packets. Moreover, due to the superposition of
electromagnetic transmissions and the multiple paths to each receiver, simultaneous
transmissions are observed by receivers as linear combinations. At a high level, one
could say that the wireless medium is performing network coding on the transmitted
signals by combining them in a random, linear fashion. However, if we simply operate
the network in an uncoded fashion to take advantage of this natural network coding,
noise builds up as signals are received and retransmitted and can significantly decrease
the overall rate. The tools developed in this thesis can be viewed as error-correcting
codes for wireless network coding. Specifically, the codes in Chapter 4 show how to
use the complex-valued operations of the wireless channel for computation over a finite
field (as required in most network coding schemes). We derive the multicast capacity of
finite field multiple-access networks in Section 5.3. We also develop an achievable strat-
egy for multicasting over AWGN networks and show that it performs strictly better
than first decoding the packets and then performing network coding.

• Sensor Network Strategies. In a sensor network, our goal is to obtain some function
of the sensor observations (e.g., the average temperature) either at a fusion center or
at individual sensor nodes. Since these nodes communicate across the wireless medium
to make their estimates of the desired function, they can exploit the channel to save
in both energy and delay. For this purpose, we develop source-channel computation
codes that are suited for communicating linear functions of continuous-valued sources
(instead of bits). We consider two specific examples. In Section 6.1, sensors have noisy
observations of a source that we wish to estimate at a fusion center. We show that
if the channel bandwidth is larger than the source bandwidth, computation coding
provides substantial energy savings. In Section 6.3, we consider a scenario where each
sensor must acquire an estimate of the global average. Gossip algorithms are a robust,
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Chapter 1. Introduction

distributed strategy for computing averages (and other functions) in sensor networks.
Here, we develop a gossip algorithm that exploits interference for faster convergence.

• Interference Alignment via Computation. Consider M transmitter-receiver pairs
that communicate over a time-varying wireless channel (often referred to as the M-
user fast fading interference channel). Each receiver observes a superposition of all
transmitted messages from which it must extract its desired message. Standard strate-
gies include orthogonalizing transmissions and treating undesired messages as additive
noise. However, these approaches can only provide a capacity per user that scales like
1
M

. Surprisingly, through a new technique known as interference alignment, each user
can attain 1

2
its interference-free capacity as the signal-to-noise ratio (SNR) tends to

infinity [21]. In Chapter 7, we give a new perspective on interference alignment based
on computation. This results in a simpler scheme that allows each user to achieve at
least 1/2 its interference-free capacity at any SNR.

Outline

We begin with a review of i.i.d. random codes and random linear codes as they apply to
point-to-point channels in Chapter 2. We also include a full discussion of the Körner-Marton
problem [77]. This is the first example of structured codes outperforming i.i.d. random codes
and is the inspiration for the main results of this thesis.

Chapter 3 develops computation codes that are optimal for computing linear functions
over finite field channels. For general functions and channels, we provide an achievable
strategy with examples in Section 3.4. Chapter 4 generalizes computation codes for AWGN
networks. Specifically, we use nested lattice codes to perform finite field computations over
channels that operate on the complex field. These tools form the underpinnings of our
compute-and-forward strategy for networks with interference.

We demonstrate the effectiveness of compute-and-forward for communicating bits across
a network in Chapter 5. We begin with an idealized cellular uplink model in Section 5.1.
Next, we consider a distributed MIMO problem under slow fading in Section 5.2. Then
we delve into network coding by determining the multicast capacity of networks comprised
of finite field multiple-access channels in Section 5.3.3.1. Afterwards, we use our lattice
computation codes to give achievable rates for AWGN multiple-access networks in Section
5.3.3.2. Finally, in Section 5.4, we take a look at the two-way relay channel with fading and
use compute-and-forward to achieve higher outage rates.

Chapter 6 looks at applications of computation coding to distributed signal processing in
wireless networks. We show how to exploit the wireless channel when one central terminal
wants to estimate a source from many noisy observations in Section 6.1. We also show these
gains can be conferred to a completely distributed scenario wherein every sensor must obtain
an estimate of the global average without any centralized processing. Specifically, we develop
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a gossip algorithm that exploits the broadcast and multiple-access properties of the wireless
channel for faster convergence in Section 6.3.

In Chapter 7, we develop a new scheme for interference alignment over time-varying chan-
nels. The main result is that for the fast fading M-user Gaussian interference channel, each
user can achieve at least half its interference-free capacity at any SNR. We also investigate
more general message sets such as when each receiver wants messages from more than one
transmitter. We end with a look at a finite field interference channel for which we can derive
the capacity region and its implication for general interference channels.

Finally, in Chapter 8, we summarize our results and discuss open problems and new
directions for this line of work.

7



Chapter 2

Preliminaries

We now give a brief overview of some key results in information theory and the tools used
to derive them. We begin with the capacity theorems for the point-to-point channel and
the multiple-access channel. These results are usually derived using i.i.d. random codes
but in some special cases random linear codes are also sufficient. Next, we look at lossless
compression for a single source and multiple, distributed sources (the Slepian-Wolf problem).
These problems are solvable both using i.i.d. random codes and random linear codes. Finally,
we discuss the Körner-Marton problem, a distributed compression problem for which the
proof relies on random linear codes. This sets the stage for the results in subsequent chapters
which all rely on some algebraic structure in the coding scheme.

For completeness, we recall the standard definitions of entropy, conditional entropy, and
mutual information from [29, Ch.2]. These quantities have a precise operational mean-
ing in the context of reliable communication systems which we describe below. Note that
throughout this thesis, log specifies the logarithm in base 2. We use uppercase letters
to denote random variables and superscripts to denote vectors of them. For example,
Uk = (U [1], U [2], . . . , U [k]) and Xn

j = (Xj [1], Xj[2], . . . , Xj[n]). We may also denote a vec-
tor with a bold, lowercase version of the random variable, where the length can always be
inferred from context. For example, u = (U [1], U [2], . . . , U [k]). Bold, uppercase letters will
be used for matrices.

Definition 1 (Entropy). Let X ∈ X be a discrete random variable with probability mass
function (pmf) pX(x). Its entropy is

H(X) = −
∑

x∈X
pX(x) log pX(x). (2.1)

Definition 2 (Conditional Entropy). Let X ∈ X and Y ∈ Y be discrete random variables

8



Chapter 2. Preliminaries

with joint pmf pXY (x, y). The conditional entropy of X given Y is

H(X|Y ) = −
∑

x∈X

∑

y∈Y
pXY (x, y) log pX|Y (x|y). (2.2)

Definition 3 (Mutual Information). Let X ∈ X and Y ∈ Y be discrete random variables
with joint pmf pXY (x, y). The mutual information of X and Y is

I(X; Y ) =
∑

x∈X

∑

y∈Y
pXY (x, y) log

pXY (x, y)

pX(x)pY (y)
. (2.3)

We also recall the notion of joint typicality.

Definition 4 (Joint Typicality). Given a joint pmf pXY (x, y), the set of jointly typical

sequences A
(n)
ǫ is the set of all pairs (xn, yn) whose empirical entropies are close to the true

entropies:

A(n)
ǫ = {(xn, yn) : (2.4)

∣

∣

∣

∣

−1

n
log p(xn) − H(X)

∣

∣

∣

∣

< ǫ (2.5)

∣

∣

∣

∣

−1

n
log p(yn) − H(Y )

∣

∣

∣

∣

< ǫ (2.6)

∣

∣

∣

∣

−1

n
log p(xn, yn) − H(X, Y )

∣

∣

∣

∣

< ǫ

}

(2.7)

where p(xn, yn) =
∏n

i=1 pXY (xi, yi).

Lemma 1. Assume that (Xn, Y n) is generated according to p(xn, yn) =
∏n

i=1 pXY (xi, yi) for

some pXY (x, y). The set A
(n)
ǫ satisfies the following three properties:

1. Pr((Xn, Y n) ∈ A
(n)
ǫ ) → 1 as n → ∞.

2. |A(n)
ǫ | ≤ 2n(H(X,Y )+ǫ)

3. If two independent sequences X̃n and Ỹ n have the same marginal distributions as Xn

and Y n, then Pr((X̃n, Ỹ n) ∈ A
(n)
ǫ ) ≤ 2−n(I(X;Y )−3ǫ).

See [29, Theorem 7.6.1] for a proof.
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Chapter 2. Preliminaries

2.1 Point-to-Point Channels

Consider a transmitter and a receiver that wish to communicate over a noisy channel (see
Figure 2.1). The goal is to send messages reliably at the highest possible rate. This is the
channel’s capacity and was defined and completely characterized by Shannon [142].

w E Xn

PY |X
Y n

D ŵ

Figure 2.1: Reliable communication across a noisy channel.

More formally, each channel has a finite input alphabet X and finite output alphabet
Y . The probability that an input symbol x ∈ X results in an output symbol y ∈ Y is
specified by pY |X(y|x). Assume that we are given n ∈ Z+ channel uses and that the channel
is memoryless so that the output at time i only depends on the input from time i:

p(yn|xn) =
n
∏

i=1

pY |X(yi|xi) (2.8)

The transmitter has a message chosen randomly and uniformly from the set
{1, 2, . . . , 2nR} for some rate R > 0. This message is mapped onto a length n codeword
through a fixed encoding function E : {1, 2, . . . , 2nR} → X n. The collection of all possible
codewords is called the codebook

C =
{

Xn : Xn = E(w) for some w ∈ {1, 2, . . . , 2nR}
}

. (2.9)

Once a message is encoded into a codeword Xn, the symbols are sent over the channel. The
resulting sequence of channel outputs Y n is then fed into a decoding function D : Yn →
{1, 2, . . . , 2nR}.

The average probability of error Pe of a codebook C is

Pe = 2−nR

2nR
∑

w=1

Pr (D(Y n) 6= w|Xn = E(w)) (2.10)

We say that a rate R is achievable if for all ǫ > 0 and n large enough, there exists a
deterministic encoding function E with rate R and associated deterministic decoding function
D with probability of error no greater than ǫ. Thus, as n tends to infinity, the probability
of error can be driven to zero. Finally, we define the capacity to be the supremum of all

10
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achievable rates.

Theorem 1 (Shannon). The capacity of a discrete memoryless channel is given by

C = max
pX(x)

I(X; Y ). (2.11)

Proof. To prove this result, we need to show the existence of a sequence of good codebooks
whose rates approach C. This is usually called an achievability proof. One popular proof
technique is known as an i.i.d. random coding argument. We now list some of the main
steps and refer the interested reader to [29, Theorem 7.7.1] for more details. Choose some
ǫ > 0 and let pX(x) be the probability mass function that maximizes (2.11). Each of the 2nR

codewords is generated i.i.d. according to the product distribution

p(xn) =

n
∏

i=1

pX(xi). (2.12)

Now assume that a message w is mapped into its codeword Xn(w) and sent over the channel,
resulting in channel output Y n. If given Y n, there is exactly one Xn in the codebook that
is jointly typical, then the decoder outputs the message associated with that codeword.
Otherwise, if there is no jointly typical codeword or more than one, it declares an error.
Thus, there is an error if (Xn(w), Y n) is not jointly typical, which by Property 1 of Lemma
1 can be made smaller than ǫ

2
for n large enough. There is also an error if another message’s

codeword Xn(w̃) for w̃ 6= w is jointly typical with Y n. Since the codewords are i.i.d. then
we can apply Property 3 from Lemma 1 to get:

Pr
(

(Xn(w̃), Y n) ∈ A(n)
ǫ

)

≤ 2−n(I(X;Y )−3ǫ) (2.13)

Using the union bound, we bound the average probability of error:

Pe ≤ Pr
(

(Xn(w), Y n) /∈ A(n)
ǫ

)

+
∑

w̃ 6=w

Pr
(

(Xn(w̃), Y n) ∈ A(n)
ǫ

)

(2.14)

<
ǫ

2
+
∑

w̃ 6=w

2−n(I(X;Y )−3ǫ) (2.15)

<
ǫ

2
+ 2−n(I(X;Y )−R−3ǫ) (2.16)

Thus, for n large enough, we can drive the probability of error down to ǫ for any R <
I(X; Y ) − 3ǫ. Note that this is the probability of error averaged over the randomness in
the codebook and we require fixed encoding and decoding functions in our definition of an
achievable rate. However, since the average probability of error is at most ǫ then at least
one fixed codebook must have probability of error at most ǫ (or else the average would

11
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be larger). By taking an appropriate sequence of codebooks, we approach the capacity C
arbitrarily closely.

Using Fano’s inequality, we can also show the converse: no rate greater than C is possible
with a vanishing probability of error ( see [29, Theorem 7.7.1]).

We now show that codes with linear structure can, in some special cases, approach the
capacity of a point-to-point channel. Let F denote a finite field.

Definition 5. Assume each codeword x is a length n vector in a finite field, x ∈ Fn. We
say a codebook is C = {x1,x2, . . . ,x2nR} is linear if the sum of any two codewords is itself
a codeword, xa + xb ∈ C ∀xa,xb ∈ C.

Theorem 2 (Elias). For any discrete memoryless point-to-point channel, any rate R ≤
I(X; Y ) for X drawn uniformly from X is achievable using linear codes.

This result follows naturally by combining the lemma below (generalized from the binary
case in [49, §6.2]) and the union bound argument used for the proof of Theorem 1.

Lemma 2. Let G ∈ F
k×n be a random matrix with i.i.d. uniform entries and v a vector

drawn independently and uniformly over Fn. Then, for any w1 ∈ Fk, w1G⊕ v is uniformly
distributed in Fn and, for any w2 6= w1 ∈ Fk, w1G ⊕ v and w2G ⊕ v are independent.

Proof. Given w1 and G there is exactly one v that will map w1 to each possible x1. Thus,
the probability of mapping w1 to some x1 is P (x1) = |F|−n.

Since w2 6= w1, they must differ in at least one position, say the kth. Then, for any
r = x1 + x2 ∈ Fn and any G with all rows specified except gk, there is exactly one choice
of gk such that w1G + w2G = r. For this G, there is only one v that maps w1G + v to a
given x1. From these facts, we can show that the probability of mapping (w1,w2) to a pair
(x1,x2) is P (x1,x2) = |F|−n(k+1)|F|n(k−1) = |F|−2n. Thus, input sequences are mapped to
output sequences in a pairwise independent fashion.

Note that in the probability of error analysis in the proof of Theorem 1, we employ a
union bound in (2.14) that only requires pairwise independence between codewords. Thus,
we can use a random matrix with a random shift to generate our codewords and achieve
any rate available under a uniform input distribution. Note that if we do not use the shift,
the resulting code has the same performance since this just amounts to a reindexing of the
messages. From here, we can show that there exist linear codes that can approach any rate
up to I(X; Y ) for X drawn from a uniform distribution. Recall the following definition from
[49, p.94].

Definition 6. We say that pY |X is symmetric if the output symbols in Y can be placed into
subsets such that for each subset the probability transition matrix satisfies the following two
conditions:

12
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1. Each row is a permutation of every other row.

2. Each column is a permutation of every other column.

It is well-known that if pY |X is symmetric then the uniform input distribution is capacity-
achieving. Otherwise, a result due to Ahlswede shows that linear codes cannot achieve
capacity for asymmetric channels [2]. Thus, for point-to-point channels, linear codes can,
in some cases, approach the capacity but, in general, they cannot. This suggests that i.i.d.
random codes are a more versatile tool for proving capacity theorems. In fact, one can use
generalizations of the i.i.d. random coding argument to derive the capacity regions of the
multiple-access channel [3; 86], stochastically degraded broadcast channel [31], and physically
degraded relay channel [32], just to name a few. In all of these situations, linear codes only
reach capacity if the noise satisfies certain symmetry conditions.

2.2 Slepian-Wolf Problem

We now review the Slepian-Wolf distributed compression problem.

Sk
1 E1

R1

Sk
2 E2

R2

Sk
L EL

RL

... ...
D

Ŝk
1

Ŝk
2
...

Ŝk
L

Figure 2.2: Slepian-Wolf Problem

There are L encoders, each of which observes a length k source vector Sk
ℓ ∈ Sk

ℓ (see
Figure 2.2). The L-tuple of source vectors (Sk

1 , Sk
2 , . . . , Sk

L) is generated i.i.d. accord-
ing to pS1S2···SL

(s1, s2, . . . , sL). Each encoder maps its observation into nRℓ bits: Eℓ :
Sk

ℓ → {1, 2, . . . , 2nRℓ}. It then sends these bits to the decoder which makes an estimate
(Ŝk

1 , Ŝk
2 , . . . , Ŝk

L) using its decoding function:

D : {1, 2, . . . , 2nR1} × · · · × {1, 2, . . . , 2nRL} → Sk
1 × · · · × Sk

L. (2.17)

The probability of error Pe is just the probability that the estimate is not equal to the original
L-tuple of source vectors. We say that the rates (R1, R2, . . . , RL) are achievable if for all
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ǫ > 0 and k large enough, if there exist deterministic encoding functions Eℓ and decoding
function D with probability of error no greater than ǫ. The goal is to compress the sources
using the lowest possible achievable rates.

Let SI denote the subset of (S1, S2, . . . , SL) with indices in the set I ⊆ {1, 2, . . . , L}.
The following result of Slepian and Wolf shows that even though the sources are encoded
separated, there is no difference in sum rate from a centralized solution [145].

Theorem 3 (Slepian-Wolf). A rate tuple is achievable if and only if the following constraints
are satisfied:

∑

ℓ∈I
Rℓ > H(SI|SIC) ∀I ⊆ {1, 2, . . . , L} (2.18)

Proof. One elegant proof of this theorem is the random binning argument (first used by
Cover in [30]). Each encoder ℓ randomly and independently assigns each possible source
sequence sk

ℓ to an index wℓ ∈ {1, 2, . . . , 2nRℓ} according to a uniform distribution. When it
observes Sk

ℓ , it simply transmits the assigned index to the decoder (which is aware of the
encoders’ codebooks). Given all these indices, the decoder has a list of possible L-tuples
of source vectors. It now determines which of these L-tuples is jointly typical. If there
is only one, it outputs this as its estimate; otherwise, it declares an error. Thus, there is
an error if (Sk

1 , Sk
2 , . . . , Sk

L) is not jointly typical or there is more than one jointly typical
sequence assigned indices w1, . . . , wL. First, recall that by Lemma 1, for k large enough,
(Sk

1 , Sk
2 , . . . , Sk

L) is jointly typical with probability greater than 1− ǫ
2
. Now, consider a jointly

typical L-tuple (S̃k
1 , S̃k

2 , . . . , S̃k
L) with S̃k

ℓ 6= Sk
ℓ for ℓ ∈ I and S̃k

ℓ = Sk
ℓ for ℓ ∈ IC . From [29,

Theorem 15.2.2], the number of such sequences is upper bounded by 2n(H(SI |SIC )+2ǫ). The
probability that sequence is assigned the same indices is just 2−n

P

ℓ∈I
Rℓ . By the union

bound, we see that the probability of error can be driven to zero for k large enough so
long as the rate constraints in (2.18) are satisfied. Since this random assignment has a low
average probability of error, there must exist at least one good fixed assignment with low
probability of error. The converse argument follows easily and we refer the interested reader
to [29, Theorem 15.4.1] for more details.

We note that the Slepian-Wolf problem can also be solved optimally using linear codes
as shown by Csiszar [62].

Theorem 4 (Csiszar). There exist linear codes that can approach the rate region of the
Slepian-Wolf problem.

All we need for the random binning argument is that sequences are assigned to indices
in a uniform fashion and that these mappings are pairwise independent. From Lemma 2, a
matrix whose entries are drawn i.i.d. uniform over a finite field has exactly these properties.
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2.3 Körner-Marton Problem

We now turn to a distributed compression problem for which a random linear coding argu-
ment yields the optimal rate region yet a random binning argument does not. Although to
date there is no proof that linearity is strictly necessary, this example shows that algebraically
structured codes are useful for proving capacity theorems.

There are two encoders which each observe a source vector Sk
ℓ ∈ {0, 1}k. The sources are

generated i.i.d. from the following joint pmf:

Pr(S1 = 0, S2 = 0) = Pr(S1 = 1, S2 = 1) =
1 − p

2

Pr(S1 = 0, S2 = 1) = Pr(S1 = 1, S2 = 0) =
p

2
(2.19)

A simple calculation will show that S1 and S2 have uniform marginal distributions. The goal
is to reconstruct the mod-2 sum, U = S1 ⊕ S2, at the decoder with vanishing probability of
error (see Figure 2.3).

Sk
1 E1

R1

Sk
2 E2

R2
D Ûk

Figure 2.3: Körner-Marton Problem

Each encoder maps its observation Sk
ℓ into nRℓ bits:

Eℓ : {0, 1}k → {1, 2, . . . , 2nRℓ} ℓ = 1, 2 (2.20)

(2.21)

and the decoder makes an estimate Ûk of the mod-2 sum using its decoding function:

D : {1, 2, . . . , 2nR1} × {1, 2, . . . , 2nR1} → {0, 1}k (2.22)

The probability of error is given by Pe = Pr(Ûk 6= Uk). We say that the rate pair (R1, R2) is
acheivable if for all ǫ > 0 and k large enough, if there exist deterministic encoding functions
Eℓ and decoding function D with probability of error no greater than ǫ. Let hB(p) be the
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binary entropy function:

hB(p) = −p log p − (1 − p) log (1 − p) (2.23)

and note that H(U) = hB(p).

Theorem 5 (Körner-Marton). The rate region for distributed compression of U = S1 ⊕ S2

is given by the following constraints:

R1 > hB(p) (2.24)

R2 > hB(p). (2.25)

Proof. (Achievability.) Choose a linear source code, G ∈ {0, 1}n×nR with rate R > hB(p)
that is sufficient for losslessly compressing U . Have each encoder apply this code to its
observed source vectors s1 and s2 to get w1 = s1G and w2 = s2G. These codewords are
sent to the decoder which computes w1 ⊕ w2 = s1G ⊕ s2G = uG. Since G was chosen for
recovering U , decoding is successful.

(Converse.) Consider the relaxation where the decoder has full knowledge of S2 and
we would like to jointly encode S1 and U to losslessly reconstruct U at the decoder. Note
that any scheme that accomplishes this also gives the decoder a lossless reconstruction of S1.
Thus, it can be shown that for joint encoding, R ≥ H(S1, U |S2) = H(U |S2) = H(U) = hB(p)
is required for a vanishing probability of error. This implies that for separate encoding of
S1 and U , R1 + RU ≥ hB(p). Similarly, we can get that R2 + RU ≥ hB(p). Setting RU = 0
gives the desired result.

R2

R1

S-W

K-M

hB(p)

hB(p)

1 + hB(p)

Figure 2.4: Körner-Marton and Slepian-Wolf rate regions for the distributed compression of the
parity of two dependent sources.
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For random binning with rates satisfying:

R1 > hB(p) (2.26)

R2 > hB(p) (2.27)

R1 + R2 > 1 + hB(p) (2.28)

it is easy to show that the decoder can reconstruct the source vectors Sk
1 and Sk

2 and Uk

follows by taking the mod-2 sum (see Figure 2.4 for a comparison of the Körner-Marton
and Slepian-Wolf rate regions for this problem). We now argue that with random binning
the mod-2 sum cannot be recovered at smaller rates. Suppose that R1 + R2 < 1 + hB(p).
We can correctly decode the sum with high probability if all typical pairs assigned to a
particular pair bin indices have the same mod-2 sum. This ensures that the decoder will not
get confused between several possible sums. There are approximately 2n(1+hB(p)) typical pairs
but there are at most 2n pairs with the same mod-2 sum (even including atypical sequences).
Thus, two typical pairs assigned to the same bin indices only have the same mod-2 sum with
vanishing probability. As R1 + R2 < 1 + hB(p), we will definitely have many typical pairs
assigned to the same bins and these will almost certainly have different mod-2 sums. As a
result, we cannot recover the mod-2 sum correctly at the decoder.

The Körner-Marton problem demonstrates that there exist problems for which purely
random coding arguments are insufficient. However, the gains depend on the source depen-
dencies; for independent sources, there is no advantage to linear codes. A similar phenomenon
has been discovered for correlated Gaussian sources by Krithivasan and Pradhan [80]. There
if the sources are positively correlated and we only demand the difference at the decoder then
lattice coding can be helpful. In the next two chapters, we show that for computation over
noisy channels, structured codes offer significant benefits even if the sources are independent.
Then, in Chapter 5, we show that linear and lattice codes can help prove new achievability
results even when we are only interested in sending independent messages across a network.
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Chapter 3

Compute-and-Forward: Discrete

Alphabets

Computation and communication are often viewed as distinct problems. A communications
engineer, tasked to design a multi-user system for performing computations while facing
communication constraints, would almost certainly employ a version of the “separation prin-
ciple.” The system would employ a (distributed) source code to compress the sources into
bits and a channel code to losslessly convey these bits over the noisy channel. The perceived
reason for this design choice is two-fold. First, the abstraction of the sources and channel to
bits lends itself to a universal, modular design. Second, it seems that the only gain from a
joint source-channel design stems from exploiting the correlations between the sources as in
[28].

In this chapter, we study the problem of computing functions over multiple-access chan-
nels (MACs) and show that in many cases of interest, a joint design can exploit a match
between the structure of the channel and the function to be computed. This structural gain
does not hinge on the correlations between the sources and, with a perfect matching, increases
the computation rate proportionally to the number of users. Furthermore, our underlying
schemes are modular and depend primarily on coding techniques originally developed for
their lower complexity.

Instead of fighting the interference caused by other users, our codes exploit channel colli-
sions to compute functions efficiently. This can be thought of as a form of passive cooperation
between transmitting terminals. More precisely, in the standard literature, cooperation is
often considered in terms of the correlations (and more generally, dependence) it creates
between transmitted signals, thus permitting it to outperform the communication perfor-
mance attainable without cooperation. It should be clear that correlated signals only result
in improved performance if the correlation between the signals is appropriately matched to
the structure of the multiple-access channel. In our considerations, the goal is no longer to
communicate messages, but a function thereof. By using appropriate codes, the transmitters
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cooperate to realize an enhanced communication performance. Again, it should be clear that
this only results in a gain if the desired function is appropriately matched to the structure
of the multiple-access channel. In this chapter, we provide two strategies for computing
functions over multiple-access channels.1

Summary of Results

In this chapter, we focus on sources and channels that take values over finite alphabets. Our
constructions are based on linear codes over finite fields and, as a result, our schemes work
best when the desired function is linear. For non-linear functions, we find a one-to-one map
onto a linear function which is transmitted over the channel and mapped back to the desired
non-linear function.

First, we will bound the performance of separation-based schemes in Section 3.2. For
many functions, if the sources are independent, then the best a separation-based scheme can
do is have each encoder send its source in its entirety.

Next, in Section 3.3, we propose a strategy that we call linear computation coding. Essen-
tially, each encoder employs the same linear code. If the channel is a noisy linear function
of its inputs, then the receiver will observe the codeword for the desired linear function
corrupted by noise and this scheme is optimal. More generally, so long as the mutual infor-
mation between a linear function of the channel inputs and the output is non-zero, we can
compute at a non-zero rate.

We take a different approach in Section 3.4 which is useful when the channel is not a
linear combination of its inputs. First, the encoders transmit their sources in an uncoded
fashion and the receiver collects this as side information. Then, using a separation-based
scheme, the encoders send a few extra bits to the decoder to help it decode the desired
function. This scheme is called systematic computation coding.

Finally, in Section 3.A we give upper bounds on the computation capacity.

Related Work

Shannon showed in his landmark paper that separate source and channel code design is
asymptotically optimal in a point-to-point setting [142, Theorem 21]. This insight has fueled
a design philosophy based completely on bits. Although in many cases of interest, such an
approach is optimal, it is well-known that in certain scenarios separation fails. For instance,
Cover, El Gamal, and Salehi demonstrated that separation is suboptimal for transmitting
correlated sources over a MAC in [28]. Their joint source-channel scheme uses the source
correlations to create channel input probability distributions unavailable to a separation-
based scheme. Exploiting the source correlations in this fashion is sometimes known as

1The material in this chapter is drawn from [104].
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collaborative gain. Ahlswede and Han continued work on the problem of sending correlated
sources over a MAC in [5]. In particular, they considered a variant of the problem in which
only one of the sources had to be recovered.

In [54; 52], an uncoded joint source-channel scheme is shown to be optimal (and signif-
icantly better than separation) for estimating a remote source from multiple observations.
Although at a first glance, the scheme seems to benefit only from the correlations between
the observations, it also exploits an ideal structural match between the channel, a Gaussian
MAC, and the sufficient statistic, the sum of the observations. This uncoded transmission
framework has been extended to more general sensor network estimation problems in [93;
12].

In [56], function properties are used to reduce the amount of required communication in
a large sensor network. For many functions, the sensors can process incoming data before
sending it along to the fusion center, thus reducing the communications overhead. Related
work has developed upper and lower bounds on the network computation problem wherein
multiple source nodes communicate over a graph of bit pipes to a single receiver that wants
a function of the sources [9].

Reliable distributed computation has been studied from the source coding perspective
as well. The general problem is still open and seems prohibitively difficult with current
techniques. Körner and Marton found the rate region for distributed compression of the
parity of two correlated uniform binary sources in [77]. Their proof relies on random linear
codes and their gains come entirely from the correlation between the sources. The seeming
necessity of linear codes for this simple problem implies that random coding techniques are
inadequate for the general problem. Doshi et al. showed that in special cases where a “zig-
zag” condition is satisfied, graph coloring combined with Slepian-Wolf coding is sufficient
[37].

In [117], Orlitsky and Roche determined the required rate for sending X to a decoder with
side information Y that must reliably compute f(X, Y ). This is essentially a generalization
of the Körner-Marton parity problem to any function except that the decoder gets Y for
free. The basic result is that in most cases of interest, we must send X in its entirety to the
decoder; further compression is only possible if for some x and x′, f(x, Y ) = f(x′, Y ) with
probability 1. In many cases, the gains enabled by requiring only a function of the sources
at the decoder versus the sources themselves are marginal.

Earlier work by Yamamato established the rate-distortion function for sending X to a
decoder that must reconstruct f(X, Y ) up to a given fidelity given Y as side-information
[159]. In [45], the authors extend the rate-distortion function to the case where only a noisy
version of X is available at the encoder.

Ma and Ishwar solved an interactive distributed source coding problem related to the side
information problems above [89]. One encoder observes X and another observes Y . These
encoders exchange messages in a multi-round protocol in an attempt to compute f(X, Y ) to
a given fidelity. Further results appear in [90].
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Krithivasan and Pradhan have developed a framework for distributed source coding using
nested group codes [82]. In their considerations, the decoder is interested in a general function
of the sources and they are able to include many known source coding results as special cases.

3.1 Problem Statement

We begin with several transmitters that wish to communicate a function to a single receiver
across a multiple-access channel (see Figure 3.1). The goal is to reliably reconstruct the
function at the receiver at the highest possible rate.

Sk
1 E1

Xn
1

Sk
2 E2

Xn
2

Sk
L EL

Xn
L

......

PY |X1X2...XL

Y n

D Ûk

U [i] = f(S1[i], S2[i], . . . , SL[i])

Figure 3.1: Reliable Computation over a MAC. The decoder only reconstructs a function of the
sources.

Remark 1. We assume that time is discrete. This can be justified by the well-known fact
that any continuous-time system with finite bandwidth can be reduced to a discrete-time
system using the sampling theorem [113; 78; 143]. In nearly any practical setting, finite
bandwidth is assured.

Definition 7 (Sources). Let (Sk
1 , Sk

2 , . . . , Sk
L) be an L-tuple of length k source vectors drawn

i.i.d. according to pS1S2···SL
(s1, s2, . . . , sL). Each source Sℓ takes values in the finite alphabet

Sℓ.

Definition 8 (Desired Function). Let U be a finite alphabet and f the desired function of
the sources:

f : S1 × S2 × · · · SL → U . (3.1)

In some cases, we may want the receiver to recover several functions f1, . . . , fN of the sources
in alphabets U1, . . . ,UN , respectively.
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Definition 9 (MAC). The multiple-access channel is specified by a conditional pmf

pY |X1X2···XL
(y|x1, x2, . . . , xL) (3.2)

with channel inputs xℓ ∈ Xℓ and channel output y ∈ Y .

Definition 10 (Computation Code). A (k, n, ǫ) computation code is specified by M encoders:

Eℓ : Sk
ℓ → X n

ℓ , (3.3)

for ℓ = 1, 2, . . . , L, as well as a decoder :

D : Yn → Uk, (3.4)

such that:

Xn
ℓ = Eℓ(S

k
ℓ )

Ûk = D(Y n)

Pr(Ûk 6= Uk) ≤ ǫ. (3.5)

Definition 11 (Computation Rate). We say a computation rate, RCOMP, is achievable if
∀ǫ ∈ (0, 1) and n large enough there exists a (k, n, ǫ) code satisfying:

k

n
≥ RCOMP. (3.6)

Definition 12 (Computation Capacity). The computation capacity, CCOMP, is the supre-
mum of all achievable computation rates.

3.2 Separation-Based Computation

If we want to reliably send a single source over a noisy channel, then it is known that
compressing the source into bits and communicating these reliably over the channel is optimal
[142]. This result, due to Shannon, is known as the separation theorem. The separation-
based approach generalizes naturally to a network setting. Essentially, each transmitter
compresses its source into bits and a channel code communicates these bits to the receivers
which then attempt to recover the sources (or functions thereof). Although in many special
cases, such an approach is optimal, it is well-known that in certain networks separation fails.
For instance, Cover, El Gamal, and Salehi demonstrated that separation is suboptimal for
transmitting dependent sources over a MAC in [28]. Their joint source-channel scheme uses
the source dependencies to create channel input probability distributions unavailable to a
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Figure 3.2: Separation-based computation over a multiple-access channel.

separation-based scheme. Our results show that the separation-based approach is suboptimal
for sending functions over a channel, even if the sources are independent.

In this section, we formally define what we mean by a separation-based scheme for com-
putation over a MAC (see Figure 3.2). This will give us a baseline against which we can
evaluate the performance of our computation codes.

Definition 13. The distributed compression rate region, Rf , is the set of all rate vectors
(R1, R2, . . . , RL) such that for all ǫ > 0 and k large enough there are L source encoders and
a source decoder of the form:

ES
ℓ : Sk

ℓ → {0, 1}kRℓ (3.7)

DS : {0, 1}kR1 × · · · × {0, 1}kRL → Uk, (3.8)

for ℓ = 1, 2, . . . , L such that the desired function U = f(S1, S2, . . . , SL) can be recovered
with probability of error at most ǫ:

Ûk = DS(ES
1 (Sk

1 ), . . . , ES
L(Sk

L))

Pr(Ûk 6= Uk) < ǫ. (3.9)

Unfortunately, as of the writing of this thesis, the distributed compression problem re-
mains unsolved. Körner and Marton solved the special case where there are two correlated,
uniform, binary sources and we want to recover their parity [77] (see Section 2.3 for more
details). Recall also that the rate region for complete recovery of the sources was character-
ized by Slepian and Wolf in [145] (see Section 2.2). Orlitsky and Roche solved the special
case where all but one of the sources are given to the decoder as side information [117].
The required rate is given by a graph entropy characterization and is reviewed in detail in
Section 3.A.1. We will use their result to establish the distributed compression rate region
for a restricted class of functions with independent sources as inputs. Essentially, if no input
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symbols can be merged without incurring errors and the sources are independent, then the
sources must be sent in their entirety.

Lemma 3. Assume that the sources are independent and the desired function, f , is chosen
such that for each pair of possible source symbols at an encoder, sℓ, s

∗
ℓ ∈ Sℓ, there is a choice

of s1, s2, . . . , sℓ−1, sℓ+1, . . . , sL such that:

Pr(f(s1, . . . , sℓ, . . . , sL) 6= f(s1, . . . , s
∗
ℓ , . . . , sL)) > 0.

Then, the rate required for each decoder for distributed compression of f is Rℓ ≥ H(Sℓ).

See Appendix 3.A.1 for a proof.

Example 1. Let S1, S2, . . . , SL be independent sources drawn uniformly from the same
alphabet. Then, real addition, U1 =

∑L
ℓ=1 Sℓ, and multiplication, U2 = S1 · S2 · . . . · SL,

satisfy the conditions of Lemma 3.

After the sources are compressed into bits, then these bits must be reliably communicated
over the multiple-access channel. Ahlswede and Liao concurrently determined the rate region
for the MAC [3; 86].

Definition 14. Let each encoder’s message wℓ be independently and uniformly drawn from
{0, 1}nRℓ. The multiple-access rate region, RMAC, is the set of all rate vectors (R1, R2, . . . , RL)
such that for all ǫ > 0 and n large enough there are L channel encoders and a channel decoder
of the form:

EC
ℓ : {0, 1}nRℓ → X n

ℓ (3.10)

DC : Yn → {0, 1}nR1 × · · · × {0, 1}nRL, (3.11)

for ℓ = 1, 2, . . . , L such that all bits can be recovered with probability of error at most ǫ:

(ŵ1, . . . , ŵL) = DC(Y n)

Pr ((ŵ1, . . . , ŵL) 6= (w1, . . . , wL)) < ǫ. (3.12)

Theorem 6 (Ahlswede-Liao). The multiple-access rate region, RMAC, is the closure of the
convex hull of the set of all rate vectors, (R1, R2, . . . , RL), satisfying:

∑

ℓ∈I
Rℓ ≤ I(XI ; Y |XIC) ∀I ⊆ {1, 2, . . . , L}, (3.13)

for some product distribution p(x1, x2, . . . , xL) =
∏L

ℓ=1 p(xℓ) where XI = {Xℓ : ℓ ∈ I}.
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See [29, Theorem 15.3.1] for a proof.
It is often easier to deal with the MAC rate region in terms of its maximum sum rate.

Definition 15. The maximum sum rate of a MAC is:

CMAC = max
(R1,R2,...,RL)∈RMAC

L
∑

ℓ=1

Rℓ. (3.14)

Definition 16. We say that the maximum sum rate of a MAC is symmetric if R∗
1 = R∗

2 =
· · · = R∗

L where

(R∗
1, R

∗
2, . . . , R

∗
L) ∈ arg max

(R1,R2,...,RL)∈RMAC

L
∑

ℓ=1

Rℓ. (3.15)

We can now formally define what we mean by separation-based computation.

Definition 17. A computation rate RCOMP is achievable with separation if:

A =

{(

R1

RCOMP
, . . . ,

RL

RCOMP

)

: (R1, . . . , RL) ∈ RMAC

}

Rf ∩ A 6= ∅. (3.16)

As shown in [28], when we want to send dependent sources over a MAC, separation is
not optimal. Clearly, if we allow our sources to be dependent but only require a function of
these sources at the decoder, a separation-based scheme may not be optimal for the same
reasons. However, even if we assume that the sources are independent, we still do not get a
separation theorem as shown in the following example, taken from Problem 1.1 in [51].

Example 2. Let S1 and S2 be independent B(1
2
) sources. Each source is seen by a separate

encoder with access to one terminal of a MAC. The MAC input alphabets are X1 = X2 =
{0, 1} and the output is Y = X1 ⊕ X2. The maximum sum rate of this MAC is clearly
CMAC = 1. At the decoder, we would like to losslessly compute U = S1 ⊕ S2. Using Lemma
3 and the data processing inequality, it can be shown that the best separation-based scheme
achieves a computation rate of RCOMP = 1

2
. The separation-based scheme just amounts

to using two channel uses, one to transmit each source. However, if we set Xℓ = Sℓ then
the channel computes the function directly and we can achieve the computation capacity
CCOMP = 1 (see Lemma 6 for the converse).

As the example demonstrates, sometimes we can compute the desired function using the
channel. In these cases, joint source-channel schemes can achieve a much higher computation
rate than separation-based schemes, sometimes a factor of L higher. Of course, the above
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example is somewhat contrived, as the channel performs exactly the operation we desire and
there is no noise. Our results show that using the channel’s natural operation to compute a
function can give us boosts over separation-based schemes, even when the channel is noisy.

3.3 Linear Computation Codes

In this section, we develop computation coding strategies that are well-suited for communi-
cating linear functions. Each transmitter maps its observed source vector onto a codeword
drawn from the same linear codebook. The receiver then attempts to directly decode the
desired linear function from the channel output. In the special case where the channel itself
is a noisy linear function, this attains the computation capacity.

Let F denote a finite field and let ⊕ and
⊕

denote addition and summation over the
field, respectively. (We reserve + and

∑

for addition and summation over the complex field
C.)

Definition 18 (Linear Functions). Assume the sources take values on a finite field, Sℓ = F.
We say the desired function U is linear with respect to F if it can be written as:

U [i] =

L
⊕

ℓ=1

αℓSℓ[i] (3.17)

for some αℓ ∈ F.

Theorem 7. Assume that Sℓ = F, |Xℓ| ≤ |F|, and the desired function U is linear with
respect to F. Choose any one-to-one (injective) functions from the finite field onto the input
alphabets, cℓ : F → Xℓ. The following computation rate is achievable:

RCOMP =
I
(

⊕L
ℓ=1 c−1

ℓ (Xℓ); Y
)

H(U)
(3.18)

for Xℓ drawn independently and uniformly over the range of cℓ.

Proof. Let sℓ = Sk
ℓ , u = Uk

ℓ , and choose ǫ > 0. Using Theorem 4, choose a matrix B of

size k ×m over F for compressing U . If m = k
(

H(U)+ǫ
log2 |F|

)

, then with probability greater than

1 − ǫ, u can be recovered from wU = uB. Each encoder applies B to its source to get its
message wℓ = αℓsℓB.

Now, randomly generate a channel coding matrix G of size m × n with each element
chosen independently and uniformly over F. Each encoder multiplies its message by G to
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get x̃ℓ = wℓG and then applies cℓ symbolwise to get the sequence of channel inputs xℓ:

xℓ = cℓ(x̃ℓ) =
[

cℓ(X̃ℓ[1]) cℓ(X̃ℓ[2]) · · · cℓ(X̃ℓ[n])
]

(3.19)

Note that for all possible choices of source vectors s∗1, . . . , s
∗
L ∈ F

k such that u =
⊕L

ℓ=1 αℓs
∗
ℓ , the corresponding codewords x∗

ℓ = cℓ(αℓs
∗
ℓBG) satisfy:

L
⊕

ℓ=1

c−1
ℓ (x∗

ℓ) =

L
⊕

ℓ=1

c−1
ℓ (xℓ) =

L
⊕

ℓ=1

αℓsℓBG =

L
⊕

ℓ=1

wUG. (3.20)

Thus, we can treat the problem as if wU was directly encoded into a “channel input”
xU =

⊕L
ℓ=1 c−1

ℓ (xℓ) and observed at the receiver as y. We can solve for pY |
LL

ℓ=1
c−1

ℓ
(Xℓ)

from pY |X1···XL
and then proceed as we would in a point-to-point channel coding problem.

Note that there are The receiver looks for a sequence x̂U that is jointly typical with its
received sequence y. There is an error if (xU ,y) is not jointly typical or there is another
typical x∗

U 6= xU such that (x∗
U ,y) is jointly typical. Using Lemma 1, we have that for n

large enough, the probability that (xU ,y) is not jointly typical is upper bounded by ǫ
2
. Since

the codewords of G are pairwise independent, then it follows that:

Pr
(

(x∗
U ,y) ∈ A(n)

ǫ

)

≤ 2−n(I(
LL

ℓ=1
c−1

ℓ
(Xℓ);Y )−3ǫ) (3.21)

By the union bound, the probability of error, averaged over G, is upper bounded by

Pe <
ǫ

2
+
∑

x∗
U
6=xU

2−n(I(
LL

ℓ=1
c−1

ℓ
(Xℓ);Y )−3ǫ) (3.22)

<
ǫ

2
+ |F|m2−n(I(

LL
ℓ=1

c−1

ℓ
(Xℓ);Y )−3ǫ) (3.23)

=
ǫ

2
+ 2m log2 |F|−n(I(

LL
ℓ=1

c−1

ℓ
(Xℓ);Y )−3ǫ) (3.24)

For n large enough and m log2 |F| < n
(

I
(

⊕L
ℓ=1 c−1

ℓ (Xℓ); Y
)

− 3ǫ
)

, we can drive the prob-

ability of error below ǫ. Substituting m = k
(

H(U)+ǫ
log2 |F|

)

, we get the following requirement

k

n
<

I
(

⊕L
ℓ=1 c−1

ℓ (Xℓ); Y
)

− 3ǫ

H(U) + ǫ
. (3.25)

By choosing ǫ small enough, we can achieve the computation rate in the theorem statement.
Finally, we can argue that there must exist at least one good fixed G since the average
performance was good.
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In general, the achievable rate in Theorem 7 is not optimal as shown in the following
example.

Example 3. Let S1 and S2 be i.i.d. B(1
2
)2 Assume we want U = S1 ⊕ S2 and the channel

is the binary product of binary inputs, Y = X1 ⊙ X2. It can be shown that for all possible
cℓ, I(c−1

1 (X1)⊕ c−1
2 (X2); X1 ⊙X2) = 1− 3

4
hB(1

3
) ≈ 0.311. Since H(U) = 1, the computation

rate is RCOMP ≈ 0.311. By Lemma 3, the best separation-based scheme requires sending
both sources and can achieve RCOMP = 1

2
.

3.3.1 Linear Multiple-Access Channels

We now describe a special class of multiple-access channels for which Theorem 7 yields the
computation capacity for sending linear functions.

Definition 19. A multiple-access channel is linear with respect to F if its channel inputs
take values on a Galois field F and we can represent the channel output Y [i] as coming from
a symmetric discrete memoryless channel (DMC), pY |V , where:

V [i] =
L
∑

ℓ=1

βℓXℓ[i] (3.26)

for some βℓ ∈ F \ {0} where 0 is the zero symbol in F. See Figure 3.3.
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pY |V D Ûk

Figure 3.3: Linear Multiple-Access Channel

Note that we require the DMC to be symmetric so that the capacity-achieving input
distribution is uniform.

2B(p) represents the Bernoulli distribution over {0, 1} where p represents the probability of drawing 1.
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Theorem 8. If both the multiple-access channel and the desired function are linear with
respect to F, the computation capacity is:

CCOMP =
I(V ; Y )

H(U)
(3.27)

where V is uniform over F.

Proof. The achievability is given by Theorem 7 by choosing cℓ(Xℓ) = β−1
ℓ Xℓ. It follows that

I

(

L
∑

ℓ=1

c−1
ℓ (Xℓ); Y

)

= I

(

L
∑

ℓ=1

βℓXℓ; Y

)

= I(V ; Y ). (3.28)

The converse is given by Lemma 6.

This performance is not available to a separation-based scheme. If the sources are inde-
pendent, we can invoke Lemma 3 to show that each encoder must communicate its source to
the decoder. This requires a sum-rate of

∑L
ℓ=1 H(Sℓ) which means that the best separation-

based computation rate is:

RCOMP =
I(V ; Y )

∑L
ℓ=1 H(Sℓ)

(3.29)

for V generated uniformly from F. Clearly, H(U) ≤ ∑L
ℓ=1 H(Sℓ) so this rate is lower than

the computation capacity.

3.3.1.1 Extended Example: Mod-2 Adder MAC

We now explore an example that demonstrates the benefits of computation coding over
separation-based schemes. Our example centers on the mod-2 adder MAC (M2MAC) (Figure
3.4). There are two sources, S1 and S2, generated from the following joint pdf:

Pr(S1 = 0, S2 = 0) = Pr(S1 = 1, S2 = 1) =
1 − p

2

Pr(S1 = 0, S2 = 1) = Pr(S1 = 1, S2 = 0) =
p

2
. (3.30)

A simple calculation will show that S1 and S2 have uniform marginal distributions. Our
goal is to losslessly transmit U = S1 ⊕S2 across the channel at the highest computation rate
κ = k

n
. The entropy of U is given by the binary entropy function:

hB(p) = −p log p − (1 − p) log (1 − p). (3.31)
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The channel input and output alphabets are given by X1 = X2 = Y = {0, 1}. The channel
inputs are added mod-2 to yield V = X1 ⊕ X2 which is passed through a binary symmetric
channel (BSC) with crossover probability q to give Y (see Figure 3.4).

Sk
1 E1

Xn
1

Sk
2 E2

Xn
2

V BSCq
Y n

D Ûk

Figure 3.4: Mod-2 Adder Multiple-Access Channel (M2MAC)

Our sources and desired function are identical to those from the Körner-Marton problem
[77] (see Section 2.3). By combining the Körner-Marton source coding scheme with an
appropriate MAC code, we will get the optimal separation-based scheme.

For the M2MAC, the capacity region has only a single constraint:

R1 + R2 < 1 − hB(q). (3.32)

Note that this implies that time-sharing is optimal for the M2MAC.
We can now give the best possible computation rate available using separation. The sum

source coding rate required is 2hB(p) and the MAC sum capacity is 1 − hB(q). Reliable
communication requires that k(2hB(p)) < n(1 − hB(q)). This gives the optimal separation-
based computation rate of:

RCOMP =
1

2

(

1 − hB(q)

hB(p)

)

. (3.33)

Remark 2. The Körner-Marton scheme allows for a strictly lower sum source coding rate
and thus, a higher computation rate than Slepian-Wolf coding of S1 and S2.

The best separation-based scheme for the M2MAC uses structured source coding to
exploit the source correlations. The channel coding strategy focuses on avoiding the inter-
ference caused by the other user. Yet, the interference is due to the summation taken by
the MAC. Computation coding exploits this summation by using both a structured source
code and a structured channel code. In doing so, it can optimally exploit both the source
correlations and the structure of the MAC. An application of Theorem 8 to this scenario
yields the following corollary.
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Corollary 1. The computation capacity for sending U = S1 ⊕ S2 over the M2MAC is

CCOMP =
1 − hB(q)

hB(p)
. (3.34)

0.2 0.4 0.6 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Source Correlation, p

C
om

pu
ta

tio
n 

R
at

e,
 κ

 

 

Computation

Separation

Slepian−Wolf

Figure 3.5: Comparison of schemes for computing parity over a noisy modulo-2 adder.

Somewhat surprisingly, this strategy allows for a computation rate twice that of the sep-
aration scheme, regardless of the source statistics. The computation rates for computation
coding (Corollary 1), the best separation-based scheme (3.33), and a suboptimal separation-
based scheme that uses Slepian-Wolf source coding over an M2MAC with crossover proba-
bility q = 0.1 are shown in Figure 3.5.

Both our computation coding scheme and the best separation-based scheme take advan-
tage of the structure of the function for source coding. The computation coding scheme
goes one step further and takes advantage of structure of channel. The computation rate
is doubled by this structural gain. This shows that the MAC rate region is an insufficient
characterization of the channel for distributed computation.

The symmetric source pdf (see (3.30)) used for the M2MAC example can be changed to
any joint pdf and the computation capacity will still be achieved by the scheme put forth
in Corollary 1. However, for an asymmetric pdf, the Körner-Marton scheme may not be
the best separation-based strategy. It is only known to be optimal for the symmetric pdf in
(3.30), as this is the most general pdf that results in uniform marginal pdfs. Ahlswede and
Han showed that if the marginals are not uniform, there are achievable points outside the
Körner-Marton region [5].
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To be more specific, both the Körner-Marton scheme and computation coding calibrate
their codes using the entropy of the desired function. Körner-Marton fails as a general
solution as it then converts the linear representation into bits, which destroys the code’s
match with the function. The function-channel match in computation coding allows for a
continuous abstraction of the problem in terms of the underlying finite field. This is why we
are able to meet our upper bounds in matched cases.

The most interesting aspect of our strategy is that it depends entirely on codes that
were originally intended to reduce system complexity. Elias’ random linear coding proof was
meant to show that the search for implementable codes is not futile; all of the benefits of
Shannon’s random codebooks can be transferred into random generator matrices [39]. The
Körner-Marton result and our computation code show that structured codes can enable rate
gains. In particular, structured codes allow redundancy to be added in a distributed, yet
structured, fashion.

3.3.2 Extensions

We now describe a few simple extensions to Theorem 7. In some cases, we may be interested
in a non-linear function f of the sources. One approach is to find a one-to-one (injective)
map from f into some linear function g and then attempt to communicate g directly using
Theorem 7. We may also want to communicate more than one (linear) function to the
receivers. These linear functions may not be independent and we can take advantage of this
to increase the computation rate.

Theorem 9. Assume that Sℓ = F, |Xℓ| ≤ |F|, and the desired functions U1, . . . , UJ are linear
with respect to F. Choose any one-to-one (injective) functions from the finite field onto the
input alphabets, cℓ : F → Xℓ. The following computation rate is achievable:

RCOMP =
I
(

⊕L
ℓ=1 c−1

ℓ (Xℓ); Y
)

H(U1, . . . , UJ)
(3.35)

for Xℓ drawn independently and uniformly over the range of cℓ.

Proof. Let sℓ = Sk
ℓ , uj = Uk

j , and choose ǫ > 0. Using Theorem 4, choose matrices
B1, . . . ,BJ of size k × mj over F for Slepian-Wolf compression of U1, . . . , UJ . If mj =

k
(

H(Uj |Uj−1,...,U1)+ǫ

log2 |F|

)

, then with probability than 1 − ǫ, u1, . . . ,uJ can be recovered from

wU = uB where B =
[

B1 · · · BJ

]

. Note that B is of size k × m with m =
∑

j mj =

k
(

H(U1,...,UJ )+Jǫ
log2 |F|

)

. Each encoder applies B to its source to get its message wℓ = αℓsℓB. The

result follows by repeating the remaining steps from the proof of Theorem 7.

This immediately yields the computation capacity for sending multiple linear functions
over a linear MAC.
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Theorem 10. If both the multiple-access channel and the desired functions are linear with
respect to F, the computation capacity is:

CCOMP =
I(V ; Y )

H(U1, . . . , UJ)
(3.36)

where V is uniform over F.

Consider the case where there is more than one receiver that wants to reconstruct the
same function U . The channel between the L transmitters and M receivers is
pY1···YM |X1···XL

(y1, . . . , yM |x1, . . . , xL). Theorem 7 can easily be adapted by considering the
worst channel over all receivers. This yields the following computation rate:

RCOMP = min
m=1,...,M

I
(

⊕L
ℓ=1 c−1

ℓ (Xℓ); Ym

)

H(U)
(3.37)

for some choice of injective functions cℓ : F → Xℓ and with Xℓ independently generated
according to the uniform distribution over the range of cℓ. However, in many cases, this
strategy has a far lower rate than possible with a single receiver. For instance, assume that
each receiver sees the output of a linear MAC over F:

Ym[i] =

L
∑

ℓ=1

βmℓXℓ[i] + Zm[i] (3.38)

where βmℓ ∈ F and the Zm[i] are all i.i.d. according to the same distribution pZ(z) on F. If
βmℓ = βm∗ℓ for all m 6= m∗ then Theorem 8 can be applied directly to get a computation
rate of

RCOMP =
log2 |F| − H(Z)

H(U)
. (3.39)

This works because the code first cancels out the βmℓ and then applies αℓ. However, if the
channel coefficients differ from receiver to receiver then this cancellation is no longer possible
in general. In a certain sense, this can be interpreted to mean that the channel is not well-
matched to the desired computation. Therefore, by changing our objective to match the
natural computation provided by the channel, much higher rates will be possible. In the
following theorem, we take exactly this approach so that the receivers choose their desired
function based on the channel coefficients.

Theorem 11. There are M transmitters whose sources Sk
ℓ are i.i.d. according to the uni-

form distribution over F. Each receiver observes a noisy linear combination of the transmitted
signals Xk

ℓ according to (3.38). If each receivers want a linear function of the sources with
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coefficients chosen according to the channel coefficients, Um[i] =
∑L

ℓ=1 βmℓSℓ[i], the compu-
tation capacity is:

CCOMP =
log2 |F| − H(Z)

log2 |F|
. (3.40)

Proof. We essentially follow the proof of 7 except that we set wℓ = sℓ and take all functions
cℓ to be the identity function. The converse is given by Lemma 6.

Note that there is no need to premultiply the sources by αℓ as the channel directly
computes the desired functions.

Linear computation coding performs quite well when the channel is (approximately) a
linear function of its inputs. As seen in Example 3, this strategy does not always work well
for non-linear channels. In the next section, we develop another coding scheme that is useful
in some scenarios where linear computation coding fails.

3.4 Systematic Computation Codes

In the point-to-point setting, systematic transmission refers to first sending a block of the
source uncoded across the channel and then using a code to refine the noisy version of the
source [139; 140]. The decoder uses the uncoded block as side information to infer the source
from the received codeword. Systematic transmission is a good framework for the digital
upgrade of analog systems. We propose a systematic computation coding scheme that first
uses uncoded transmission to send a noisy function to the decoder and then refines this
function with a separation-based scheme.

We briefly consider the code used in Section 3.3.1.1 for sending the parity of binary sources
over the M2MAC. Assume the sources are independent and the channel code is written in
systematic form. This computation coding scheme is also systematic in that the encoders
first send a noisy version of the desired sum and then refine it with parity-check bits. In this
setting, we allow the channel to merge both the information bits and the parity-check bits
to give a codeword that describes the sum of the sources. However, for an arbitrary MAC,
we may not able to use the channel to combine our codewords. Therefore, we only use a
joint source-channel code to send a noisy version of the function. We will then switch over
to a separation-based scheme that uses a linear source code and a capacity-achieving MAC
code at each encoder to refine the noisy function.

Theorem 12. Let f be an arbitrary function and let U = fℓ(S1, . . . , SL). Choose a Galois
field F, a linear function g over F and functions cℓ : Sℓ → F for ℓ = 1, . . . , L and d : F → U
such that:

Pr(d(g(c1(S1), . . . , cL(SL))) = fℓ(S1, . . . , SL)) = 1.
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Let V = g(c1(S1), . . . , cL(SL)). If the maximum sum rate of the MAC is symmetric3, then
the computation rate

RCOMP =
CMAC

CMAC + LH(V |T )
(3.41)

is achievable for any joint pmf of the form:

pT |X1···XL
(t|x1, . . . , xL)

(

L
∏

ℓ=1

pXℓ|Sℓ
(xℓ|sℓ)

)

(pS1···SL
(s1, . . . , sL)) (3.42)

where

pT |X1···XL
(t|x1, . . . , xL) = pY |X1···XL

(t|x1, . . . , xL)

Proof. (Uncoded Transmission.) At time step i for 1 ≤ i ≤ k, encoder ℓ maps Sℓ[i] into a
channel input, Xℓ[i], according to pXj |Sj

(xj |sj). The decoder collects the channel outputs to
use as side information in the next phase, T k = Y k.

(Refinement.) First, let Cℓ[i] = cℓ(Sℓ[i]), cℓ = [Cℓ[1] · · · Cℓ[k]],
V [i] = g(C1[i], . . . , CL[i]), and v = [V [1] · · · V [k]]. Choose ǫ > 0. Using Theorem 4,
choose a matrix B of size k × m over F for compressing V given side information T . If

m = k
(

H(V |T )+ǫ
log2 |F|

)

, then with probability than 1− ǫ
2
, v can be recovered from w = vB. Each

encoder applies B to cℓ to get its message wℓ = cℓB. It then transmits wℓ to the decoder
using a multiple-access channel code:

EC
ℓ : F

m → X n
ℓ ,

targeted at the symmetric maximum sum rate, CMAC. From Theorem 6, the decoder can
recover w1, . . . ,wL with probability of error less than ǫ

2
for n large enough if log2 |F|mL <

(n − k)(CMAC − ǫ). The decoder then computes:

w = g(w1, . . . ,wL) (3.43)

= g(c1B, · · · , cLB) (3.44)

= vB (3.45)

3We assume that maximum sum rate of the MAC is symmetric according to Definition 16 to simplify
the statement of the theorem. This can be removed for a more general (but more cumbersome) theorem
statement.
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from which it can recover v and apply the function d to get the desired function with total
probability of error no greater than ǫ. Solving for the computation rate RCOMP = k

n
we get

k

(

H(V |T ) + ǫ

log2 |F|

)

log2 |F|L < (n − k)(CMAC − ǫ) (3.46)

k (CMAC + LH(V |T ) + Lǫ) < n(CMAC − ǫ) (3.47)

k

n
=

CMAC − ǫ

CMAC + LH(V |T ) + Lǫ
. (3.48)

By choosing ǫ sufficiently small, we can approach the desired rate.

Remark 3. In some cases, we will have H(Sℓ) < H(V |T ) at one or more encoders. In this
case, these encodes can just send their source in its entirety to the decoder to lower the
overall computation rate.

Remark 4. Theorem 12 can be further generalized by allowing for a different ratio of source
symbols to channel symbols in the uncoded phase. As it is currently stated, Theorem 12 uses
one channel symbol per source symbol in the uncoded phase. This causes the computation
rate to be upper bounded by 1.

Remark 5. If the mapping d in Theorem 12 is invertible and entropy-preserving, then
H(V |T ) = H(U |T ).

We show that systematic computation coding can outperform separation-based coding
with the following example.

Example 4. Our setting is basically the same as the M2MAC (see Section 3.3.1.1). For
simplicity, we make S1 and S2 independent B(1

2
) processes. The only difference is the channel

performs a real addition, W = S1 + S2, and then noise is added mod-3 to get the output:
Y = W ⊕3 Z. The additive noise Z is distributed according to P (Z = 0) = .8 and P (Z =
1) = P (Z = 2) = .1. Our desired function is the parity of the sources, U = S1 ⊕ S2. We
would like to apply Theorem 12 for computing U . In the first phase, we just transmit the
sources uncoded (pXj |Sj

(xj |sj) = δ(xj − sj)) to get side information T at the decoder. The
conditional entropy of our desired function, U = S1⊕S2, is H(U |T ) = 0.60 and the maximum
sum rate of the MAC is CMAC = 0.66. With this method, we can achieve RCOMP = 0.35.
From Lemma 3, we get that the best separation-based scheme gives a computation rate
of RCOMP = 0.33. In fact, we can outperform our systematic scheme by using the quasi-
linearity of the channel to merge codewords. We simply employ the computation code for
the M2MAC from Corollary 1 directly and map the output symbol 2 to 0 at the decoder.
This gives us an improved computation rate of RCOMP = 0.40. None of these schemes meet
the upper bound given by Lemma 7: RCOMP ≤ 0.66.

36



Chapter 3. Compute-and-Forward: Discrete Alphabets

In the next example, we compute the parity of independent binary sources over a binary
multiplying channel.

Example 5. S1 and S2 are B(α) sources. We are interested in sending the mod-2 sum
U = S1⊕S2 over the binary multiplying channel (BMC) Y = X1 ·X2 where X1 = X2 = {0, 1}.
In the first phase, we send the sources uncoded across the channel and in the second phase,
we use a MAC code to send our update bins. The computation rates for both separation-
based coding (Lemma 3) and our scheme (Theorem 12) are plotted in Figure 3.6. The
upper bound is significantly higher than both achievable rates and is not shown on the plot.
Our scheme outperforms separation-based coding for α between approximately 0.65 and
0.85 (and between 0.15 and 0.35 by symmetry). The underlying reason is that these input
distributions get close to the maximum mutual information for the MAC, resulting in good
side information for the second phase. It is quite surprising that our scheme even moderately
outperforms separation as there is almost no structural match between the channel and the
desired function.
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Figure 3.6: Computing parity over a
binary multiplying channel
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Figure 3.7: Computing a binary product over
a mod-2 adder

The following example is the dual of the last one: we compute the product of binary
independent sources over a mod-2 adder.

Example 6. S1 and S2 are independent B(α) sources. We want to send U = S1 · S2 over
a mod-2 adder. The channel output is given by Y = X1 ⊕ X2, X1 = X2 = {0, 1}. We can
losslessly recover U from V = S1 ⊕3 S2. Our scheme is to send S1 and S2 uncoded over the
channel for phase one and then use this as side information to send V . The computation
rates for both separation-based coding (Lemma 3) and our scheme (Theorem 12) are plotted
in Figure 3.7. Again, the upper bound is significantly higher than both achievable rates and
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is not shown on the plot. Although the gains are marginal, that any gains are possible is
surprising.

The next example demonstrates that there exists cases where computation coding is
useful for sending a non-linear function over a noisy non-linear channel.

Example 7. S1 and S2 are independent sources drawn uniformly from {0, 1, 2}. We would
like to know whether or not S1 and S2 are equal: U = 1(S1 6= S2). We can losslessly recover
U from the linear function V = S1 ⊕3 2S2 over GF(3). The channel is just W = 1(S1 6= S2)
followed by a BSC with transition probability 0.1 to give Y . We employ Theorem 12. Our
uncoded phase uses the sources directly; there is no remapping. In the update phase, we
send V . With this strategy, we get a computation rate of κCOMP = 0.194. Lemma 3 gives
that the best separation-based computation rate is κSEP = 0.168. Finally, using Lemma 7 we
get an upper bound of κJOINT = 0.578.

Systematic computation coding can also be extended to include multiple receivers and
multiple functions along similar lines as in Section 3.3.2.

The two computation coding strategies developed in this chapter allow for higher rates
when we want to communicate a function of the sources, instead of the sources in their
entirety. In Chapters 5 and 7, we will use these strategies as building blocks for commu-
nicating messages over a network. In brief, intermediate nodes will collect functions of the
messages and destinations, given sufficiently many functions, will be able to infer the original
messages.

Appendix 3.A Upper Bounds

In this appendix, we develop upper bounds on the computation capacity. First, we give an
upper bound on the distributed compression rate region. This can be combined with the
multiple-access rate region to yield an upper bound on separation-based computation. Next,
we give two upper bounds on the computation capacity.

3.A.1 Separation-Based Computation

For our upper bound, we will need a result of Orlitsky and Roche for computing with side
information [117].

Let S1 and S2 be sources according to Definition 7 and let f : S1×S2 → U be the desired
function.

Definition 20. The elements of S1 are the vertices of the characteristic graph, G, of S1, S2,
and f . Two distinct vertices, a and b, are connected if there is a c ∈ S2 such that
pS1S2

(a, c), pS1S2
(b, c) > 0 and f(a, c) 6= f(b, c). We say the graph is complete if each

vertex is connected to every other vertex.
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We say a set of vertices is independent if no two are connected. Let Γ(G) be the collection
of independent sets of the graph G.

Definition 21. The conditional graph entropy is given by:

HG(S1|S2) , min
W−S1−S2

S1∈W∈Γ(G)

I(W ; S1|S2), (3.49)

where W − S1 − S2 signifies a Markov chain.

Lemma 4 (Orlitsky-Roche). Two sources, S1 and S2, are generated from the joint pmf pS1S2
.

An encoder observes S1 and must send enough bits to a decoder that sees S2, such that the
decoder can reconstruct U = f(S1, S2) with a vanishing probability of error:

E : Sk
1 → {0, 1}kR (3.50)

D : {0, 1}kR × Sk
2 → Uk (3.51)

Ûk = D(E(Sk
1 ), Sk

2 )

lim
k→∞

P (Ûk 6= Uk) = 0. (3.52)

This is possible if and only if:

R > HG(S1|S2). (3.53)

We will use this side information result to generate individual rate constraints on
separation-based schemes for distributed compression. There are M sources and a desired
function f(·). Let SC

ℓ = (S1, S2, . . . , Sℓ−1, Sℓ+1, . . . , SM).

Lemma 5. The rate required for each encoder of a separation-based scheme for distributed
compression of U = f(S1, S2, . . . , SL) is lower bounded by

Rℓ ≥ HG(Sℓ|SC
ℓ ) ∀ℓ ∈ {1, 2, . . . , L}. (3.54)

Proof. At encoder ℓ, assume that all other sources are available at the decoder. Clearly, this
can only decrease the rate required of encoder ℓ. An application of Lemma 4 gives that a
rate of HG(Sℓ|SC

ℓ ) is required from each encoder to reconstruct f(S1, S2, . . . , SL) losslessly
at the decoder.

Proof of Lemma 3: We need the conditional graph entropy at each encoder used in the
proof for Lemma 5 above. The characteristic graph for each encoder is complete. There-
fore, the independent sets are the singletons and W = Sℓ. It follows that HG(Sℓ|SC

ℓ ) =
I(W ; Sℓ|SC

ℓ )) = H(Sℓ|SC
ℓ ) = H(Sℓ).
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3.A.2 Computation Capacity

We now give two upper bounds on the computation capacity. Our first bound comes from
joining the encoders and reducing our problem to a point-to-point problem.

Definition 22. The maximum joint sum rate is the highest sum rate one can achieve on a
MAC if the encoders are allowed to cooperate completely. It is given by:

CJOINT = max
p(x1,x2,...,xL)

I(X1, X2, . . . , XL; Y ). (3.55)

Lemma 6. The computation capacity is upper bounded as follows:

CCOMP ≥ CJOINT

H(U)
. (3.56)

The proof follows immediately from joining the encoders and applying the point-to-point
separation theorem. See [29, p. 216] for a full proof of the point-to-point separation theorem.

Our second bound is for the case when the sources are independent. We assume that the
multiple-access channel has a symmetric maximum sum rate, CMAC, according to Definition
16. This assumption can be removed for a more general statement of the lemma below.

Lemma 7. If the sources are independent and the maximum sum rate of the MAC is sym-
metric then the reliable computation rate is upper bounded by

κIND ≤ CMAC

H(U)
. (3.57)

Proof. Let Pe = Pr(Ûk 6= Uk). By Fano’s inequality, we can show that H(Uk|Y n) ≤
1 + kPe log |U|. Now, set λk = 1

k
+ Pe log |U|.

H(U) =
1

k
H(Uk)

=
1

k
(H(Uk) − H(Uk|Y n) + H(Uk|Y n))

=
1

k
(I(Uk; Y n) + H(Uk|Y n))

≤ 1

k
I(Uk; Y n) + λk

≤ 1

k
I(Xn

1 , Xn
2 , . . . , Xn

L; Y n) + λk

where the last step is due to the data processing inequality. From here we are free to apply
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the standard MAC converse (see [29, pp.399-402]):

k

n
≤ I(X1, X2, . . . , XL; Y )

H(U)
.

for some pmf of the form
∏M

j=1 pXj
(xj). The result follows immediately.

It is also possible to give an upper bound that factors in the exact nature of the source
correlations as in [153]. However, the focus of this thesis is on the gains that can be achieved
by exploiting the structure rather than the correlations. All of our examples have indepen-
dent sources so such a bound is unnecessary for the scope of this chapter.
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Chapter 4

Compute-and-Forward: AWGN

Networks

In this chapter, we develop a compute-and-forward scheme for wireless channel models.
Specifically, we will show how to harness noisy linear combinations over the complex field for
reliable computation over a finite field. The classical approach to wireless communication is
to transform the physical layer into a set of reliable bit pipes, i.e. each link can accommodate
a certain number of bits per time unit. These bit pipes can then be used seamlessly by higher
layers in the protocol stack. Unfortunately, this approach means that wireless terminals must
compete for the same fixed chunk of spectrum with diminishing rates as the network size
increases. Recent work on cooperative communication has shown that this penalty can be
overcome by adopting new strategies at the physical layer. The key idea is that users should
help relay each other’s messages by exploiting the broadcast and multiple-access properties of
the wireless medium; properties that are usually viewed as a hindrance and are not captured
by a bit pipe interface. To date, most proposed cooperative schemes have relied on one of
the following three core relaying strategies:

• Decode-and-Forward: The relay decodes at least some part of the transmitted messages.
The recovered bits are then re-encoded for collaborative transmission to the next relay.
Although this strategy offers significant advantages, the relay is ultimately interference-
limited as the number of transmitted messages increases [32; 83; 79; 38].

• Compress-and-Forward: The signal observed at the relay is vector quantized and this
information is passed towards the destination. If the destination receives information
from multiple relays, it can treat the network as a multiple-input multiple-output
(MIMO) channel. Unfortunately, since no decoding is performed at intermediate nodes,
noise builds up as messages traverse the network [32; 79; 72; 6; 131].

• Amplify-and-Forward: The relay simply acts as a repeater and transmits a scaled
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version of its observation. Like compress-and-forward, this strategy converts the
network into a large MIMO channel with the added possibility of a beamforming
gain. However, noise also builds up with each retransmission. [136; 83; 55; 16;
38].

Our compute-and-forward strategy simultaneously affords protection against noise and
the opportunity to exploit interference for cooperative gains. Whereas compress-and-forward
and amplify-and-forward convert a network into a set of noisy linear equations, compute-
and-forward can convert it into a set of reliable linear equations. These equations can in turn
be used for a digital implementation of cooperative schemes that could fit into a (slightly
revised) network protocol stack.

We will develop a general framework for compute-and-forward that can be used in any
relay network with linear channels and additive white Gaussian noise (AWGN).1 Transmitters
send out messages taking values in a prime-sized finite field and relays recover linear equations
of the messages over the same field. To exploit the noisy linear equations provided by the
channel, we use nested lattice codes as they have a linear structure and are well-suited for
AWGN channels. As in the discrete case, the performance of this scheme is outside the
reach of the usual random coding arguments. In Chapter 5, we will compare compute-and-
forward to classical relaying strategies in two network scenarios, one based on distributed
MIMO and the other wireless network coding. Classical relaying strategies perform well in
either low or high signal-to-noise ratio (SNR) regimes. As we will see, compute-and-forward
offers advantages in moderate SNR regimes where both interference and noise are significant
factors.

Summary of Results

Our basic strategy is to take messages from a finite field, map them onto lattice points,
and transmit (dithered versions of) these across the channel. Each relay observes a linear
combination of these lattice points and attempts to decode an integer combination of them.
This equation of lattice points is finally mapped back to a linear equation over a finite field.
Our main theorems are summarized below:

• Theorems 13 and 14 give our achievable rates for sending equations over a finite field
from transmitters to relays. The strategy relies on a nested lattice code which is
developed in Theorem 15.

• Theorems 16, 17, and 18 give sufficient conditions on the equation coefficients so that
a destination can recover one or more of the original messages.

• In Theorems 19 and 20 we generalize our compute-and-forward scheme to include
successive cancellation and superposition coding.

1The material in this chapter is drawn from [108].
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Related Work

There is a large body of work on lattice codes and their applications in communications.
We cannot do justice to all this work here and point the interested reader to an excellent
survey by Zamir [160]. The basic insight is that, for many AWGN networks of interest,
nested lattice codes can approach the performance of standard random coding arguments.
One key result by Erez and Zamir showed that nested lattice codes (combined with lattice
decoding) can achieve the capacity of the point-to-point AWGN channel [42]. More generally,
Zamir, Shamai, and Erez demonstrated how to use nested lattice codes for many classical
AWGN multi-terminal problems in [162]. Subsequent work by El Gamal, Caire, and Damen
showed that nested lattice codes achieve the diversity-multiplexing tradeoff of MIMO chan-
nels [50]. Recall that, in general, structured codes are not sufficient to prove capacity results.
For instance, group codes cannot approach the capacity of asymmetric discrete memoryless
channels [2].

It has now become clear that for certain network communication scenarios, structured
codes can actually outperform standard random coding arguments. 2 For AWGN networks,
nested lattice codes have been shown to outperform i.i.d. random codes in several scenarios
apart from those considered in this thesis. For instance, Philosof et al. demonstrated that
lattice codes enable distributed dirty paper coding for Gaussian multiple-access channels in
[121]. Subsequent work by Sanderovich, Peleg, and Shamai used lattices to derive better
scaling laws for decentralized processing in cellular networks [129].

There has also been a great deal of interest in using lattice codes for wireless network
coding (see Chapter 5 for our contribution). Narayanan, Wilson, and Sprintson developed
a nested lattice strategy for the two-way relay channel [101]. Nam, Chung, and Lee studied
the two-way relay channel and Gaussian multiple-access networks with asymmetric power
constraints in [99; 100].

Work on interference alignment by Maddah-Ali, Motahari, and Khandani [91] as well as
Cadambe and Jafar [21] has shown that large gains are possible for interference channels at
high SNR. The key is to have users transmit along subspaces chosen such that all interference
stacks up in the same dimensions at the receivers. Lattice codes can be used to realize these
gains at finite SNR. Bresler, Parekh, and Tse used lattice codes to approximate the capacity
of the many-to-one and one-to-many interference channels to within a constant number of
bits [19]. This scheme was employed for bursty interference channels in [71]. For symmetric
interference channels, Sridharan et al. developed a layered lattice strategy in [149].

Krithivasan and Pradhan have employed nested lattice codes for distributed compression
of linear functions of jointly Gaussian sources [80]. Wagner derived an outer bound for the
Gaussian case in [155]. Finally, recent work by He and Yener has shown that lattices are
useful for information theoretic secrecy [59]. See also [1].

2In a recent paper, we made a case for structured random codes in the proofs of network capacity theorems
[106].
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4.1 Problem Statement

Our relaying strategy is applicable to any configuration of sources, relays, and destinations
that are linked through linear AWGN channels. We will refer to such configurations as
AWGN networks. To simplify the description of the scheme, we will first focus on how
to deliver equations to a single set of relays. We will then show how a destination, given
sufficiently many equations, can recover the intended messages. These two components are
sufficient to completely describe an achievable rate region for any AWGN network. We begin
with the necessary definitions for L transmitters to send equations to M relays over a wireless
channel. Then, we will provide a framework for recovering the original messages given a set
of equations.

Remark 6. In fact, one can apply this strategy to non-linear and non-Gaussian channels as
well by using the modulo-lattice transformation developed by Erez and Zamir in [43].

4.1.1 Decoding Equations

We are primarily interested in narrowband wireless channel models so we will specify our
encoding and decoding schemes for complex baseband and assume that modulation is handled
separately. In Section 4.1.3, we will restate a few definitions for real-valued channel models
so that we can give corollaries that specialize our results to real values.

Let C denote the complex field and Fp denote the finite field of size p where p is always
assumed to be prime. Let + denote addition over the complex field and ⊕ addition over
the finite field. Furthermore, let

∑

denote summation over the complex field and
⊕

denote
summation over the finite field. We also set j =

√
−1 and assume that the log operation is

with respect to base 2. It will be useful to map between the finite field and a corresponding
subset of the integers. We let g : Fp → {0, 1, 2, . . . , p − 1} be this one-to-one map. This
is essentially an identity map except for the change of alphabet. If g or its inverse g−1 are
applied to a vector we assume they operate element-wise.

We will use boldface lowercase letters to denote column vectors and boldface uppercase

letters to denote matrices. For example, h ∈ CL and H ∈ CM×L. Let ‖h‖ ,

√

∑L
i=1 |h[i]|2

denote the ℓ2-norm of h. Also, let h∗ and hT denote the Hermitian (or conjugate) transpose
and the regular transpose of h, respectively. Finally, let 0 denote the zero vector, δℓ denote
the unit vector with 1 in the ℓth entry and 0 elsewhere, and IM×M denote the identity matrix
of size M .

Our main goal is to reliably transmit messages across the network at the highest possible
rates. However, intermediate nodes in the network may only need to decode a function of the
messages. These functions can be decoded at high rates if we choose their algebraic structure
to match the structure of the channel. Thus, we will split our messages over the finite field
into two parts: one for the real part of the channel and the other for the imaginary part.
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Figure 4.1: L transmitters reliably communicate linear functions to M relays.

Definition 23 (Messages). Each transmitter (indexed by ℓ = 1, 2, . . . , L) has two length-kℓ

vectors over a prime-size finite field, wR
ℓ ,wI

ℓ ∈ F
kℓ
p . The superscript denotes whether the

vector is intended for the real part or the imaginary part of the channel. Together these
vectors are the message of transmitter ℓ, wℓ = (wR

ℓ ,wI
ℓ ). Without loss of generality, we

assume that the transmitters are numbered by increasing message length. Since we are
interested in functions of these messages vectors, we zero-pad them to a common length
k , maxℓ kℓ prior to encoding.

Remark 7. We are interested in average probability of error results so we assume that all
messages are drawn independently and uniformly from the set of all possible values.

Definition 24 (Encoders). Each transmitter is equipped with an encoder, Eℓ, that maps
length-k messages over the finite field to length-n codewords over the complex field:

Eℓ : F
k
p × F

k
p → C

n (4.1)

for ℓ = 1, 2, . . . , L.

Definition 25 (Message Rate). The message rate rℓ of each transmitter is:

rℓ =
2kℓ

n
log p (4.2)

Definition 26 (Power Constraint). Each transmitter’s length-n channel input, xℓ = Eℓ(wℓ),
is subject to the usual power constraint :

1

n
‖xℓ‖2 ≤ SNR (4.3)

for SNR ≥ 0 and ℓ = 1, 2, . . . , L.
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Remark 8. Note that asymmetric power constraints can be easily modeled by scaling the
channel coefficients appropriately.

Definition 27 (Channel Model). Each relay observes a noisy linear combination of the
transmitted signals through the channel :

ym =
L
∑

ℓ=1

hmℓxℓ + zm (4.4)

for m = 1, 2, . . . , M where hmℓ ∈ C are the channel coefficients and z is i.i.d. circularly
symmetric Gaussian noise, z ∼ CN (0, In×n). Let hm = [hm1 · · ·hmL]T denote the vector of
channel coefficients to relay m and let H = {hmℓ} denote the entire channel matrix. Note
that by this convention the mth row of H is hT

m.

Remark 9. For our initial analysis, we will assume that the channel coefficients are fixed
for all time. However, these results can easily be extended to the slow fading case under an
outage formulation which we develop in Section 5.2.

Remark 10. Our coding scheme only requires that each relay knows the channel coefficients
from each transmitter to itself. Specifically, relay m only needs to know hm. Each transmitter
only needs to know its target message rate, not the realization of the channel.

Definition 28 (Decoders). Each relay is equipped with a decoder that maps the observed
channel output from the complex field back to two equations of messages over the finite field:

Dm : C
n → F

k
p × F

k
p (4.5)

for m = 1, 2, . . . , M .

Our choice of equation structure is inspired by the real-valued decomposition of a
complex-valued channel. Recall that for any H ∈ CM×L,x ∈ CL, and z ∈ CM , the channel
output y = Hx + z can be written as:

[

Re(y)
Im(y)

]

=

[

Re(H) −Im(H)
Im(H) Re(H)

] [

Re(x)
Im(x)

]

+

[

Re(z)
Im(z)

]

where Re(·) and Im(·) represent the real and imaginary parts.
Note that the structure of the equations at an intermediate relay is not important, so

long as they are useful for conveying messages to the destination at the highest possible rate.

Definition 29 (Desired Equations). The goal of each relay is to reliably recover a linear
combination of the transmitted messages. Relay m selects coefficients qR

mℓ, q
I
mℓ ∈ Fp for
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ℓ = 1, 2, . . . , L and attempts to decode two equations:

uR
m =

L
⊕

ℓ=1

qR
mℓw

R
ℓ ⊕ (−qI

mℓ)w
I
ℓ (4.6)

uI
m =

L
⊕

ℓ=1

qI
mℓw

R
ℓ ⊕ qR

mℓw
I
ℓ (4.7)

where (−qmℓ) denotes the additive inverse of qmℓ.

Although our desired equations are evaluated over the finite field Fp, the channel operates
over the complex field C. Our coding scheme will allow us to efficiently exploit the channel for
reliable computation if the desired equation coefficients are close to the channel coefficients
in an appropriate sense. The definition below provides an embedding from the finite field to
the complex field that will be useful in quantifying this closeness.

Definition 30 (Coefficient Vector). The equation with coefficient vector
am = [am1 am2 · · · amL]T ∈ {Z + jZ}L is the linear combination of the transmitted messages
with coefficients given by

qR
mℓ = g−1 ([Re(amℓ)] mod p) (4.8)

qI
mℓ = g−1 ([Im(amℓ)] mod p) . (4.9)

Definition 31 (Probability of Error). We say that the equations with coefficient vectors
a1, a2, . . . , aM ∈ {Z + jZ}L are decoded with average probability of error ǫ if:

(ûR
m, ûI

m) , Dm(ym) (4.10)

P

(

M
⋃

m=1

{(ûR
m, ûI

m) 6= (uR
m,uI

m)}
)

< ǫ. (4.11)

Definition 32 (Computation Rate). We say that the computation rate R(h, a) is achievable
if for any ǫ > 0 and n large enough, there exist encoders and decoders, E1, . . . , EL,D1, . . . ,DM ,
such that for any set of channels, h1, . . . ,hM ∈ CL, and coefficient vectors, a1, . . . , aM ∈
{Z + jZ}L, all relays can recover their desired equations with average probability of error ǫ
so long as the underlying message rates r1, . . . , rL satisfy:

rℓ < min
m:amℓ 6=0

R(hm, am) (4.12)

Remark 11. Note that the above definition means that each relay is free to choose which
equation to recover. The only constraint is that the message rates be lower than the compu-
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tation rate for that choice of coefficients. In many cases, it will be useful to have each relay
recover the equation that is available at the highest computation rate.

Remark 12. The minimization in (4.12) is taken over non-zero equation coefficients since
only the information in these messages is required for the desired equation.

4.1.2 Recovering Messages

After the relays decode their equations, they forward them towards the appropriate desti-
nations which may only be interested in recovering the original messages. If the equation
coefficients satisfy appropriate conditions, then the destinations can solve for the original
messages. Although our scheme can be employed in any AWGN network, we will omit
formal definitions for such networks and assume that equations of messages arrive at a des-
tination. This may occur through a single layer of channels as described above or through
multiple layers.

Definition 33 (Recovery). We say that message wℓ ∈ Fkℓ
p can be recovered at rate rℓ from

the equations with coefficient vectors a1, . . . , aM ∈ {Z + jZ}L if for any ǫ > 0 and n large
enough, there exists a decoder D : {Fk

p × Fk
p}M → Fkℓ

p × Fkℓ
p such that:

ŵℓ = D
(

(uR
1 ,uI

1), . . . , (u
R
M ,uI

M)
)

(4.13)

P (ŵℓ 6= wℓ) < ǫ (4.14)

where (uR
m,uI

m) represents the equations from relay m as in Definition 29.

4.1.3 Real-Valued Channels

We will now restate some of the above definitions for real-valued channel models. Each
transmitter ℓ has a length-kℓ message that takes values over a prime-size finite field, wℓ ∈ Fkℓ

p .
As before, we zero-pad all messages to a common length k = maxℓ kℓ prior to encoding. The
message rate is given by rℓ = kℓ

n
log p. The channel model is as in (4.4) except all inputs and

outputs are over the reals instead of the complex field and the noise is i.i.d. Gaussian with
mean zero and variance one.

For real-valued channels, the desired linear combination of messages at relay m is:

um =
L
⊕

ℓ=1

qmℓwℓ (4.15)

for coefficients qmℓ ∈ Fp. These finite field coefficients can be embedded in the reals as well.
The equation with coefficient vector am ∈ ZL is the linear combination of the transmitted
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messages with coefficients given by qmℓ = [g−1(amℓ)] mod p. The rest of the definitions map
in a straightforward fashion to the reals.

4.2 Nested Lattice Codes

In order to allow relays to decode integer combinations of codewords, we need codebooks
with a linear structure. We will use lattice codes that have both good statistical and good
algebraic properties. Erez and Zamir showed that nested lattice codes can approach the
capacity of point-to-point AWGN channels in [42]. These codes operate under a modulo
arithmetic that is well-suited for mapping operations over a finite field to the complex field.

First, we will provide some necessary definitions from [42] on nested lattice codes. Note
that all of these definitions are given over Rn. Our scheme will use the same lattice code over
the real and imaginary parts of the channel input (albeit with different messages). Next, we
will describe how to construct nested lattice codes which have certain desirable properties
at sufficiently high dimension.

4.2.1 Lattice Definitions

Definition 34 (Lattice). An n-dimensional lattice, Λ, is a set of points in Rn such that if
x,y ∈ Λ, then x + y ∈ Λ, and if x ∈ Λ, then −x ∈ Λ. A lattice can always be written in
terms of a lattice generator matrix L ∈ Rn×n:

Λ = {x = Lw : w ∈ Z
n}. (4.16)

Note that the origin is always a point in the lattice.

Definition 35 (Nested Lattices). A lattice Λ is said to be nested in a lattice Λ1 if Λ ⊆ Λ1.
We will sometimes refer to Λ as the coarse lattice and Λ1 as the fine lattice. More generally,
a sequence of lattices Λ, Λ1, . . . , ΛL is nested if Λ ⊆ Λ1 ⊆ · · · ⊆ ΛL.

Definition 36 (Quantizer). A lattice quantizer is a map, QΛ : Rn → Λ, that sends a point,
x, to the nearest lattice point in Euclidean distance:

QΛ(x) = arg min
λ∈Λ

||x− λ||. (4.17)

Definition 37 (Voronoi Region). The fundamental Voronoi region, V, of a lattice, is the set
of all points in R

n that are closest to the zero vector: V = {x : QΛ(x) = 0}. Let Vol(V)
denote the volume of V.

50



Chapter 4. Compute-and-Forward: AWGN Networks

Definition 38 (Modulus). Let [x] mod Λ denote the quantization error of x ∈ Rn with
respect to the lattice Λ:

[x] mod Λ = x − QΛ(x) (4.18)

For all x,y ∈ Rn and Λ ⊆ Λ1, the mod Λ operation satisfies:

[x + y] mod Λ = [[x] mod Λ + y] mod Λ (4.19)

[QΛ1
(x)] mod Λ = [QΛ1

([x] mod Λ)] mod Λ (4.20)

[ax] mod Λ = [a[x] mod Λ] mod Λ ∀a ∈ Z (4.21)

β[x] mod Λ = [βx] mod βΛ ∀β ∈ R (4.22)

Definition 39 (Nested Lattice Codes). A nested lattice code L is the set of all points of a
fine lattice Λ1 that are within the fundamental Voronoi region V of a coarse lattice Λ:

L = Λ1 ∩ V = {x : x = λ mod Λ, λ ∈ Λ1}. (4.23)

The rate of a nested lattice code is:

R =
1

n
log |L| =

1

n
log

Vol(V)

Vol(V1)
. (4.24)

Figure 4.2: Part of a nested lattice Λ ⊂ Λ1 ⊂ R2. Black points are elements of the fine lattice
Λ1 and gray circles are elements of the coarse lattice Λ. The Voronoi regions for the fine and
coarse lattice are drawn in black and gray respectively. A nested lattice code is the set of all fine
lattice points within the Voronoi region of the coarse lattice centered on zero.

Our scheme relies on mapping messages from a finite field to codewords from a nested

51



Chapter 4. Compute-and-Forward: AWGN Networks

lattice code. The relay will first decode an integer combination of lattice codewords and then
convert this into an equation of the messages.

Definition 40 (Lattice Equation). A lattice equation v ∈ L is an integer combination of
lattice codewords tℓ ∈ L modulo the coarse lattice:

v =

[

L
∑

ℓ=1

aℓtℓ

]

mod Λ (4.25)

for some coefficients aℓ ∈ Z.

Let B(r) denote an n-dimensional ball of radius r:

B(r) , {x : ‖x‖ ≤ r, x ∈ R
n} (4.26)

and let Vol(B(r)) denote its volume.

Definition 41 (Covering Radius). The covering radius of a lattice Λ is the smallest real
number r

COV
such that Rn ⊆ Λ + B(r

COV
).

Definition 42 (Effective Radius). The effective radius of a lattice with Voronoi region V is
the real number r

EFFEC
that satisfies Vol(B(r

EFFEC
)) = Vol(V).

Definition 43 (Moments). The second moment of a lattice Λ is defined as the second
moment per dimension of a uniform distribution over the fundamental Voronoi region V:

σ2
Λ =

1

nVol(V)

∫

V
‖x‖2dx. (4.27)

The normalized second moment of a lattice is given by:

G(Λ) =
σ2

Λ

(Vol(V))2/n
(4.28)

The following three definitions are the basis for proving AWGN channel coding theorems
using nested lattice codes.

Definition 44 (Covering Goodness). A sequence of lattices Λ(n) ⊂ Rn is covering good if:

lim
n→∞

r(n)
COV

r
(n)
EFFEC

= 1. (4.29)

Such lattices were shown to exist by Rogers [127].
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Definition 45 (Quantization Goodness). A sequence of lattices Λ(n) ⊂ Rn is good for mean-
squared error (MSE) quantization if:

lim
n→∞

G(Λ(n)) =
1

2πe
. (4.30)

Zamir, Feder, and Poltyrev showed that sequences of such lattices exist in [161].

Definition 46 (AWGN Goodness). Let z be a length-n random vector with distribution
N (0, σ2

ZIn×n). The volume-to-noise ratio of a lattice is given by:

µ(Λ, Pe) =
(Vol(V))2/n

σ2
Z

(4.31)

where σ2
Z is chosen such that Pr{z /∈ V} = Pe. A sequence of lattices Λ(n) is AWGN good if

lim
n→∞

µ(Λ(n), Pe) = 2πe ∀Pe ∈ (0, 1) (4.32)

and for fixed volume-to-noise ratio greater than 2πe, the probability of error decays expo-
nentially in n. In [122], Poltyrev demonstrated the existence of such lattices.

4.2.2 Lattice Constructions

Our nested lattice codes are a slight variant of those used by Erez and Zamir to approach
the capacity of a point-to-point AWGN channel [42]. As in their considerations, we will have
a coarse lattice that is covering, quantization, and AWGN good and a fine lattice that is
AWGN good. We generalize this construction to include multiple nested fine lattices all of
which are AWGN good. This will allow each transmitter to operate at a different rate.

Lemma 8 (Erez-Litsyn-Zamir). There exists a sequence of lattices Λ(n) that is simultaneously
covering, quantization, and AWGN good.

This is a corollary of their main result which develops lattices that are good in all the
above senses as well as for packing [41, Theorem 5]. Note that these lattices are built using
Construction A which is described below.

We will use a coarse lattice Λ of dimension n from Lemma 8 scaled such that its second
moment is equal to SNR

2
. Let L ∈ Rn×n denote the generator matrix of this lattice. Our fine

lattices are defined using the following procedure (the first three steps of which are often
referred to as Construction A [88; 41]):

1. Draw a matrix GL ∈ Fn×kL
p with every element chosen i.i.d. according to the uniform

distribution over {0, 1, 2, . . . , p − 1}. Recall that p is prime.
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2. Define the codebook CL as follows:

CL =
{

c = GLw : w ∈ F
kL
p

}

. (4.33)

All operations in this step are over Fp.

3. Form the lattice Λ̃L by projecting the codebook into the reals by g(·), scaling down by
a factor of p, and placing a copy at every integer vector. This tiles the codebook over
Rn:

Λ̃L = p−1g(CL) + Z
n (4.34)

4. Rotate Λ̃L by the generator matrix of the coarse nested lattice to get the fine lattice
for transmitter L:

ΛL = LΛ̃L (4.35)

5. Repeat steps 1) - 4) for each transmitter ℓ = 1, 2, . . . , L − 1 by replacing GL with Gℓ

which is defined to be the first kℓ columns of GL.

Clearly, any pair of fine lattices Λℓ1, Λℓ2, 1 ≤ ℓ1 < ℓ2 < L are nested since all elements of
Cℓ1 can be found from Gℓ2 by multiplying by all w ∈ F

n×kℓ2 with zeros in the last ℓ2 − ℓ1

elements. Also note that Λ = LZn is nested within each fine lattice by construction. Finally,
we get the desired set of nested lattices Λ ⊆ Λ1 ⊆ · · · ⊆ ΛL.

By the union bound, we get that:

Pr

(

L
⋃

ℓ=1

{rank(Gℓ) < kℓ}
)

≤
L
∑

ℓ=1

∑

w∈F
kℓ
p

w 6=0

Pr {Gℓw = 0}

≤ p−n

L
∑

ℓ=1

(pkℓ − 1) (4.36)

Thus, so long as p or k1, . . . , kL grow appropriately with n, all matrices G1, . . . ,GL are
full rank with probability that goes to 1. Note that if Gℓ has full rank, then the number
of fine lattice points in the fundamental Voronoi region V of the coarse lattice is given by
|Λℓ ∩ V| = pkℓ so that the rate of Λℓ is

Rℓ =
1

n
log |Λℓ ∩ V| =

kℓ

n
log2 p =

1

2
rℓ (4.37)
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as desired. Furthermore, each message vector w ∈ Fkℓ
p can be put into one-to-one correspon-

dence with a point in Λℓ ∩ V as shown in Lemma 12. In Appendix 4.A.2, we show that the
fine lattices are AWGN good so long as n

p
→ 0 as n grows. It is clear that one can choose

p, k1, . . . , kL so that the fine lattices have all the desired properties. One possibility is to let
p grow like n log n and set kℓ = ⌊nRℓ(log p)−1⌋.

Lemma 9. Any lattice Λ that results from Construction A has a full-rank generator matrix
L.

Proof. Note that Zn ⊂ Λ so that Λ contains all of the unit vectors by default. Thus, L spans
Rn and is full rank.

Remark 13. We require that the fine lattices are generated from full-rank submatrices of
the same finite field codebook so that it is possible to compute linear equations over messages
with different rates. The full rank condition on the coarse lattice allows us to move between
lattice equations and equations of finite field messages.

In [41; 81], some useful properties of nested lattices derived from Construction A are
established. These apply to our construction as well and we repeat them below.

Lemma 10. Choose any fine lattice Λℓ from the construction above and let Λℓ(i) denote the
ith point in Λℓ ∩ V for i = 0, 1, 2, . . . , pkℓ − 1. We have that:

• Λℓ(i) is uniformly distributed over p−1Λ ∩ V.

• For any i1 6= i2, [Λℓ(i1) − Λℓ(i2)] mod Λ is uniformly distributed over {p−1Λ} ∩ V.

Thus, each fine lattice can be interpreted as a diluted version of a scaled down coarse
lattice p−1Λ.

4.3 Lattice Computation Codes

We now develop our main result which provides achievable rates for computing linear func-
tions of messages across AWGN networks. As we will see, these rates are often far higher
than those available either by first recovering all messages then computing the function or
by standard i.i.d. random coding arguments.

First, we will state the achievable computation rate and show how to optimally choose
the free parameter in the rate expression. Next, we will provide some illustrative examples.
In Section 4.3.1, we give a detailed proof of the main result.

Let (x)+ , max (x, 0).
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Theorem 13. For channel vectors h1, . . . ,hM ∈ CL, the relays can recover any set of linear
equations with coefficient vectors a1, . . . , aM ∈ {Z + jZ}L so long as the message rates are
less than the computation rate

rℓ < min
m:aml 6=0

(R(hm, am))+ (4.38)

R(hm, am) = log

(

SNR

|αm|2 + SNR‖αmhm − am‖2

)

(4.39)

for some choice of αm ∈ C.

Theorem 14. For a given hm ∈ CL, am ∈ {Z+jZ}L, the computation rate given in Theorem
13 is uniquely maximized by choosing αm to be the MMSE coefficient

α
MMSE

=
SNR h∗

mam

1 + SNR‖hm‖2
(4.40)

which results in a computation rate

R(hm, am) = log

(

(

‖am‖2 − SNR |h∗
mam|2

1 + SNR‖hm‖2

)−1
)

(4.41)

Proof. Note that the denominator of (4.39) is quadratic in αm. Thus, it can be uniquely
minimized by setting the first derivative to zero.

f(αm) = α∗
mαm + SNR(αmhm − am)∗(αmhm − am)

df

dαm
= 2αm + SNR(2αmh∗

mhm − 2h∗
mam) = 0 (4.42)

αm(2 + 2SNR‖hm‖2) = 2SNR h∗
mam (4.43)

We solve this to get α
MMSE

and plug back into f(αm).

f(α
MMSE

) =
SNR2|h∗

mam|2
(1 + SNR‖hm‖2)2 +

SNR3‖hm‖2|h∗
mam|2

(1 + SNR‖hm‖2)2 · · ·

· · · − 2
SNR2|h∗

mam|2
1 + SNR‖hm‖2

+ SNR‖am‖2 (4.44)

= − SNR2|h∗
mam|2

1 + SNR‖hm‖2
+ SNR‖am‖2 (4.45)

Substituting this into log
(

SNR

f(α
MMSE

)

)

yields the desired computation rate.
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The above two theorems can be interpreted in the following sense. Each transmitter uses
a fixed (lattice) codebook with a specified rate. By setting αm = 1 and decoding to the
closest lattice point (in Euclidean distance), the relays could recover any linear equation so
long as the message rates are less than

log

(

SNR

1 + SNR‖hm − am‖2

)

(4.46)

However, if each relay scales its channel output by the appropriate α prior to decoding, then
higher rates are possible. This is because the channel output αmym =

∑

αmhmℓxℓ + αmzm

can be equivalently written as a channel output ỹm =
∑

h̃mℓxℓ + z̃m where h̃mℓ = αmhmℓ

and z̃m is i.i.d. circularly symmetric Gaussian noise with variance |αm|2. Since there is a
rate penalty both for noise and for non-integer channel coefficients, then α should be used
to optimally balance between the two as in Theorem 14. This is quite similar to the role
of the MMSE scaling coefficient used by Erez and Zamir to achieve the capacity of the
point-to-point AWGN channel in [42].
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Figure 4.3: Computation rate at SNR = 5dB for different coefficient vectors a ∈ {Z + jZ}2 for
channel h = [−1.1744 + j2.1496 1.2512 − j1.6335]T . The coefficient vector with the highest
rate is a = [1 − 1]T with R = 3.5436. Using standard multiple-access codes, this equation can
only be computed at rate RMAC = 2.5301.

We will often be interested in finding the coefficient vectors with the highest computation
rates. This does not require a search over all integer vectors as most vectors trivially give
zero rate.
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Lemma 11. For a given channel vector h ∈ CL, the computation rate from Theorem 14 is
zero if the coefficient vector a ∈ {Z + jZ}L satisfies:

‖a‖2 ≥ 1 + ‖h‖2SNR. (4.47)

Proof. Note that |h∗
mam|2 ≤ ‖hm‖2‖am‖2 by the Cauchy-Schwarz inequality. Using this, we

can upper bound the achievable rate from Theorem 14:

log

(

(

‖am‖2 − SNR |h∗
mam|2

1 + SNR‖hm‖2

)−1
)

(4.48)

= log

(

1 + SNR‖hm‖2

‖am‖2 + SNR‖hm‖2‖am‖2 − SNR |h∗
mam|2

)

≤ log

(

1 + SNR‖hm‖2

‖am‖2

)

. (4.49)

The result follows immediately.

In Figure 4.3, we have plotted the computation rates for coefficient vectors with non-zero
entries for an example channel of length 2. The vectors are sorted by descending rate and we
only include one of the four possible rotations of each vector, a,−a, ja, and −ja, as these
yield identical rates.

Remark 14. Note that each relay is free to decode more than one equation, so long as all the
appropriate computation rates are satisfied. In some cases, it may be beneficial to recover
a desired equation by first decoding equations of subsets of messages and then combining
them.

Example 8. Let the channel matrix take values on the complex integers, H ∈ {Z+jZ}M×L,
and assume that each relay wants a linear equation with a coefficient vector that corresponds
exactly to the channel coefficients, am = hm. Using Theorem 14 the achievable computation
rate is:

R = log

(

(

‖hm‖2 − SNR‖hm‖4

1 + SNR‖hm‖2

)−1
)

(4.50)

= log

(

1 + SNR‖hm‖2

‖hm‖2 + SNR‖hm‖4 − SNR‖hm‖4

)

(4.51)

= log

(

1

‖hm‖2
+ SNR

)

(4.52)

Remark 15. One interesting special case of Example 8 is computing the sum of codewords
w1 ⊕ w2 over a two-user Gaussian multiple-access channel y = x1 + x2 + z. To date, the
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best known achievable rate for this scenario is log
(

1
2

+ SNR
)

. Several papers (including our
own) have studied this special case and it is an open problem as to whether the best known
outer bound log (1 + SNR) is achievable [105; 101; 99]. Clearly, one can do better in the low
SNR regime using standard multiple-access codes to recover all the messages then compute
the sum to get 1

2
log (1 + 2SNR).

Example 9. Assume there are L transmitters and L relays. Receiver m wants to recover
the message from transmitter m. This corresponds to setting the desired coefficient vector
to be a unit vector am = [0 · · ·0 1 0 · · ·0]T where the mth element is 1 and the rest are 0.
Substituting this choice of am into Theorem 14, we get that the messages can be decoded if
their rates satisfy:

rm < log

(

(

1 − SNR|hmm|2
1 + SNR‖hm‖2

)−1
)

(4.53)

= log





(

1 + SNR
∑

ℓ 6=m |hmℓ|2
1 + SNR‖hm‖2

)−1


 (4.54)

= log

(

1 +
SNR|hmm|2

1 + SNR‖hm‖2

)

(4.55)

This is exactly the rate achievable with standard multiple-access techniques if the relays
ignore all other messages as noise. In Section 4.5, we will use successive cancellation of
lattice equations to show that if a relay wants all of the messages, any point in the Gaussian
multiple-access rate region is achievable with compute-and-forward.

The following example shows that it is useful to allow for a different rate at each trans-
mitter.

Example 10. We have L = 4 transmitters and M = 2 relays. The channel vectors are
h1 = [4 − 4 1 − 1]T and h2 = [1 1 2 2]T . The desired coefficient vectors are a1 = h1

and a2 = [0 0 1 1]. These equations can be reliably recovered so long as the message rates
satisfy:

rℓ <

{

log
(

1
34

+ SNR
)

ℓ = 1, 2

log
(

1
2

+ 4SNR

1+2SNR

)

ℓ = 3, 4
(4.56)

4.3.1 Proof of Theorem 13

We now provide a detailed description of our encoding and decoding scheme. The following
four steps are a basic outline:
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1. Each transmitter maps its message from the finite field onto an element of a nested
lattice code.

2. Lattice codewords are dithered and transmitted over the channel.

3. Receivers reliably decode a linear equation of the lattice codewords.

4. These lattice equations are mapped back to the finite field to get the desired linear
combination of messages.

We will first show how to go from messages to lattice codewords and from lattice equations
back to linear combinations of messages. Then, we prove that linear equations of lattice
codewords can be recovered at the desired computation rates. Finally, we will combine all
of these steps to get our compute-and-forward scheme.

The following lemma provides a mapping from messages over the finite field to points in
a nested lattice code.

Lemma 12. The function φℓ : Fkℓ
p → Λℓ ∩ V is one-to-one where:

φℓ(w) =
[

Lp−1g(Gℓw)
]

mod Λ. (4.57)

Proof. Since Gℓ is assumed to be full rank, it takes w to a unique point in Cℓ. Thus,
p−1g(Gℓw) maps w to a unique point in [0, 1)n. Lemma 9 shows that L is full rank so we
just need show that the mod Λ operation is a bijection between L[0, 1)n and V. Assume, for
the sake of a contradiction, ∃x, y ∈ L[0, 1)n, x 6= y such that [x] mod Λ = [y] mod Λ. This
implies that:

x − QΛ(x) = y − QΛ(y)

[L−1(x − QΛ(x))] mod Z
n = [L−1(y − QΛ(y))] mod Z

n

[L−1x] mod Z
n = [L−1y] mod Z

n

x = y

where the third step follows since for any λ ∈ Λ, L−1λ ∈ Zn. A contradiction has been
reached which, combined with the fact that |Fkℓ

p | = |Λℓ ∩ V| = pkℓ , shows that φℓ is a
one-to-one map.

Assume the messages are encoded onto nested lattice codes using φℓ from Lemma 12
and that the relays successfully recover a linear combination of lattice points. The following
lemma shows how to convert these lattice equations back to the desired messages equations.

Lemma 13. For messages wℓ ∈ Fkℓ
p zero-padded to length km, let u =

∑

qℓwℓ for some
coefficients qℓ ∈ Fp. Also, set tℓ = φℓ(wℓ) and v = [

∑

aℓtℓ] mod Λ for some aℓ ∈ Z such
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Chapter 4. Compute-and-Forward: AWGN Networks

that qℓ = g−1([aℓ] mod p). We have that u = φ−1
m (v) where

φ−1
m (v) = (GT

mGm)−1GT
mg−1

(

p[L−1v] mod Z
n
)

. (4.58)

Proof. Recall that since L is the generator matrix of Λ, L−1Λ = Zn. Also note that since wℓ

is zero-padded to length km, then multiplying by Gm has the same effect as multiplying the
original message by Gℓ. We have that:

[L−1v] mod Z
n (4.59)

=

[

L−1

L
∑

ℓ=1

aℓtℓ + L−1QΛ

(

L
∑

ℓ=1

aℓtℓ

)]

mod Z
n (4.60)

=

[

L−1
L
∑

ℓ=1

aℓtℓ

]

mod Z
n (4.61)

=

[

L
∑

ℓ=1

aℓ

(

p−1g(Gmwℓ) − L−1QΛ(Lp−1g(Gmwℓ))
)

]

mod Z
n (4.62)

=

[

L
∑

ℓ=1

aℓp
−1g(Gmwℓ)

]

mod Z
n (4.63)

Multiplying by p we get:

p[L−1v] mod Z
n =

[

L
∑

ℓ=1

aℓg(Gmwℓ)

]

mod pZ
n (4.64)

=

[

g

(

L
⊕

ℓ=1

qℓGmwℓ

)]

mod pZ
n (4.65)

= g

(

L
⊕

ℓ=1

qℓGmwℓ

)

(4.66)

Applying g−1 to move back to the finite field we get:

g−1
(

p[L−1v] mod Z
n
)

= Gm

L
⊕

ℓ=1

qℓwℓ (4.67)

Finally, note that
(

GT
mGm

)−1
GT

m is the left-inverse of Gm and we get that φ−1
m (v) = u.
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Chapter 4. Compute-and-Forward: AWGN Networks

The proofs for our lattice coding scheme will make use of random dither vectors which
are available at the transmitters and relays as common randomness. Since our scheme works
with respect to expectation over these vectors, then it is clear that (at least) one set of good
fixed dither vectors exists. See Appendix 4.A.3 for more details. The following lemma from
[42] captures a key property of dithered nested lattice codes.

Lemma 14 (Erez-Zamir). Let t be a random vector taking values on R
n. If d is independent

of t and uniformly distributed over V, then [t − d] mod Λ is also independent of t and
uniformly distributed over V.

Theorem 15. For any ǫ > 0 and n large enough, there exist nested lattice codes Λ ⊆ Λ1 ⊆
· · · ⊆ ΛL with rates R1, . . . , RL, such that for all channel vectors h1, . . . ,hM ∈ CL and
coefficient vectors a1, . . . , aM ∈ {Z + jZ}L, each relay can decode lattice equations vR

m,vI
m

where

vR
m =

[

L
∑

ℓ=1

Re(amℓ)t
R
ℓ − Im(amℓ)t

I
ℓ

]

mod Λ (4.68)

vI
m =

[

L
∑

ℓ=1

Im(amℓ)t
R
ℓ + Re(amℓ)t

I
ℓ

]

mod Λ (4.69)

of transmitted lattice points tR
ℓ , tI

ℓ ∈ Λℓ ∩ V with total probability of error ǫ so long as:

Rℓ < min
m:amℓ 6=0

(R(hm, am))+ (4.70)

R(hm, am) =
1

2
log

(

SNR

|αm|2 + SNR‖αmhm − am‖2

)

(4.71)

for some choice of αm ∈ C.

Proof. Each encoder is given two dither vectors, dR
ℓ and dI

ℓ , which are independently drawn
according to a uniform distribution over V. All dither vectors are made available to each
relay. Encoder ℓ generates a channel input:

xℓ = [tR
ℓ − dR

ℓ ] mod Λ + j[tI
ℓ − dI

ℓ ] mod Λ. (4.72)

By Lemma 14, the real and imaginary parts of xℓ are independent and uniform over V so
1
n
E[‖xℓ‖2] = SNR, with expectation taken over the dithers. In Appendix 4.A.3, we argue

that there exist fixed dithers that meet the power constraint set forth in (4.3).
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The channel output at relay m is:

ym =

L
∑

ℓ=1

hmℓxℓ + zm. (4.73)

Let ℓ(m) = max {ℓ : amℓ 6= 0} and let Qm denote the lattice quantizer for Λℓ(m). Note that
ℓ(m) is the highest rate message in the equation and thus the rate of the equation that relay
m wants to decode. Each relay computes:

sR
m = Re(αmym) +

L
∑

ℓ=1

Re(amℓ)d
R
ℓ − Im(amℓ)d

I
ℓ (4.74)

sI
m = Im(αmym) +

L
∑

ℓ=1

Im(amℓ)d
R
ℓ + Re(amℓ)d

I
ℓ . (4.75)

To get the estimates of the lattice equations, these vectors are quantized onto Λℓ(m) modulo
the coarse lattice Λ:

v̂R
m =

[

Qm(sR
m)
]

mod Λ (4.76)

v̂I
m =

[

Qm(sI
m)
]

mod Λ. (4.77)

Note that by (4.20) we have:

[

Qm(sR
m)
]

mod Λ =
[

Qm([sR
m] mod Λ)

]

mod Λ. (4.78)

We now show that [sR
m] mod Λ is equivalent to vR

m plus some noise terms.
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[sR

m] mod Λ

=

[

L
∑

ℓ=1

Re(αmhmℓ)Re(xℓ) − Im(αmhmℓ)Im(xℓ) + Re(amℓ)d
R

ℓ − Im(amℓ)d
I

ℓ + Re(αmzm)

]

mod Λ

=

[

L
∑

ℓ=1

Re(amℓ)(Re(xℓ) + dR

ℓ ) − Im(amℓ)(Im(xℓ) + dI

ℓ ) + Re ((αmhmℓ − amℓ)xℓ + αmzm)

]

mod Λ

=

[

L
∑

ℓ=1

Re(amℓ)([t
R

ℓ − dR

ℓ ] mod Λ + dR

ℓ ) − Im(amℓ)([t
I

ℓ − dI

ℓ ] mod Λ + dI

ℓ ) · · ·

· · · + Re

(

(αmhmℓ − amℓ)xℓ + αmzm

)

]

mod Λ (4.79)

=

[

L
∑

ℓ=1

Re(amℓ)t
R

ℓ − Im(amℓ)t
I

ℓ + Re

(

(αmhmℓ − amℓ)xℓ + αmzm

)

]

mod Λ (4.80)

=

[

vR

m + Re(αmzm) +

L
∑

ℓ=1

Re(αmhmℓ − amℓ)[t
R

ℓ − dR

ℓ ] mod Λ · · ·

· · · − Im(αmhmℓ − amℓ)[t
I

ℓ − dI

ℓ ] mod Λ

]

mod Λ (4.81)

Using similar manipulations, it can be shown that [sI
m] mod Λ is equivalent to vI

m plus
some noise terms as well. Using Lemma 14, we can show that the channels from vR

m to v̂R
m

and from vI
m to v̂I

m are equivalent in distribution to:

v̂R
m = [Qm(vR

m + zR
eq,m)] mod Λ (4.82)

v̂I
m = [Qm(vI

m + zI
eq,m)] mod Λ (4.83)

zR
eq,m = Re(αmzm) +

L
∑

ℓ=1

θR
mℓd̃

R
ℓ − θI

mℓd̃
I
ℓ (4.84)

zI
eq,m = Im(αmzm) +

L
∑

ℓ=1

θI
mℓd̃

R
ℓ + θR

mℓd̃
I
ℓ (4.85)

θR
mℓ = Re(αmhmℓ − amℓ) (4.86)

θI
mℓ = Im(αmhmℓ − amℓ) (4.87)

where each d̃R
ℓ and d̃I

ℓ is drawn independently and uniformly from V.
Using Lemma 15 from Appendix 4.A.1, we have that the densities of both zR

eq,m and zI
eq,m

are upper bounded (times a constant) by the density of an i.i.d. zero-mean Gaussian vector
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z∗m whose variance σ2
m approaches

Neq,m =
|αm|2

2
+

SNR

2

(

(θR
mℓ)

2 + (θI
mℓ)

2
)

(4.88)

=
|αm|2

2
+

SNR

2
‖αmhm − am‖2 (4.89)

as n → ∞. We also show in Appendix 4.A.2 that Λ1, Λ2, . . . , ΛL are AWGN good. From
Definition 46, this means that Pr(z∗m /∈ Vℓ(m)) goes to zero exponentially in n so long as the
volume-to-noise ratio satisfies µ(Λℓ(m), Pe) > 2πe. Since decoding is only in error if zR

eq,m or
zI

eq,m leave the fundamental Voronoi region of the fine lattice Λℓ(m) and the probability of
this event is upper bounded by Pr(z∗m /∈ Vℓ(m)) times a constant, we get that Pr(v̂R

m 6= vR
m)

and Pr(v̂I
m 6= vI

m) go to zero exponentially in n.
To ensure that the probability of error goes to zero for all desired equations, we get that

the volume of Vℓ(m) must satisfy

2πe < µ(Λℓ(m), Pe) =
(Vol(Vℓ(m)))

2/n

σ2
m

(4.90)

for all relays with amℓ 6= 0. If we set the volume of Vℓ as follows, the constraints are always
met:

Vol(Vℓ) >

(

2πe max
m:amℓ 6=0

σ2
m

)n/2

(4.91)

Recall that the rate of a nested lattice code is

Rℓ =
1

n
log

(

Vol(V)

Vol(Vℓ)

)

. (4.92)

Using (4.28), we can solve for the volume of the fundamental Voronoi region of the coarse
lattice:

Vol(V) =

(

SNR/2

G(Λ)

)n/2

(4.93)

It follows that we can achieve any rate less than:

Rℓ < min
m:amℓ 6=0

1

2
log

(

SNR/2

G(Λ)2πeσ2
m

)

(4.94)

while driving the probability of error to zero. Choose δ > 0. Since Λ is good for quantization,
for n large enough, we have that G(Λ)2πe < (1 + δ). We also know that σ2

m converges to
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wI
ℓ φℓ Dither

wR
ℓ φℓ Dither

j xℓ

Figure 4.4: Block diagram of the compute-and-forward encoder for transmitter ℓ, Eℓ. Messages
from a finite field are mapped onto a nested lattice code, dithered, and transmitted across the
channel.

Neq,m so for n large enough we have σ2
m < (1 + δ)Neq,m. Finally, we get that the rate of each

nested lattice code is at least:

min
m:amℓ 6=0

1

2
log

(

SNR

|αm|2 + SNR‖αmhm − am‖2

)

− log(1 + δ)

Thus, by choosing δ small enough, we can approach the computation rates as closely as
desired.

Remark 16. Note that (4.71) differs from (4.39) by a factor of 1
2
. This is because (4.71) is

the rate of the nested lattice code which operates in the reals and (4.39) is the rate of the
message which has a real and an imaginary component.

Remark 17. The proof of Theorem 15 only requires channel state information at the relays.
In particular, each relay only needs to know the channel coefficients from the transmitters
to itself hm.

We now put all of these ingredients together to prove Theorem 13. See Figures 4.4 and
4.5 for block diagrams of the encoding and decoding process.

Encoder ℓ maps its finite field message vectors, wR
ℓ ,wI

ℓ ∈ F
kℓ
p , to lattice points, tR

ℓ , tI
ℓ ∈

Λℓ ∩ V, using φℓ(·) from Lemma 12.

tR
ℓ = φℓ(w

R
ℓ ) (4.95)

tI
ℓ = φℓ(w

I
ℓ ) (4.96)
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Im
Remove

Dithers
[Qm( )] mod Λ φ−1

m uI
m

Re
Remove

Dithers
[Qm( )] mod Λ φ−1

m uR
m

αm

ym

Figure 4.5: Block diagram of the compute-and-forward decoder for relay m, Dm. The channel
observation is scaled and decomposed into its real and imaginary components. The decoder then
removes the dithers, quantizes onto the appropriate fine lattice, and takes the modulus over the
coarse lattice. This results in an equation of lattice codewords which is then mapped into an
equation of messages over the finite field.

Using Theorem 15, these lattice points are transmitted across the channel. Since the message
rates are twice the lattice code rates, rℓ = 2Rℓ, the relays can recover lattice equations

vR
m =

[

L
∑

ℓ=1

Re(amℓ)t
R
ℓ − Im(amℓ)t

I
ℓ

]

mod Λ (4.97)

vI
m =

[

L
∑

ℓ=1

Im(amℓ)t
R
ℓ + Re(amℓ)t

I
ℓ

]

mod Λ (4.98)

for any a1, . . . , aM ∈ {Z + jZ}L so long as

rℓ < min
m:aml 6=0

(

log

(

SNR

|αm|2 + SNR‖αmhm − am‖2

))+

for some α1, . . . , αM ∈ C. Finally, using φ−1
m from Lemma 13, each relay can decode the

desired linear combination of messages:

uR
m = φ−1

m (vR
m) =

L
⊕

ℓ=1

qR
mℓw

R
ℓ ⊕ (−qI

mℓ)w
I
ℓ (4.99)

uI
m = φ−1

m (vI
m) =

L
⊕

ℓ=1

qI
mℓw

R
ℓ ⊕ qR

mℓw
I
ℓ (4.100)
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4.3.2 Real-Valued Channels

We now restate our main results for real-valued channels.

Corollary 2. For real-valued channel vectors h1, . . . ,hM ∈ RL, the relays can recover any
set of linear equations with coefficient vectors a1, . . . , aM ∈ ZL so long as the message rates
are less than the computation rate

rℓ < min
m:aml 6=0

(R(hm, am))+ (4.101)

R(hm, am) =
1

2
log

(

SNR

α2
m + SNR‖αmhm − am‖2

)

(4.102)

for some choice of αm ∈ R.

The coding scheme is quite similar to that for complex-valued channels: encoder ℓ maps
its finite field message vector, wℓ ∈ F

kℓ
p , to a lattice point, tℓ ∈ Λℓ ∩ V, using φℓ(·) from

Lemma 12.

tℓ = φℓ(wℓ) (4.103)

It follows from the proof of Theorem 15 that if these lattice points are transmitted across
the channel then each relay can recover a lattice equation

vm =

[

L
∑

ℓ=1

amℓtℓ

]

mod Λ (4.104)

for any a1, . . . , aM ∈ ZL so long as the message rates satisfy

rℓ < min
m:aml 6=0

1

2

(

log

(

SNR

α2
m + SNR‖αmhm − am‖2

))+

for some α1, . . . , αM ∈ R. Finally, using φ−1
m from Lemma 13, each relay can decode the

desired linear combination of messages:

um = φ−1
m (vI

m) =
L
⊕

ℓ=1

qmℓwℓ (4.105)

Corollary 3. For a given hm ∈ RL, am ∈ ZL, the computation rate given in Corollary 2 is
uniquely maximized by choosing αm to be the MMSE coefficient

α
MMSE

=
SNR hT

mam

1 + SNR‖hm‖2
(4.106)
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which results in a computation rate

R(hm, am) =
1

2
log

(

(

‖am‖2 − SNR (hT
mam)2

1 + SNR‖hm‖2

)−1
)

4.3.3 Multi-Stage Networks

The framework developed in this section can easily be applied to AWGN networks with more
than one layer of relays. Once the first layer has recovered its equations, it can just treat
them as a set of messages for the second layer. The second layer simply decodes equations
with coefficients that are close to the channel coefficients. This process repeats until the
equations reach a destination. Since these layered equations are all linear, they can be
expressed as linear equations over the original messages.

4.4 Recovering Messages

The primary goal of compute-and-forward is to enable higher achievable rates across an
AWGN network. Relays decode linear equations of transmitted messages and pass them
towards the destination nodes which, upon receiving enough equations, attempt to solve for
their desired messages. In this section, we give sufficient conditions for recovering messages
from a given set of equations.

It will be useful to represent the equations in matrix form. Let QR = {qR
mℓ} and QI =

{qI
mℓ}. Now let Q denote the coefficient matrix where

Q =

[

QR −QI

QI QR

]

. (4.107)

It is clear that we can write the linear combinations of messages uR
m and uI

m as



















uR
1
...

uR
M

uI
1
...

uI
M



















= Q



















wR
1
...

wR
M

wI
1

...
wI

M



















. (4.108)

Using this representation, we can easily obtain the following two theorems for recovering
messages.
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Theorem 16. Given L linear combinations of messages with coefficient matrix Q ∈ F2L×2L
p ,

a destination can recover all messages if Q is full rank over Fp.

The proof follows by noting that if Q is full rank, the destination can simply apply the
inverse matrix to the vector of equations in (4.108) to recover the original messages.

Recall that δℓ is the unit vector with 1 in the ℓth entry and 0 elsewhere.

Theorem 17. Given K linear combinations of messages with coefficient matrix Q ∈ F2K×2L
p ,

a destination can recover the message from encoder ℓ if there exists a 2× 2K matrix Φ such
that

ΦQ =

[

δT
ℓ

δT
ℓ+M

]

(4.109)

Again, it is clear from (4.108) that applying Φ to the vector of equations allows the
destination to recover wR

ℓ and wI
ℓ since they occupy positions ℓ and ℓ + M in the vector of

messages.

Remark 18. These conditions can also be easily stated in terms of the coefficient vectors
a1, . . . , aM ∈ {Z + jZ}L. First set A = [a1 · · · aM ]T and let Ã denote its real-valued
decomposition:

Ã =

[

Re(A) −Im(A)
Im(A) Re(A)

]

. (4.110)

Now one can replace Q with Ã in Theorems 16 and 17 so long as all operations are taken
modulo p.

It may be more convenient to evaluate the rank of the coefficients directly on the complex
field. This is possible, given some assumptions on the equation coefficients.

Theorem 18. The destination is given L linear equations with coefficient vectors
a1, . . . , aL ∈ F

2L×2L
p . Assume that magnitude of each equation coefficient is upper bounded

by a constant, |amℓ| < aMAX . Then, there exists an n0 such that for all blocklengths n ≥ n0,
the destination can recover all messages if A = [a1 · · · aL]T is full rank over the complex
field.

Proof. A is full rank over the complex field if and only if its real-valued decomposition Ã

from (4.110) is full rank over the reals. Recall that a matrix is full rank only if its determinant
is non-zero. We will now show that for sufficiently large p, if the determinant of Ã is non-zero
over the reals it is non-zero modulo p. The determinant over R can be written as:

det(Ã) =
∑

σ∈S
sgn(σ)

2L
∏

m=1

ãmσ(m) (4.111)
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where S is the set of all permutations of {1, 2, . . . , 2L}, sgn(σ) is the signature of the per-
mutation which is equal to 1 if it is an even permutation and −1 if it is an odd permutation,
and ãmℓ are the entries of Ã. Using the bound on amℓ and the fact that |S| = (2L)!, the
determinant is lower and upper bounded as follows:

−(2L)!(aMAX)2L ≤ det(Ã) ≤ (2L)!(aMAX)2L (4.112)

The determinant under modulo p arithmetic can be written as:

[

∑

σ∈S
sgn(σ)

2L
∏

m=1

ãmσ(m)

]

mod p (4.113)

Since the underlying field size p → ∞ as n → ∞, for large enough blocklength n, we can
use the bounds on det(Ã) to show that the determinant modulo p does not wrap around
zero. This immediately implies that it is zero if and only the determinant is zero over the
reals.

Remark 19. Theorem 18 can also be stated in terms of bounds on the channel coefficients.
For instance, if |hmℓ| < hMAX, then we can use the bound in Lemma 11, to show that |amℓ| is
bounded as well. More generally, the result holds if the channel coefficients are drawn from a
distribution such that Pr (∪mℓ{|hmℓ| > hMAX}) → 0 as hMAX → ∞. In this case, we choose
hMAX such that this probability is very small and can be absorbed into the total probability
of error for our scheme. The result follows by taking an appropriate increasing sequence of
hMAX.
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w2 E2
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...
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ŵ1

ŵ2
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Figure 4.6: A linear relay network where compute-and-forward is beneficial.

Example 11. Consider the AWGN network in Figure 4.6. Encoder E1, . . . , EM send messages
through a channel H to relays R1, . . . ,RM . Each relay has a point-to-point AWGN channel
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to the final decoder D which wants to recover all of the messages at the highest possible
symmetric rate. Each channel input has power at most SNR and all noise terms are i.i.d.
circularly symmetric Gaussian with variance 1. Let H be an M ×M Hadamard matrix. (We
assume that M is chosen such that a Hadamard matrix of that size exists. ) Recall that a
Hadamard matrix has ±1 entires such that HHT = MI.

Using Theorems 14 and 18 and setting the coefficient vectors equal to the channel vectors,
am = hm, compute-and-forward can achieve

R
COMP

= log

(

1

M
+ SNR

)

(4.114)

bits per channel use per user since H is full rank. It can be shown that decode-and-
forward, amplify-and-forward, and compress-and-forward (with i.i.d. Gaussian codebooks)
can achieve

R
DF

=
1

M
log (1 + MSNR) (4.115)

R
AF

= R
CF

= log

(

1 + SNR

(

SNR

MSNR + 1

))

(4.116)

bits per channel use per user. Compute-and-forward is the dominant strategy except at very
low SNR and it approaches the upper bound R

UPPER
= log (1 + SNR) as SNR → ∞. As M

increases the rates of decode-and-forward, amplify-and-forward, and compress-and-forward
go to 0.

Example 12. There are 3 destinations which each want to decode the message associated
with their index. Assume that the underlying field size is p = 3. The first destination
receives equations with coefficient vectors a1 = [4 2 2]T and a2 = [5j − 1 − 1]T , the second
receives b1 = [1 2 1]T and b2 = [−1 0 − 1]T , and the third receives c = [0 0 1 + j]T . The
finite field matrix representation of these equations is:

QR
a =

[

1 2 2
0 2 2

]

QI
a =

[

0 0 0
2 0 0

]

(4.117)

QR
b =

[

1 2 1
2 0 2

]

QI
b =

[

0 0 0
0 0 0

]

(4.118)

QR
c =

[

0 0 1
]

QI
c =

[

0 0 1
]

(4.119)

Using Theorem 17 with the following matrices, each destination can recover its desired
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message:

Φa =

[

2 1 2 1
1 2 2 1

]

Φb =

[

2 2 0 0
0 0 2 2

]

(4.120)

Φc =

[

2 2
1 2

]

(4.121)

4.5 Successive Cancellation

Once a relay has recovered an equation of messages, it can subtract it from its channel ob-
servation. This results in a residual channel output from which it can extract a different
equation, potentially with a higher rate than possible over the original channel. One key
difference from standard applications of successive cancellation is that the relay cannot com-
pletely cancel out all channel inputs associated with the decoded equation. This is because
in the first step, it only decodes an integer combination of the messages, which is often not
the same as the linear combination taken by the channel.

We demonstrate an achievable region for decoding two different equations using successive
cancellation at each relay. This can be easily generalized to more than two equations.

Theorem 19. For channel vectors h1, . . . ,hM ∈ CL, the relays can first decode any set
of linear equations with coefficient vectors a1, . . . , aM ∈ {Z + jZ}L and then any set with
coefficient vectors b1, . . . ,bM ∈ {Z + jZ}L so long as the message rates are less than the
computation rates:

rℓ < min

(

min
m:amℓ 6=0

R1(hm, am), min
m:bmℓ 6=0

R2(hm, am,bm)

)

R1(hm, am) = log

(

SNR

|αm|2 + SNR‖αmhm − am‖2

)

R2(hm, am,bm) =

{

RB1, am = δi for some i,

RB2, otherwise.

RB1 = log

(

SNR

|βm|2 + SNR
∑

ℓ 6=i |βmhmℓ − bmℓ|2

)

RB2 = log

(

SNR

|βm|2 + SNR‖βmhm − τmam − bm‖2

)

for some choice of αm, βm ∈ C and τm ∈ Z + jZ.

73



Chapter 4. Compute-and-Forward: AWGN Networks

Proof. All messages are mapped on to lattice points, dithered, and transmitted across the
channel as in the proof of Theorem 13. The first set of equations can be reliably decoded
using the procedure from Theorem 13 as well. Now, we condition on the event that each
relay has successfully recovered the equation with coefficient vectors am.

Consider the case where the first coefficient vector at relay m is a unit vector am = δi.
This means that relay m can successfully decode the message (wR

i ,wI
i ) from encoder i. It

can then replicate the encoding process to get xi. Now, the relay computes

ym − hmixi =
∑

ℓ 6=i

hmℓxℓ + zm (4.122)

and uses this as a channel output for Theorem 13 to get the equation with coefficient vector
b̃m which is equal to bm except that it has 0 in the ith position. It then adds wR

i and wI
i to

the recovered equation to get bm.
If am is not a unit vector, the decoder has access to the lattice equations:

vR
m =

[

L
∑

ℓ=1

Re(amℓ)t
R
ℓ − Im(amℓ)t

I
ℓ

]

mod Λ (4.123)

vI
m =

[

L
∑

ℓ=1

Im(amℓ)t
R
ℓ + Re(amℓ)t

I
ℓ

]

mod Λ (4.124)

From which it computes

ṽR
m =

[

vR
m −

(

L
∑

ℓ=1

Re(amℓ)d
R
ℓ − Im(amℓ)d

I
ℓ

)]

mod Λ

=

[

L
∑

ℓ=1

Re(amℓxℓ)

]

mod Λ (4.125)

ṽI
m =

[

vR
m −

(

L
∑

ℓ=1

Im(amℓ)d
R
ℓ + Re(amℓ)d

I
ℓ

)]

mod Λ

=

[

L
∑

ℓ=1

Im(amℓxℓ)

]

mod Λ (4.126)
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ỹR
m = [Re(βmym) − Re(τm)ṽR

m + Im(τm)ṽI
m] mod Λ

=

[

Re

(

L
∑

ℓ=1

(βmhmℓ − τmamℓ)xℓ + zm

)]

mod Λ

ỹI
m = [Im(βmym) − Im(τm)ṽR

m − Re(τm)ṽI
m] mod Λ

=

[

Im

(

L
∑

ℓ=1

(βmhmℓ − τmamℓ)xℓ + zm

)]

mod Λ

Now we can follow the steps in the proof of Theorem 15. In (4.74), replace Re(αmym) with
ỹR

m and in (4.75), replace Im(αmym) with ỹI
m. In all steps of the proof, we substitute amℓ

with bmℓ, αmhmℓ with βmhmℓ−τmamℓ, and, if has not already been replaced, αm with βm.

Remark 20. Given, am, bm, and τm, we can solve for the optimal βm following the steps of
the proof of Theorem 14.

Example 13. There are L = 4 transmitters and M = 1 relay and the channel vector is
h1 = [10 10 8j 8j]T . The relay wants to first decode the equation with coefficient vector
a1 = [1 1 j j]T and then with coefficient vector b1 = [1 1 − j − j]T . Using Theorem 19,
this is possible if the message rates satisfy:

rℓ < min

(

log

(

1

4
+

81SNR

1 + 4SNR

)

, log

(

1

328
+ SNR

))+

by using τ1 = 9 so that h1 − τ1a1 = b1. Note that if we applied Theorem 13 to decode b1,
we would not be able to get a positive rate.

Remark 21. As noted in Remark 14, it may be more efficient to recover an equation
piecewise by recovering equations of subsets of messages and taking an appropriate linear
combination of these equations. Theorem 19 is strictly better for this process than Theorem
13.

Assume there is only one relay and that it wants to recover all transmitted messages.
This is the standard Gaussian multiple-access problem whose capacity region is well-known
to be the set of all rate tuples (r1, . . . , rL) satisfying:

∑

ℓ∈S

rℓ < log

(

1 + SNR
∑

ℓ∈S

|h1ℓ|2
)

(4.127)

for all subsets S ⊆ {1, 2, . . . , L} [29, Theorem 14.3.5]. We now show that compute-and-
forward includes the multiple-access capacity region as a special case. First, we consider
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the corner point of the capacity region associated with decoding the messages in ascending
order. From Example 9, this is possible if:

r1 < log

(

1 +
|h11|2SNR

1 + SNR
∑L

i=2 |h1i|2

)

. (4.128)

Using Theorem 19, the relay removes x1 from the channel observation to get
∑L

ℓ=2 h1ℓxℓ +z1.
It then repeats the above procedure for each message in ascending order to get:

rℓ < log

(

1 +
|h1ℓ|2SNR

1 + SNR
∑L

i=ℓ+1 |h1i|2

)

(4.129)

This is clearly a corner point of the multiple-access capacity region. By changing the decoding
order, any corner point is achievable. Note that any point on the boundary of the capacity
region is achievable by time-sharing between two corner points.

4.6 Superposition

In the previous section, we considered the scenario where each relay decodes several equa-
tions, but the transmitters each use a single codebook (as in Theorem 13). However, when
decoding multiple equations, it is sometimes useful to superimpose multiple codebooks. We
investigate this possibility in this section.

We will assume that there are two levels A and B and that each relay wants to a recover
an equation from both levels. (If it is not interested in a level, it can just set its desired
coefficients to zero.)

Each encoder has two messages wℓA = (wR
ℓA,wI

ℓA) and wℓB = (wR
ℓB,wI

ℓB) with rates rℓA

and rℓB respectively. Each relay wants to decode equations uR
mA,uI

mA and uR
mB,uI

mB with
coefficient vectors am and bm respectively. In the theorem below, we give achievable rates
for this scenario by combining superposition and successive cancellation. The basic idea is to
superimpose two lattice codes at each receiver (in both the real and imaginary dimensions)
scaled by γℓA and γℓB to ensure that the power constraint is met.

Theorem 20. Choose γℓA, γℓB such that |γℓA|2+|γℓB|2 = 1. For channel vectors h1, . . . ,hM ∈
C

L, the relays can first decode any set of linear equations over wℓA with coefficient vectors
a1, . . . , aM ∈ {Z+jZ}L and then any set of linear equations over wℓB with coefficient vectors
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b1, . . . ,bM ∈ {Z + jZ}L so long as the message rates are less than the computation rates:

hmA = [γ1Ahm1 · · · γLAhmL]T

hmB = [γ1Bhm1 · · · γLBhmL]T

rℓA < min
m:amℓ 6=0

(R1(hmA,hmB, am))+

R1(hmA,hmB, am) = log

(

SNR

|αm|2(1 + SNR‖hmB‖2) + SNR‖αmhmA − am‖2

)

rℓB < min
m:bmℓ 6=0

(R2(hmA,hmB, am,bm))+

R2(hmA,hmB, am,bm) =

{

RB1, am = δi for some i,

RB2, otherwise.

RB1 = log

(

SNR

|βm|2(1 + SNR
∑

ℓ 6=i |γℓAhmℓ|2) + SNR‖βmhmB − bm‖2

)

RB2 = log

(

SNR

|βm|2 + SNR‖βmhmA − τmam‖2 + SNR‖βmhmB − bm‖2

)

for some choice of αm, βm ∈ C and τm ∈ Z + jZ.

Proof. Choose a set of nested lattices Λ, Λ1A, . . . , ΛLA, Λ1B, . . . , ΛLB with appropriate rates.
Each encoder maps its messages onto lattices and dithers them with dR

ℓA,dI
ℓA,dR

ℓB,dI
ℓB gen-

erated independently and uniformly from V:

tR
ℓA = φℓA(wR

ℓA) tI
ℓA = φℓA(wI

ℓA) (4.130)

tR
ℓB = φℓB(wR

ℓB) tI
ℓB = φℓB(wI

ℓB) (4.131)

xℓA = [tR
ℓA − dR

ℓA] mod Λ + j[tI
ℓA − dI

ℓA] mod Λ (4.132)

xℓB = [tR
ℓB − dR

ℓB] mod Λ + j[tI
ℓB − dI

ℓB] mod Λ (4.133)

It then combines xℓA and xℓB according to γℓA and γℓB which guarantees the power constraint
is met:

xℓ = γℓAxℓA + γℓBxℓB (4.134)

1

n
E[‖xℓ‖2] = (|γℓA|2 + |γℓB|2)SNR = SNR (4.135)

At each receiver, we can just treat the channel output as if it came from 2L transmitters
labelled 1A, . . . , LA, 1B, . . . , LB. We can write the channel to receiver m and the desired
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coefficient vectors as:

h̃m =

[

hmA

hmB

]

ãm =

[

am

0

]

b̃m =

[

0

bm

]

. (4.136)

We can now directly apply Theorem 19 with h̃m, ãm, and b̃m to get the desired result.

Remark 22. In order to focus on concepts and keep notation manageable, we have chosen
to present our result as above in Theorem 20. There are several immediate extensions,
including:

• More than two levels.

• Allowing a different decoding order at each relay.

• Equations spanning different levels.

Example 14. There are L = 3 transmitters and M = 1 relay and the channel vector is
h1 = [1 1

√
2]T . Levels A and B that use scaling coefficients γ1A = γ2A = 0, γ1B = γ2B = 1,

and γ3A = γ3B = 1/
√

2. The relay wants to first decode the equation with coefficient vector
a1 = [0 0 1]T from level A and then the equation with coefficient vector b1 = [1 1 1]T from
level B. Using Theorem 20, this is possible if the message rates satisfy:

r3A < log

(

1 +
SNR

1 + 3SNR

)

(4.137)

rℓB <

(

log

(

1

3
+ SNR

))+

ℓ = 1, 2, 3. (4.138)

Remark 23. It can be shown that nested lattice codes can approach the capacity region of
the standard Gaussian broadcast problem. See [162] for more details.

Remark 24. For an application of this superposition scheme to a backhaul-limited cellular
uplink network, see [111].

4.7 Upper Bound

In this section, we give a simple upper bound on the computation rate through a genie-aided
argument. This bound does not match our achievable strategy in general and it may be
possible to construct tighter outer bounds by taking into account the mismatch between the
desired function and the function naturally provided by the channel.
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Theorem 21. Assume the channel between the transmitters and the relays is
p(y1, . . . , yM |x1, . . . , xL). If the relays, want equations with coefficient vectors
a1, . . . , aM ∈ {Z + jZ}L, the message rates are upper bounded as follows:

rℓ ≤ min
m:amℓ 6=0

I(Xℓ; Ym|X1, . . . , Xℓ−1, Xℓ+1, . . . , XL)

For the Gaussian channel model considered in this chapter, with channel vectors
h1, . . .hM ∈ C

L, this specializes to:

rℓ ≤ min
m:amℓ 6=0

log
(

1 + |hmℓ|2SNR
)

(4.139)

Proof. To each relay m for which amℓ 6= 0, we provide all messages except that from encoder
ℓ as genie-aided side-information. Now, we are left with a multicasting problem from encoder
ℓ to all relays with amℓ 6= 0. Clearly, the multicast rate is upper bounded by the lowest rate
link. For the Gaussian case, it is easy to show that the mutual information expressions are
maximized by the Gaussian distribution.

Appendix 4.A Proofs

4.A.1 Upper Bound on Noise Densities

In this appendix, we demonstrate that the densities of the noise terms in Theorem 15 are
upper bounded by the density of an i.i.d. Gaussian vector. The proof follows that of Lemmas
6 and 11 from [42].

Lemma 15. Let z ∼ N (0, 1
2
In×n) and let dℓ be independently generated according to a

uniform distribution over V. Also, let σ2
B denote the second moment of an n-dimensional ball

whose radius is equal to the covering radius r
COV

of Λ and let z∗ℓ be independently generated
according to N (0, σ2

BI
n×n). Now, let

zeq = αz +

L
∑

ℓ=1

θℓdℓ (4.140)

where α, θℓ ∈ R. There exists an i.i.d. Gaussian vector

z∗ = αz +

L
∑

ℓ=1

θℓz
∗
ℓ (4.141)
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with variance σ2 satisfying

σ2 ≤ α2

2
+

(

r
COV

r
EFFEC

)2
SNR

2

L
∑

ℓ=1

θ2
ℓ (4.142)

such that the density of zeq is upper bounded as follows:

fzeq
(z) ≤ eLc(n)nfz∗(z) (4.143)

c(n) = ln

(

r
COV

r
EFFEC

)

+
1

2
ln 2πeG

(n)
B +

1

n
(4.144)

where G
(n)
B is the normalized second moment of an n-dimensional ball and r

EFFEC
is the

effective radius of Λ.

Proof. First, we will show that the density of zeq is upper bounded as desired. From Lemma
11 in [42], we have that:

fdℓ
(z) ≤ ec(n)nfz∗

ℓ
(z) (4.145)

Since z,d1, . . . ,dL are independent, we can write the density of zeq as an n-dimensional
convolution of the densities of its components:

fzeq
(z) = fαz(z) ∗ fθ1d1

(z) ∗ · · · ∗ fθLdL
(z) (4.146)

Similarly, we can write the density of z∗ as:

fz∗(z) = fαz(z) ∗ fθ1z
∗
1
(z) ∗ · · · ∗ fθLz∗

L
(z) (4.147)

Since probability densities are non-negative, we can use the upper bound in (4.145) to get:

fαz(z) ∗ fθℓdℓ
(z) ≤ fαz(z) ∗ ec(n)nfθℓz

∗
ℓ
(z) (4.148)

Applying this idea L times to fzeq
(z) yields:

fzeq
(z) ≤ eLc(n)nfz∗(z) (4.149)

We must now upper bound the variance of z∗. By Definition 42, Vol(B(r
EFFEC

)) = Vol(V).
Recall that a ball has the smallest second moment for a given volume. Let b be generated
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according to the uniform distribution over B(r
COV

). It follows that

SNR

2
=

1

n
E
[

‖dℓ‖2
]

(4.150)

≥ 1

n
E

[

∥

∥

∥

∥

r
EFFEC

r
COV

b

∥

∥

∥

∥

2
]

=

(

r
EFFEC

r
COV

)2

σ2
B (4.151)

Finally, we get:

σ2 =
1

n
E
[

‖αz‖2
]

+
1

n

L
∑

ℓ=1

E
[

‖θℓz
∗
ℓ‖2
]

(4.152)

=
α2

2
+ σ2

B

L
∑

ℓ=1

θ2
ℓ (4.153)

≤ α2

2
+

(

r
COV

r
EFFEC

)2
SNR

2

L
∑

ℓ=1

θ2
ℓ (4.154)

Since and
r
COV

r
EFFEC

→ 1 and G
(n)
B → 1

2πe
as n → ∞, c(n) → 0 as n → ∞. AWGN good

lattices have a positive error exponent for i.i.d. Gaussian noise with variance smaller than
the second moment of the lattice so this means that the probability of error can be driven
to zero as the blocklength increases.

4.A.2 Fine Lattices are AWGN Good

We now show that the fine lattices can recover from i.i.d. Gaussian noise.

Lemma 16. Λ1, Λ2, . . . , ΛL are AWGN good with probability that goes to 1 as n → ∞ so
long as n

p
→ 0.

Proof. Let zℓ denote an i.i.d. Gaussian vector with zero-mean and any variance σ2
ℓ such that

the volume-to-noise ratio for Λℓ is greater than 2πe. Consider the following channel from
xℓ ∈ V to x̂ℓ ∈ V:

x̂ℓ = [QΛℓ
(xℓ + zℓ)] mod Λ (4.155)

and let Pe,ℓ = Pr(x̂ℓ 6= xℓ). In Appendix B of [42], it is shown that the random coding
error exponent for this channel (with xℓ generated uniformly over V) is equal to the Poltyrev
exponent. This means that Pe,ℓ decreases exponentially with n for volume-to-noise ratio
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greater than 2πe. Appendix C of [42] shows that the same performance is possible if xℓ is
drawn according to a uniform distribution over {p−1Λ} ∩ V and n

p
→ 0.

From Lemma 10, we know that the marginal distribution of each element of Λℓ ∩ V is
uniform over {p−1Λ}∩V. Furthermore, all points in the set Λℓ∩V are pairwise independent.
This is all that is required to apply the union bound and obtain the same performance as
i.i.d. inputs over {p−1Λ} ∩ V in terms of the error exponent.

Thus, the probability that Λℓ is AWGN good (with the Poltyrev error exponent) goes
to 1 as n → ∞. It follows from a simple union bound that Λ1, . . . , ΛL are simultaneously
AWGN good with high probability as n → ∞.

4.A.3 Fixed Dithers

We now show that there exist fixed dithers that are appropriate for our coding scheme. We
begin by showing that with high probability over the dither vectors, the power constraint
can be met (since in the proof of Theorem 15 this is only done in expectation).

Choose δ > 0. Scale the second moment of the coarse lattice to be σ2
Λ = SNR

2
−δ
(

r
EFFEC

r
COV

)2

and consider the real part of the channel input from encoder ℓ, [tR
ℓ − dR

ℓ ] mod Λ. By
Lemma 14, this is uniformly distributed over V. Let d be a vector drawn from the uniform
distribution over V and z∗ be an i.i.d. Gaussian vector with mean 0 and variance σ2 =
(

r
COV

r
EFFEC

)2

σ2
Λ. Since z∗ is i.i.d. Gaussian, by the weak law of large numbers

P

(∣

∣

∣

∣

1

n
‖z∗‖2 − σ2

∣

∣

∣

∣

> δ

)

≤ 2σ4

δn
. (4.156)

From Lemma 11 in [42], we have that:

fd(z) ≤ ec(n)nfz∗(z). (4.157)

with c(n) as in (4.144). Note that σ2 =
(

r
COV

r
EFFEC

)2
SNR

2
− δ so the probability that d violates

the power constraint can be upper bounded in terms of σ2:

P

(

1

n
‖d‖2 >

SNR

2

)

≤ P

(∣

∣

∣

∣

1

n
‖d‖2 − σ2

∣

∣

∣

∣

> δ

)

(4.158)

≤ ec(n)n 2σ4

δn
(4.159)

This goes to 0 as n goes to infinity so, by the union bound, all channel inputs obey the power
constraint with high probability. Since Λ is covering good and the rates are continuous in
the second moment of the coarse lattice, we can choose a decreasing sequence of δ that
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approaches the rates achieved when σ2
Λ = SNR

2
.

We note that the probability of decoding error in Theorem 15 goes to zero as n increases
when using random dithers. Taking a union bound over this error event and the event that
any dither exceeds a power constraint, we get that for n large enough there is (at least) one
good fixed set of dither vectors.

83



Chapter 5

Communication Network Applications

The two previous chapters showed how to send functions of messages efficiently through
the use of computation codes. In a communication network, we are often only interested
in relaying messages to their destinations, not in computing functions. However, only the
destinations need to learn their messages, all other relay nodes can follow any strategy that
helps achieve this objective. In a wireless network, the usual approach is to use channel
codes so that relays can send messages to one another. This forms a bit pipe network on top
of which the messages can be routed from source to destination. Unfortunately, establishing
these bit pipes can be quite costly as the channel codes must treat interference as noise.
Our approach is to apply compute-and-forward and and have relays decode functions of the
messages with coefficients chosen to match the fading realization. These equations are sent
towards the destinations which can solve for the original messages after collecting enough
equations.

One key advantage of compute-and-forward is that it works with the noisy linear combi-
nations provided by the wireless medium. Another is that it is a digital strategy: relays send
out message vectors over a finite field and recover equations over the same field. The same
cannot be said for other cooperative strategies such as amplify-and-forward and compress-
and-forward. These analog strategies work directly with the received waveforms to extract
gains. While they perform quite well in the high SNR regime, analog strategies suffer as
noise builds up with each retransmission. For larger networks at moderate SNR values, it
is better to remove the noise at each stage using compute-and-forward. Moreover, from an
engineering standpoint, we prefer modular solutions that fit into the network protocol stack.
The current network architecture relies on a digital representation in bits at all layers above
the physical layer. With compute-and-forward, we can nearly retain this representation by
working with equations of bits at the physical layer. Analog strategies do not seem to admit
such a representation and might require a cross-layer architecture. Thus, we would poten-
tially have to sacrifices the advantages of modularity to improve the end-to-end throughput
[70].
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We will explore several different network scenarios and compare the performance of
compute-and-forward to other cooperative strategies. First, we consider a cellular uplink
system with cooperating cell-sites. Next, we look at a two-user distributed MIMO system.
Afterwards, we show how to apply compute-and-forward for network coding over interfering
links.

5.1 Backhaul Constrained Cellular Uplink

A major challenge in cellular communication is efficient interference management for the
uplink channel. Each basestation in a cellular deployment receives signals from users within
its cell as well as interference in the form of signals from users in adjacent cell sites. Clas-
sical communication schemes attempt to mitigate the effects of this interference either by
orthogonalization or interference averaging. Significant gains are possible over these strate-
gies by allowing some degree of cooperation between the basestations, which is known as
joint multiple cell-site processing.

Wyner’s original paper on cellular systems considers full cooperation between the basesta-
tions and finds the capacity in the nonfading, symmetric case [157]. Somekh et al. extended
this result to the flat fading case and demonstrated that out-of-cell interference can be com-
pletely eliminated by joint processing [146]. Both of these works assume that the “backhaul
capacity” from each cell-site to the remote central processor (RCP) is infinite. For most
networks, this assumption may not hold; however, it does establish a promising target for
the limited backhaul case. Recent work by Sanderovich et al. gave an achievable strategy
based on compress-and-forward (also known as estimate-and-forward [33]) and decode-and-
forward for the limited backhaul case [131]. They also showed that compress-and-forward
carries an additional benefit: basestations can be oblivious to the codebooks of neighboring
cell-sites. An overview of this work can be found in [138]. Marsch and Fettweis have also
recently extended this strategy to include superposition coding [92].

We will use lattice computation codes to allow the cell-sites to decode equations of code-
words and forward these to the RCP, which, given a full rank system of such equations,
can recover the original messages.1 This strategy strikes a balance between noise removal
at the basestations and joint decoding at the RCP. Recall that in compute-and-forward,
each receiver decodes an equation with integer coefficients that approximate the channel
coefficients. The remainder from this integer approximation acts like additional noise at the
receiver. Here, we will use superposition to reduce this approximation penalty for Wyner’s
cellular model. In our scheme, every other user employs some of its power towards a pri-
vate message. By changing the power allocation, we can effectively steer the interference
parameter to increase the compute-and-forward rate.

1The material in this section originally appeared in [111].
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ŵ0, ŵ1, . . . , ŵM

Figure 5.1: Idealized cellular uplink network from users to cell-sites to the remote central processor
(RCP).

5.1.1 Problem Statement: Wyner’s Cellular Model

We will focus on the model introduced by Sanderovich, Somekh and Shamai in [131] (see
Figure 5.1) which is a variation on the classical Wyner model [157]. Consider an idealized
cellular uplink network where M cell-sites are equally spaced on a circle. We assume that
only one user is active in a cell per time slot and that cell-sites only see interference from a
neighboring cells’ users. The users are given n channel uses to reliably convey their messages.
The complex signal Xm[i] is transmitted by the mth user at time i and is power-limited in
the usual way, 1

n

∑n
i=1 |Xm[i]|2 ≤ P . The signal seen by the mth cell-site at time i is:

Ym[i] = Xm[i] + α(X[m−1]M [i] + X[m+1]M [i]) + Zm[i]

where [m]M , m mod M , α ∈ [0, 1] is the inter-cell interference level, and Zm[i] is i.i.d.
CN (0, N) noise. For notational convenience, we set SNR , P

N
to be the signal-to-noise ratio

per user. Unlike the Wyner model, where unlimited backhaul is available, in the Sanderovich
et al. model we use here, the cell-sites have a lossless backhaul link to the RCP with rate
B bits per channel use [131]. We focus on the symmetric case where each user targets the
same rate.

Each user is equipped with an encoding function, Em : {1, 2, . . . , 2nR}, that maps its
messages wm into channel input Xn

m. Each cell-site has a relaying function, Rm : Cn →
{1, 2, . . . , 2nB}, that it uses to communicate its observation Y n

m to the RCP. The RCP has
a decoding function, D : {1, 2, . . . , 2nB}M → {1, 2, . . . , 2nR}M , to make estimates ŵm of the
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original messages. We say that a per user rate R is achievable if each user’s message can be
decoded by the RCP with vanishing probability of error (in the blocklength n).

In matrix form, the channel from users to cell-sites is:

H = {hmℓ}, hmℓ =











1 if ℓ = m,

α if ℓ = [m + 1]M or [m − 1]M ,

0 otherwise.

5.1.2 Upper Bound: Cut-Set

We will use a simple cut-set bound to upper bound the capacity. Since we are only interested
in symmetric rate tuples and the channel is symmetric, the sum rate is upper bounded by
the dominant cut set bound. Recall that for a MIMO channel with independent (and equal
power) channel inputs the capacity is given by:

CMIMO = log det (I + SNR HH∗) (5.1)

where H∗ denotes the Hermetian transpose of H [151]. Clearly, the rate of information flow
between the cell-sites and the RCP is upper bounded by MB. Also, if the cell-sites could
cooperate freely, then the channel from the users becomes a MIMO channel. Thus, our
cut-set bound is the minimum between CMIMO and MB, normalized by the number of users:

CUPPER = min

(

B,
1

M
log det (I + SNR HH∗)

)

(5.2)

This upper bound reveals two potential information bottlenecks. One is the MIMO
behavior of the channel and the other is the finite backhaul. An ideal scheme for this
problem will cope with both bottlenecks simultaneously.

For the special circularly symmetric matrix at hand, Wyner showed in [157] that as M
tends to infinity we get:

CMIMO =

∫ 1

0

log
(

1 + SNR(1 + 2α cos 2πθ)2
)

dθ. (5.3)

5.1.3 Classical Random Coding Strategies

We now review the performance of two known strategies, compress-and-forward (CF) and
decode-and-forward (DF).
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5.1.3.1 Compress-and-Forward

Sanderovich et al. showed in [131] that compress-and-forward achieves the following rate per
user:

RCF =
1

M
max
0≤r

min
I⊆{1,...,M}

(

|I|(B − r) + log det
(

I + SNR(1 − 2−r)HICH∗
IC

)

)

(5.4)

where HIC is the submatrix of H that includes only rows in the subset IC (which is the
complement of the subset I). This rate in the asymptotic case, where M → ∞ is [131]:

RCF = F (r∗) where r∗ is the solution of F (r∗) = B − r∗,

F (r) =

∫ 1

0

log
(

1 + SNR(1 − 2−r)(1 + 2α cos 2πθ)2
)

dθ.

The approach of [131] is oblivious in terms of assuming no decoding at cell-sites and is
optimal if B or SNR tends to infinity. As B tends to infinity, the rate converges to the
infinite backhaul capacity case given by Equation (5.3). As SNR tends to infinity, this rate
converges to B. For moderate SNR and B, compress-and-forward roughly follows the outer
cut-set bound (with α) but never touches it. This gap from the outer bound occurs since
the scheme forwards the entire channel output, including the noise.

5.1.3.2 Decode-and-Forward

Sanderovich et al. also derive the performance of decode-and-forward in [131]. For the
no fading case, the channel to each cell-site is equivalent to a three input multiple-access
channel, so that the decode-and-forward rate is:

R1 = log

(

1 +
SNR

1 + 2α2SNR

)

(5.5)

R2 = min
(1

2
log
(

1 + 2α2SNR
)

,
1

3
log
(

1 + (1 + 2α2)SNR
)

)

(5.6)

RDF = min
(

max (R1, R2), B
)

(5.7)

R1 models decoding when the other signals are treated as noise, while R2 assumes full reliable
decoding of all three data streams received at the cell-site. Note that there is no joint
processing gain. When the backhaul capacity B is small compared to the rates between the
users and the cell-sites, or when the interference level is low, decode-and-forward is optimal.
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5.1.4 Compute-and-Forward

Each cell-site sees a linear combination of its user’s transmission as well as the transmissions
of two neighboring users plus noise. Using the lattice compute-and-forward strategy from
Chapter 4, we can remove the noise and send the error-free linear combination of codewords
to the RCP. If the RCP can collect enough linear equations to form a full rank system, it
can recover the original messages.

Due to the symmetry in the inter-cell interference, we can have each cell-site use the
same recovery coefficients for its linear function and guarantee that the resulting matrix is
full rank. We choose our integer decoding coefficients amℓ to match the structure of the
channel coefficients:

amℓ =











b1 if ℓ = m,

b2 if ℓ = [m + 1]M or [m − 1]M ,

0 otherwise.

where b1, b2 ∈ Z, b1 6= 0. The diagonal structure of the channel matrix guarantees the full
rank condition.

Theorem 22. The following rate per user is achievable with backhaul rate B using the
compute-and-forward strategy:

R = min(RCOMP, B) (5.8)

RCOMP = max
b1,b2∈A

− log

(

b2
1 + 2b2

2 −
SNR(b1 + 2αb2)

2

1 + SNR(1 + 2α2)

)

(5.9)

A = {(b1, b2) : b1, b2 ∈ Z, b1 6= 0, b2
1 + 2b2

2 ≤ 1 + SNR(1 + 2α2)}. (5.10)

The restriction of b1 and b2 to A makes it possible to evaluate the rate expression exactly
since A is a finite set. Note that all (b1, b2) pairs outside A trivially give zero rate by Lemma
11.

In Figure 5.2, we plot the performance of Theorem 22 against the interference strength
α ∈ [0, 1] in the infinite backhaul case, B = ∞. We also plot the upper bound from (5.3)
and the decode-and-forward achievable rate from (5.7). (Note that since the backhaul rate
is infinite, the compress-and-forward rate matches the upper bound.) Each plot is for a fixed
value of SNR from 5dB at the top to 10, 20 and finally 40dB at the bottom. As we increase
the SNR, the size of A increases and we can do a better job of approximating α with b2

b1
.

When α is exactly captured by the rational approximation b2
b1

, the compute-and-forward rate
is at a local maximum. Conversely, when α is poorly captured, the compute-and-forward is
at a local minimum. This means that at higher values of SNR, the performance fluctuates
more with α. This behavior is somewhat surprising as decode-and-forward, compress-and-
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Figure 5.2: Compute-and-forward performance at SNR = 5, 10, 20, 40dB (left) along with the
approximation of α by integer decoding coefficients b1 and b2 (right).
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forward, and the upper bound are much smoother with α. Next, we develop a superposition
strategy that can smooth out these fluctuations to a degree and achieve higher rates.

Remark 25. From Figure 5.2, it seems as if compute-and-forward approaches the upper
bound as the SNR increases for α = 1

2
. It would be interesting to prove that it does indeed

meet the inner bound exactly as SNR → ∞.

5.1.5 Superposition Strategy

While the compute-and-forward performance in Figure 5.2 is promising, the significant vari-
ations due to integer effects do not seem fundamental to the problem. That is, the rate
should not sharply degrade with only a small change in α. We now develop a superposition
strategy that decreases the effective interference seen by the even users and increases the ef-
fective interference seen by the odd users. With this strategy, we can avoid the local minima
in α. Usually, superposition coding is used to provide different messages (or rates) to users
of varying quality. Here, we are using superposition to adjust the interference structure
of the problem itself. The resulting performance boost to compute-and-forward is a new
phenomenon: traditional strategies would not benefit at all from such a scheme.

Our strategy is a special case of Theorem 20. Each odd-numbered user is allocated power
νP for its two lattice codewords (one for the real part of the channel and the other for the
imaginary part) for some ν ∈ [0, 1]. Each even-numbered user will use power (1 + δ)P for
its lattice codewords where δ ∈ [0, 1 − ν] and power (1 − ν − δ)P for the superimposed
codewords. In the language of Theorem 20, this translates to:

γℓA =

{

0 if ℓ is odd,√
1 − ν − δ if ℓ is even.

(5.11)

γℓB =

{√
ν if ℓ is odd,√
1 + δ if ℓ is even.

(5.12)

Note that the even users utilize more power than the odd users. To satisfy the power
constraint, we run the scheme in this fashion for half the channel uses and then switch the
role of the odd and even users.

The even-numbered cell-sites always decode the superimposed codeword am = δm (at
rate RE

S ). Upon successful decoding, they cancel out xmA and use the standard compute-
and-forward strategy on the resulting channel output (at rate RE

C). The effective channel
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gains for compute-and-forward after this successive cancellation step are:

hEVEN

mℓ =











√
1 + δ if ℓ = m,

α
√

ν if ℓ = [m + 1]M or [m − 1]M ,

0 otherwise.

The odd-numbered cell-sites either decode and remove both superimposed messages from
their two neighbors (at rate RDO

S ) or treat them as additional noise. They then use compute-
and-forward on the output (at rate RDO

C or rate RIO
C ) which has the following effective channel

coefficients:

hODD

mℓ =











√
ν if ℓ = m,

α
√

1 + δ if ℓ = [m + 1]M or [m − 1]M ,

0 otherwise.

The odd and even cell-sites need to maximize over integer coefficients to best fit the channel
as before.
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Theorem 23. The following rate is achievable using the superposition strategy as M → ∞:

R = min

(

max
ν∈[0,1]

max
δ∈[0,1−ν]

max
(

RD, RI
)

, C

)

A =
{

(b1, b2) : b1, b2 ∈ Z, b1 6= 0, b2
1 + 2b2

2 ≤ 1 + SNR(1 + 2α2)(1 + δ)
}

RD = min

(

RE
S

2
,
RDO

S

2

)

+ min

(

max
b1,b2∈A

RE
C , max

b1,b2∈A
RDO

C

)

RE
S = log

(

1 +
SNR(1 − ν − δ)

1 + SNR(1 + δ + 2α2ν)

)

RDO
S =

1

2
log

(

1 +
2α2SNR(1 − ν − δ)

1 + SNR(ν + 2α2(1 + δ))

)

RE
C = log

(

(

b2
1 + 2b2

2 −
SNR(

√
1 + δb1 + 2α

√
νb2)

2

1 + SNR(1 + δ + 2α2ν)

)−1
)

RDO
C = log

(

(

b2
1 + 2b2

2 −
SNR(

√
νb1 + 2α

√
1 + δb2)

2

1 + SNR(ν + 2α2(1 − ν))

)−1
)

RI =
RE

S

2
+ min

{

max
b1,b2∈A

RE
C , max

b1,b2∈A
RIO

C

}

RIO
C = log

(

(

b2
1 + 2b2

2 −
SNR(

√
νb1 + 2α

√
1 + δb2)

2

1 + SNR(ν + 2α2(1 − ν))

)−1
)

where RE
S is the rate at which the even cell-sites can recover the superimposed message,

RDO
S is the rate at which the odd cell-sites can recover the superimposed message, RE

C is the
compute-and-forward rate for the even cell-sites, RDO

C is the compute-and-forward rate for
the odd cell-sites when they first decode the superimposed message, and RIO

C is the compute-
and-forward rate for the odd cell-sites when they ignore the superimposed message as noise.

Remark 26. Assume that the first and last transmitter are inactive. It can then be shown
that through a filterbank argument we can solve for the original messages from the odd
and even equations so long as b1 6= 0 for both equations [102]. By a timesharing argument,
we can thus achieve M−2

M
of the desired rate and, as M → ∞, we can achieve the rate in

Theorem 23. If we add a full rank requirement to the theorem statement, then we can give
achievable rates at finite M as well.

In Figure 5.3, we plot the performance of the superposition compute-and-forward strategy
at 25dB with infinite backhaul capacity, B = ∞, versus the regular compute-and-forward
strategy, decode-and-forward, and the upper bound in (5.3). As discussed earlier, the basic
compute-and-forward strategy varies significantly with α with local minima at values of α
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Figure 5.3: SNR = 25dB. Achievable rates per user as a function of the inter-cell interference
levels α, for infinite backhaul capacity. In this case, compress-and-forward matches the upper
bound.

that are hard to approximate with small integers. The superposition strategy does a good
job of filling in these “valleys” and has higher rates for the middle range of α.

5.1.6 Performance Comparisons

We now compare the rates achieved by the superposition strategy, compute-and-forward,
decode-and-forward, and compress-and-forward in the asymptotic M → ∞ regime with finite
backhaul rate B. In Figure 5.4, we have plotted these schemes for three different values
of SNR and B. For most of the range of α, superposition compute-and-forward achieves
the highest rate. Note that if we were to rely on regular compute-and-forward, the rate
“valleys” would often pull the performance below that achieved by compress-and-forward.
Also, observe that the performance of compute-and-forward matches that of decode-and-
forward for low values of α. In this regime, the best equation to decode is the unit vector
which amounts to treating interference as noise.
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Figure 5.4: Rate per user for the upper bound, compress-and-forward, superposition compute-
and-forward, regular compute-and-forward, and decode-and-forward at SNR = 10dB, B = 2.5
(top), SNR = 15dB, B = 3.5 (middle), and SNR = 20dB, B = 4.5 (bottom).
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5.2 Slow Fading and Distributed MIMO

So far, we have considered fixed channel coefficients. Now, we demonstrate that our scheme
can be applied to the slow fading scenario, even if the transmitters do not know the channel
realization.2 Under a slow fading model, the channel matrix H is chosen according to some
probability distribution and then remains fixed for all time. As a result, we must accept some
probability that the rate used by the transmitters is above the maximum rate permitted for
those channel coefficients. For an achievable strategy with rate RSCHEME(H) for fixed H,
this outage probability is given by:

ρOUT(R) = PH (RSCHEME(H) < R) (5.13)

We can also characterize the performance of a given strategy by its outage rate:

ROUT(ρ) = sup{R : ρOUT(R) ≤ ρ}. (5.14)

We will now compare the outage performance of compute-and-forward to the performance
of classical relaying strategies over a simple network. First, it is useful to note that usually,
the exact choice of the coefficient vector at a relay is not important, so long as the resulting
equations can be solved for the desired messages. Thus, to maximize the performance of
our overall scheme, we should have each relay decode the equation that is available at the
highest rate.

Consider the two user distributed MIMO network in Figure 5.5. There are two sources,
two relays, and one destination. The relays see the transmitters through H whose entries
are i.i.d. Rayleigh. Each relay is given a bit pipe with rate B bits per channel use to
the destination. The destination would like to recover both message w1 and w2 at highest
possible symmetric outage rate. Recall that for a symmetric rate point to be achievable,
both transmitters must be able to communicate their messages with at least that rate. This
a model of multiple antennas that are not co-located with the receiver and thus have rate
constraints on communicating their observations. Several other groups have studied this
problem including [36; 130].

The basic compute-and-forward strategy has each relay decode the equation with the
highest rate and pass that to the destination. If the equations received by the destination
are full rank, decoding is successful. Unfortunately, at low SNR, the probability that the
equations are not full rank is quite high as shown in Figure 5.6. One simple solution is to
force each relay to choose an equation with amm 6= 0. This results in equations that are far
more likely to be solvable at the expense of slightly lower computation rates. The achievable
rates for these two strategies are given below and are plotted in Figure 5.7 for B = 2 and
outage probability ρ = 1/4.

2This section is drawn from [108].
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ŵ1

ŵ2

Figure 5.5: Two transmitters communicate to a distributed MIMO receiver with two antennas.
Each antenna has a rate C bit pipe to the receiver.

A =
{

a ∈ Z
M : ‖a‖2 ≤ 1 + ‖h‖2SNR

}

(5.15)

RMAX,m =max
am

log

(

(

‖am‖2 − SNR |h∗
mam|2

1 + SNR‖hm‖2

)−1
)

RNZ,m = max
am

amm 6=0

log

(

(

‖am‖2 − SNR |h∗
mam|2

1 + SNR‖hm‖2

)−1
)

RCOMP(H) =

{

min
(

B, minm RMAX,m

)

if A is full rank,

0 otherwise.
(5.16)

RCOMP,NZ(H) =

{

min
(

B, minm RNZ,m

)

if A is full rank,

0 otherwise.
(5.17)

For decode-and-forward, we require that each relay is responsible for a single message. It
attempts to recover this message either by treating the other message as noise or decoding
both messages. The rate for this strategy is evaluated below and plotted in Figure 5.7. For
more details on decode-and-forward for multiple relays (as well as compress-and-forward and
cut-set upper bounds), see [79].
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Rignore,1 = log

(

1 +
|h11|2SNR

1 + |h12|2SNR

)

(5.18)

Rignore,2 = log

(

1 +
|h22|2SNR

1 + |h21|2SNR

)

(5.19)

Rdecode,m = min

(

log
(

1 + |hm1|2SNR
)

,

log
(

1 + |hm2|2SNR
)

,

1

2
log
(

1 + ‖hm‖2SNR
)

)

(5.20)

Rii = min(Rignore,1, Rignore,2) (5.21)

Rid = min(Rignore,1, Rdecode,2) (5.22)

Rdi = min(Rdecode,1, Rignore,2) (5.23)

Rdd = min(Rdecode,1, Rdecode,2) (5.24)

RDF (H) = min(max(Rii, Rid, Rdi, Rdd), B) (5.25)

For our upper bound, we use a cut-set bound that either groups the relays with the sources
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Figure 5.6: Probability of rank failure for the 2-user distributed MIMO multiple-access channel
by having each relay decode the best equation and the best non-zero equation.
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or with the destination. This yields the following bound on the symmetric rate:

RMIMO(H) = min

(

log
(

1 + (|h11|2 + |h21|2)SNR
)

,

log
(

1 + (|h12|2 + |h22|2)SNR
)

,

1

2
log det (I + HH∗SNR)

)

(5.26)

RUPPER(H) = min(RMIMO(H), B) (5.27)

Finally, we consider the performance of compress-and-forward with i.i.d. Gaussian code-
books. The variance of the channel observation at relay m is 1 + ‖hm‖2SNR and we have to
compress this using B bits. At the destination, one can equivalently write this as a MIMO
channel with channel matrix HCF:

SNRCF,m =
SNR(2B − 1)

2B + SNR‖hm‖2
(5.28)

HCF =

[ √

SNRCF,1 0

0
√

SNRCF,2

]

H (5.29)

RCF(H) = min(RMIMO(HCF), B). (5.30)
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Figure 5.7: Symmetric outage rates for the 2-user distributed MIMO multiple-access channel with
i.i.d. Rayleigh fading only known at the receivers. Here, we set B = 2 and outage probability
ρ = 1/4.
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From Figure 5.7, we can see that compute-and-forward (with the best equation) outper-
forms all other strategies starting at approximately 8dB. It also saturates the bit pipes to the
destination at an SNR 5dB less than required for decode-and-forward. However, the gains
are not as dramatic as observed in Example 11. For non-integer coefficients, we can only
decode an integer combination and the remainder acts like additional noise. Despite this
penalty, compute-and-forward is the best strategy in the moderate SNR regime. Compress-
and-forward is a good strategy at low SNR but since it cannot saturate the bit pipe rate
B since it introduces quantization noise. Decode-and-forward suffers at high SNR since it
treats interference as noise.

Note that the encoding strategy for compute-and-forward does not depend on the choice
of equation coefficients at the relay. Therefore, one can obtain the maximum of the best equa-
tion rate and the best non-zero equation rate with the same strategy simply by disallowing
certain coefficients at the relays past an appropriate SNR.

Remark 27. Since the channel from the transmitters to the relays is essentially a 2-user
interference channel, it may be useful to have each transmitter send out a public and a
private message as in the Han-Kobayashi scheme [58]. Such a scheme might improve the
performance of both the decode-and-forward strategy and the compute-and-forward strategy
(by employing superposition as in Section 4.6).

5.3 Multicasting over Multiple-Access Networks

Consider a single source that communicates to a single destination across a network of
relays connected by bit pipes. It is well known that for this unicast problem the capacity is
given by the max-flow min-cut theorem and is achievable by routing [47; 40]. If the source
wants to multicast the same message to multiple destinations, then clearly the best possible
performance is upper bounded by the minimum over each unicast problem. As shown by
Ahlswede et al., this upper bound is in fact the multicast capacity and is achievable through
network coding [4]. In network coding, each relay transmits a function of its received packets,
rather than simply routing them. This “mixing” of packets turns out to be necessary as
routing cannot achieve the multicast capacity for all wired networks. Now, if we want to
multicast a message over a wireless network, one approach is to first transmit packets to the
relays and then have them compute the required functions for network coding. However,
using the tools developed in Chapters 3 and 4, we can increase our overall throughput by
performing the network coding directly on the channel. This way we do not have to fight
the interference inherent to the physical layer and can instead turn it to our advantage.

In this section, we look at relay networks connected together by noisy multiple-access
channels. For finite field channels, we will derive the multicast capacity and for AWGN
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channels, we will give an achievable rate that is a strict improvement over known strategies.3

5.3.0.1 Related Work

There has been considerable interest in using the physical layer for network coding. Bhadra,
Gupta, Shakkottai considered finite field networks with both broadcast and multiple-access
constraints and showed how to approach the multicast capacity as the field size tends to
infinity [15]. In [164], Zhang, Liew, and Lam take a communications perspective and use
uncoded transmission to send mod-2 sums of bits over a multiple-access channel at lower bit
error rates than possible with separate transmissions. Katti, Gollakota, and Katabi simulated
a practical system that uses a clever scheme to add bits uses the phases of transmitted signals
[68].

In concurrent work to our own, Narayanan, Wilson, and Sprintson, showed how to use
lattices for network coding over a two-way relay channel [101]. This was later extended by
Nam, Chung, and Lee to the case of unequal power constraints [99].

We also point to the work of Ratnakar and Kramer that examines networks with only
broadcast constraints and finds the capacity for deterministic channels [126]. As in our
considerations, they find that it is not possible to treat channel coding and network coding
separately, as gains are possible through a joint design.

5.3.1 Problem Statement

A channel network is usually thought of as a graph where the vertices are the encoders
and decoders and the edges are the point-to-point channels with known capacities. For our
problem, we will need a bit more notation to cleanly represent both point-to-point channels
and MACs.

Definition 47. A multiple-access network, GMAC, consists of the following elements:

1. VN : the encoder/decoder nodes of the network. Each node, v, has a unique label taken
from the positive integers, v ∈ Z+, and consists of a decoding function gvjv for each
incoming edge (vj , v) and an encoding function fvvk

for each outgoing edge (v, vk).

2. vS: the source node. One element of VN . The source transmits the message, w ∈
{1, 2, . . . , 2nR}.

3. (vR
1 , vR

2 , . . . , vR
L ): the receiver nodes. Each one is an element of VN and produces an

estimate of the transmitted message, ŵℓ.

4. VMAC: the MACs in the network. Each MAC, m, has a unique integer label, m ∈ Z+.

3The results in this section originally appeared in [105; 106].
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5. CNN : the directed point-to-point channels in the network. Each channel has a unique
integer label, cNN ∈ Z+, and the labels of its inputs and output nodes are given by the
functions vIN(cNN) and vOUT(cNN ) respectively.

6. CNM : the input edges from nodes to MACs. Each edge has a unique integer label,
cNM ∈ Z+, and the labels of its inputting node and destination MAC are given by the
functions vIN(cNM) and vOUT(cNM) respectively.

7. CMN : the output edges from a MAC to a node. We assume that the output of a
given MAC is only observed by a single node. Each edge has a unique integer label,
cMN ∈ Z+, and the label of its MAC and destination node are given by the functions
vIN(cMN) and vOUT(cMN) respectively.

8. Xvjvk
[i]: the channel input on the edge (vj, vk) at time i. The encoders are constrained

to only produce channel inputs from time i = 1 to time i = n.

9. Yvjvk
[i]: the channel output on the edge (vj , vk) at time i.

We also assume that there are a finite number of nodes and channels in the network,
|VN | + |VMAC| + |CNN | + |CNM | + |CMN | < ∞.

Definition 48. A multicast rate, R, is achievable if ∀ǫ > 0 and n large enough there exist
encoding and decoding functions for the network such that the average probability of error
is less than ǫ:

ŵℓ = fvR
ℓ
(Y n

vR
ℓ
)

Pr ({ŵ1 6= w} ∪ · · · ∪ {ŵL 6= w}) < ǫ, (5.31)

where w ∈ {1, 2, . . . , 2nR} and Y n
vR

ℓ

represents all the channel outputs observed by the ℓth

receiver.

Definition 49. The multicast capacity is the supremum of all achievable multicast rates.

Definition 50. A point-to-point network, GPOINT = (VN , CNN ), is just a multiple-access
network without any multiple-access nodes, VMAC = CNM = CMN = ∅.

Definition 51. A unit bit pipe network, GPIPE = (V, C), is just a point-to-point network
except all of the channels, C, are taken to be noiseless bit pipes with unit capacity. The
encoding/decoding nodes are given by the set V.

Our scheme will give achievable rates for multiple-access networks comprised of either
discrete linear or Gaussian MACs. We express the achievable rate through a new point-to-
point network that results from an appropriate transformation of our original network. The
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achievable rate is then given by the multicast capacity of the point-to-point network. We
will also demonstrate that in some cases our achievable rates coincide with the simple upper
bound due to the max-flow min-cut theorem of Ford and Fulkerson [48].

We now briefly review some results for multicasting over point-to-point channel networks
using linear codes. In [84] and [76], it was shown that linear encoding and decoding over
a finite field is sufficient to achieve the multicast capacity. Bounds are also given on the
required field size. It was independently and concurrently shown by Ho et al. in [60], Jaggi
et al. in [66], and Sanders et al. [132] that the field size only needs to be larger than the
number of receivers. We reproduce the version from [60] below as it will be useful to us in
proving our main theorems.

Definition 52. Let GPIPE = (V, C) and let Fq be a finite field of size q. An algebraic network
code is a set of linear functions for a unit bit pipe network. Specifically, the encoding function
from node vj to node vk is constrained to be a linear function of its observations from each
incoming edge:

Xvjvk
[i] =

∑

vr

αvrvj
Yvrvj

[i]. (5.32)

where Yvrvj
[i] is the value seen by node vj at time i on the incoming edge from node vr and

Yvrvj
[i], αvrvj

∈ Fq for all vr ∈ V.

Lemma 17 (Ho et al.). Let G = (V, C) be a unit bit pipe network with a single source and L
receivers. The multicast capacity is given by the max-flow min-cut bound and can be achieved
by an algebraic network code over any finite field larger than L (Fq, q > L).

For a full proof, see [61]. This result can be easily extended to point-to-point networks
as shown below.

Lemma 18. The multicast capacity of any point-to-point channel network with a single
source and L receivers, GPOINT = (VN , CNN ), is achievable by combining point-to-point chan-
nel codes with an algebraic network code with field size larger than L.

Proof. Let the capacity of each channel cNN ∈ CNN be given by R(cNN). Choose capacity-
achieving codes for each channel such that with probability 1 − δ

|CNN | we get a noiseless

channel with rate R̂(cNN) = R(cNN) − δ
2|CNN | . Now choose γ > 0 such that:

max
cNN∈CNN

(

R̂(cNN) − γ

⌊

R̂(cNN )

γ

⌋)

<
δ

2|CNN |
(5.33)

Create a γ bit pipe network, GPIPE = (V, E), where the nodes are the same as in GPOINT,

V = VN . For each channel cNN ∈ CNN with capacity R̂(cNN ) in GPOINT, place
⌊

R̂(cNN )
γ

⌋
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noise-free channels with capacity γ in the bit pipe network with the same connectivity.
Since all channels in GPIPE have the same capacity, we are free to generate an algebraic code
that achieves the multicast capacity using Lemma 17. This algebraic code is sent over the
channels in GPOINT using the channel codes chosen above and a timesharing approach. For
instance, for a channel with capacity R(cNN), we consider the n total channel uses in chunks

of
(⌊

R(cNN )
γ

⌋)−1

n. Each of these chunks can be used to send γn bits reliably and thus can

be used to send one function. Over all cuts in the max-flow min-cut characterization, the
largest reduction in rate is at most δ

2
(due to the gap to capacity). Considering the channels

only in units of γ also causes at most a δ
2

rate reduction over the worst possible cut. Thus,
as δ → 0, we can approach the multicast capacity.

Now we will use computation codes to map an algebraic network code onto multiple-
access channels in the network. We first explore two examples that are a variant of the
butterfly network given in [4]. Then, we state our theorems on multicasting over general
finite field and AWGN multiple-access networks.

5.3.2 Motivating Examples

We will focus on two variants of the butterfly network from [4, Figure 7] to demonstrate our
coding idea. First, we review the network coding scheme for the original butterfly network
which is depicted in Figure 5.8. The goal is for the source node (at the top of the graph)
to send two bits a and b to the two receiver nodes (at the bottom of the graph). Each edge
is a bit pipe with unit capacity. It can be checked that there is no routing assignment that
allows both receivers to recover both bits. However, by computing the mod-2 sum of the
bits and sending this down the center path, both receivers can infer both bits. Thus, some
form of network coding is necessary to achieve the multicast capacity of networks.

In our examples, we will put a multiple-access channel in the center path and use com-
putation codes to transmit the sum of the bits to the receiver. The first example considers
the binary alphabet case and the second looks at the Gaussian case.

5.3.2.1 Mod-2 Adder MAC

Consider the channel network in Figure 5.9(a). Each vertex on the graph represents a
decoder/encoder pair. The sender is at the top of the graph and the two receivers are at the
bottom. The labeled edges represent noiseless bit pipes each with capacity C. At the center
of the graph is a MAC with inputs X1 (from the left) and X2 (from the right) and output
Y = X1 ⊕X2 ⊕Z where Z is an i.i.d. Bernoulli(p) sequence. Note that the sum rate of this
MAC is upper bounded by 1 − hB(p).
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a
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b

a b

a b

a b

a b

a ⊕ b

a ⊕ b a ⊕ b

Figure 5.8: Butterfly network introduced by Ahlswede et al.. The multicast capacity of this
network is not achievable through routing but is achievable through network coding.

Theorem 24. For the channel graph from Figure 5.9 (a) the multicast capacity is:

R = B + min (B, 1 − hB(p)) (5.34)

Proof. (Converse.) Applying the cutset bound gives that the rate to each receiver is upper
bounded by:

R ≤ B + min (B, 1 − hB(p)) (5.35)

(Achievability.) We have a block w of n(B + min (B, 1 − hB(p))) bits to transmit to both
receivers. We will break up w in two ways. For the first, we write w = [w11 w12] where
the first chunk is of length nB and the second is of length n(min (B, 1 − hB(p))). For the
second, we write w = [w21 w22] where the first chunk is of length n(min (B, 1 − hB(p))) and
the second is of length nB. We transmit w11 down the left path and w22 down the right
path. From w11 we automatically know w21 and from w22 we know w12. We send the mod-2
sum u = w21 ⊕w12 reliably across the MAC using the linear code from Theorem 8. Finally,
this mod-2 sum is conveyed to the receivers. The left receiver can compute w12 = u ⊕ w21

and the right receiver can compute w21 = u ⊕w12 to fully recover w.

Standard random coding arguments cannot attain the optimal performance over the
network in Figure 5.9 (a). The decode-and-forward and compress-and-forward rates are
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ŵ2

w

B B

RCOMP RCOMP

RCOMP

B B

(b)

B

ŵ1
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Figure 5.9: (a) Binary multiple-access variant of the butterfly network. The MAC in the center is
a noisy mod-2 adder with i.i.d. Bernoulli(p) noise Z (b) Using a linear code, we can achieve the
multicast capacity of the MAC butterfly network which is equivalent to the multicast capacity of
this transformed network. Here, RCOMP = 1 − hB(p). (c) With a decode-and-forward strategy,
we can only achieve rates on the original network that are achievable on this network. Here,
RDF = 1

2
(1 − hB(p))

given by:

RDF = B + min

(

B,
1 − hB(p)

2

)

(5.36)

RCF = B + min (B(1 − hB(p)), (1 − hB(p))) (5.37)

If the capacity B of the point-to-point links is small enough, then fully decoding the input
messages to the MAC is sufficient. If the capacity B is large enough, forwarding the output
of the MAC is sufficient. However, in the intermediate regime, structured codes outperform
both strategies.

We can think about our compute-and-forward strategy as transforming the multiple-
access network into an equivalent point-to-point network. The multiple-access channel is
replaced with a relay node with incoming and outgoing edge capacities given by the com-
putation rate (see Figure 5.9 (b)). Usually, we try to convert interference networks into
point-to-point equivalents by decoding individual messages (see Figure 5.9 (c)). This results
in direct links across the multiple-access channel but with lower rates which results in a lower
overall throughput.

106



Chapter 5. Communication Network Applications

5.3.2.2 Gaussian MAC

Consider the AWGN channel network in Figure 5.10 (a). Each vertex on the graph represents
a decoder/encoder pair. The sender is at the top of the graph and the two receivers are at the
bottom. We assume that all channel inputs and outputs are real-valued and that all encoders
must satisfy an average power constraint, 1

n

∑n
i=1 xm[i]2 ≤ P . The Zm, m = 1, 2, . . . , 7 are

drawn i.i.d. according to a Gaussian distribution with mean 0 and variance N .
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Figure 5.10: (a) Gaussian multiple-access variant of the butterfly network. (b) Using a lattice-
based code, we can achieve any rate on the MAC butterfly network that is achievable on this
transformed network. Here, RCOMP = max

(

1
4
log
(

1 + 2P
N

)

, 1
2
log
(

1
2

+ P
N

))

where P is the per
user power of the MAC. (c) With a decode-and-forward strategy, we can only achieve rates on
this network where RDF = 1

4
log
(

1 + 2P
N

)

Theorem 25. The following multicast rate is achievable on the channel network in Figure
5.10(a):

R =
1

2
log

(

1 +
P

N

)

+ max

(

1

4
log

(

1 +
2P

N

)

,
1

2
log

(

1

2
+

P

N

))

(5.38)

Proof. Let w ∈ Fk
p be the message vector where p is a prime. Using Corollary 2, we can

reliably send the sum of messages over the AWGN multiple-access channel at a rate of:

RCOMP = max

(

1

4
log

(

1 +
2P

N

)

,
1

2
log

(

1

2
+

P

N

))

. (5.39)
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The first term in the maximization comes from decoding the messages separately using
coefficient vectors a = [1 0]T and a = [0 1]T combined with time-sharing and adding them
together. The second term comes from directly decoding the sum using coefficient vector
a = [1 1]T . We split the message into three pieces w = [w1 w2 w3] such that the first two
pieces correspond to rate RCOMP and the last piece corresponds to rate 1

2
log
(

1 + P
N

)

−RCOMP.
We send w1 and w3 down the left path and w2 and w3 down the right path. We transmit
the sum of w1 and w2 over the multiple-access channel and onto the receivers. Now, the
left receiver has w1, w3 and w1 ⊕ w2 from it can recover the messages. Similarly, the right
receiver has w2, w3 and w1 ⊕w2 and can decode as well.

As in the discrete case, random coding arguments will not suffice for attaining this
performance. The encoder following the MAC either decodes the messages in their entirety
or quantizes the observed signal and forwards it. Below we give the best achievable rates for
decode-and-forward and compress-and-forward with Gaussian codebooks:

RDF =
1

2
log

(

1 +
P

N

)

+
1

4
log

(

1 +
2P

N

)

RCF =
1

2
log

(

1 +
P

N

)

+
1

2
log

(

1 +
P

N

(

P

3P + N

))

Note that for this example, compress-and-forward and amplify-and-forward yield the same
performance.

Again, we can view our strategy as a network transformation as shown in Figure 5.10
(b). As before, decoding the messages individually results in a different network topology
with a lower end-to-end throughput.

5.3.3 General Networks

We now give two multicasting results for multiple-access networks. First, we give the mul-
ticast capacity for when the MACs are constrained to be noisy linear functions over a finite
field. Second, we give achievable rates for any Gaussian multiple-access network.

Our results can be viewed as a transformation of the original multiple-access network
into a point-to-point network (see Figure 5.11). Any multicast rate that is achievable on the
point-to-point network is achievable on the original network. For the finite field case, this
will yield the multicast capacity and, for the Gaussian case, this is a strict improvement over
known strategies.

Definition 53. Let GMAC be a Gaussian multiple-access network. An equivalent point-
to-point network, G′ = (V ′, E ′), is constructed from the original network by the following
steps:
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Figure 5.11: Using computation codes, we can convert every MAC in a network into a reliable
linear relay with incoming and outgoing rate links given by the computation rate.

• Let the set of encoder/decoder nodes, V ′, in the new network be given by the original
encoder/decoder nodes as well as the original MACs, V ′ = VN ∪ VMAC.

• Let the channels in the new network, C′, be given by the original point-to-point channels
as well as the input and output edges to the MACs, C′ = CNN ∪ CNM ∪ CMN . The
connectivity of these edges is the same as in the original network.

• Set the capacities of the edges taken from CNM and CMN to be the computation rates
of the associated MACs for sending the sum of the inputs, RCOMP(m).
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5.3.3.1 Finite Field Multiple-Access Networks

We assume all of the MACs in our channel network GMAC are linear with respect to Fp for
some field size p ∈ Z+ (see Definition 19). Each MAC in the network m ∈ VMAC has a
maximum sum rate RSUM(m) (see Definition 15).

Theorem 26. The max-flow min-cut bound for multicasting is achievable for a finite field
multiple-access network, GMAC, if q > L, where q is the MAC field size and L is the number
of receivers in the network.

Proof. (Achievability.) First, we will transform our network of noisy MACs and point-to-
point channels, GMAC, into an equivalent point-to-point network, G′, using Definition 53. We
will then find an appropriate algebraic network code which we will map back to the original
network using computation coding. Note that for finite-field multiple-access channels the
computation rate RCOMP is equal to the maximum sum rate RMAX.

The new point-to-point network, G′ has the same max-flow min-cut characterization as
our original network, GMAC. Choose ǫ > 0 and let R = C−ǫ where C is the multicast capacity
of G′. Using Lemma 18, we can find a set of channel codes and an algebraic network code
over the field Fq that achieves a multicast rate R over G′ with an error probability less than
ǫ
2
. We now map this strategy back to the multiple-access network GMAC. Recall that in the

proof of Lemma 18, we treat a link with capacity B as ⌊B
γ
⌋ separate links (with the same

connectivity) each with capacity γ. This results in a γ bit pipe network for which we can find
an algebraic network code and, by choosing γ small enough, we can approach the multicast
capacity of the point-to-point network.

Each MAC m ∈ VMAC in the original network is replaced with a node in the transformed
network. If the maximum sum rate of the MAC is RSUM(m), then we have ⌊RSUM(m)

γ
⌋ outgoing

links in the γ bit pipe network. Each of these outgoing links carries a linear function of the
incoming links to the node. On the original MAC, we duplicate these linear functions using
a computation code from Theorem 8 with probability of error no greater than ǫ

2|VMAC| . Each

function is allocated ⌊RSUM(m)
γ

⌋n channel uses. For the point-to-point channels, we use the
same encoding and decoding as in G′. Thus, we can achieve any multicast rate on the original
network that is achievable on the transformed network.

(Converse.) Since our network transformation can only increase the multicast capacity
of the network and we can achieve any rate less than the transformed capacity, we get that
our scheme meets the max-flow min-cut bound.

The network transformation performed above is not accessible using standard random
coding arguments. To duplicate the same topology, to each node m ∈ V ′ that represents
a MAC, we could only provide a total rate of RMAX(m) to all incoming links. Using a
computation code, each incoming link receives a rate of RMAX(m) all to itself.
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5.3.3.2 Gaussian Multiple-Access Networks

We now assume that all channels are either AWGN point-to-point channels or Gaussian
MACs (with inputs and outputs over the reals). We further assume each user faces an
identical power constraint and that the channel quality is controlled by the noise variance
Nm ∈ R+.

More formally, all channels in our channel network GMAC are constrained to be of the form
Ym = X1 +X2 + . . . XJ +Zm where Zm is an i.i.d. Gaussian sequence of mean 0 and variance
Nm. Furthermore, the Xj must satisfy power constraints of the form 1

n

∑n
i=1 (xj [i])

2 ≤ P .

Theorem 27. Let GMAC be a Gaussian multiple-access network. Any multicast rate achiev-
able on the equivalent point-to-point network is achievable on the original network for the
following computation rate:

RCOMP =
1

2
log

(

1

Jm
+

P

Nm

)

(5.40)

where Nm is the noise variance of the MAC m associated to these edges in the original
network and Jm is the number of inputs to these MACs.

Proof. The proof is nearly identical to that of Theorem 26. First, we find the equivalent
point-to-point network using Definition 53 and find a multicast capacity-achieving algebraic
network code with field size p. Next, we use computation codes for each MAC using Corollary
2 with coefficient vector a = [1 1 · · · 1]T . We then map the linear functions from the
appropriate node in V ′ onto the MAC. Note that although the computation code is targeted
at the sum but we can simply pre-multiply by the desired coefficient at each transmitter to
replicate the network code.

Using a purely random code, we can also achieve the same network transformation but
only with a lower computation rate given by:

RDF =
1

2Jm
log

(

1 +
JmP

Nm

)

. (5.41)

In general, higher rates are possible through a more involved network transformation.
Rather than simply associating the computation rate in (5.40) with each incoming link, we
can allow for any coefficient vector and only connect those incoming links with non-zero
coefficients. This strategy, combined with time-sharing and successive cancellation, allows
us to recover the usual solution (which allocates rates according to the multiple-access rate
region) as well as the performance in Theorem 27. Thus, our approach results in higher
rates than those possible with the classical random coding approach. Unlike the finite field
case, we are unable to reach the multicast capacity partly because our computation codes
for AWGN channels do not meet the upper bound.
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It is also possible to use the compute-and-forward strategy for network coding over
AWGN networks with fading and broadcast constraints. However, these generalizations
are cumbersome and do not yield any additional insight as they are just achievable strate-
gies. In the next section, we give an example of wireless network coding over a two-way relay
channel.

5.4 Wireless Network Coding

As shown by [61], linear network coding lends itself to a distributed, random implementation
in which nodes evaluate random linear combinations of incoming packets and send them
along. For a sufficiently large field size, this strategy achieves the multicast capacity of
bit pipe networks. To apply it to a wireless network, we need a physical layer interface to
communicate between transmitters and receivers. Compute-and-forward provides an ideal
interface for linear network coding as it can make the interference part of the network code.
Rather than choosing the network coding coefficients according to a uniform distribution [61],
we choose the coefficients to closely match the channel realization. This allows the relay to
operate at higher computation rates and, as a result, increases the end-to-end performance
of the overall network code.

Another possibility is to directly use the noisy linear combinations provided by the chan-
nel as an “analog network code” [164; 68]. This is essentially an amplify-and-forward strategy
and works well at high SNR. However, over a large network, noise can build up and lower
the overall performance. We will compare our compute-and-forward strategy to amplify-
and-forward as well as decode-and-forward through an example.

For our example, we use a slight modification of the well-studied two-way relay network
[164; 68; 115; 101; 99]. In the usual considerations, two users want to exchange messages
through a relay that sees a noisy combination of their signals. The relay can communicate to
the users through a broadcast channel and the goal is to maximize the symmetric rate. It is
well-known that for the Gaussian two-way relay channel case without fading, nested lattice
codes rapidly approach the upper bound as the SNR increases [101; 99]. Here, we consider a
two-way relay channel with i.i.d. Rayleigh fading on all links (see Figure 5.12). We assume
that the channel coefficients are only known at the receiving end and evaluate the outage
performance as in Section 5.2. The two users have power constraint SNR and the relay has
power constraint SNRBC.

The multicast rate from the relay to two users for a given channel realization is just the
minimum of the two point-to-point rates:

RBC = log
(

1 + (min(|h3|2, |h4|2))SNRBC

)

. (5.42)

For compute-and-forward, we can guarantee that each user can solve for its desired message
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Figure 5.12: Two-way relay channel with fading. Two users exchange messages with the help of
an intermediate relay.

by decoding a message with non-zero coefficients at the relay. We also let the relay perform
successive cancellation to recover the messages individually. This allows it to access the
corner points of the multiple-access region. For each channel realization, the relay selects
the strategy that results in the highest symmetric rate.

RNZ = max
a11,a12 6=0

log

(

(

‖a1‖2 − SNR |h∗
1a1|2

1 + SNR‖h1‖2

)−1
)

Rcorner,1 = min

(

log

(

1 +
|h11|2SNR

1 + |h12|2SNR

)

,

log
(

1 + |h12|2SNR
)

)

Rcorner,2 = min

(

log

(

1 +
|h12|2SNR

1 + |h11|2SNR

)

,

log
(

1 + |h11|2SNR
)

)

RCOMP(H) = min

(

RBC, max
(

RNZ, Rcorner,1, Rcorner,2

)

)

The relay is required to recover both message for decode-and-forward and the rate is
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simply the maximum symmetric rate in the multiple-access capacity region.

Rdecode = min

(

log
(

1 + |h11|2SNR
)

,

log
(

1 + |h12|2SNR
)

,

1

2
log
(

1 + ‖h1‖2SNR
)

)

(5.43)

RDF(H) = min

(

RBC, Rdecode

)

(5.44)

The amplify-and-forward scheme has the relay scale its observation to meet the power
constraint and retransmit.

RAF(H) = min

(

log

(

1 +
|h12h3|2SNR SNRBC

1 + ‖h1‖2SNR + |h3|2SNRBC

)

,

log

(

1 +
|h11h4|2SNR SNRBC

1 + ‖h1‖2SNR + |h4|2SNRBC

))

Finally, since we are only interested in the symmetric rate, the upper bound is just the
minimum over all channel strengths.

RUPPER(H) = min

(

RBC, log
(

1 + |h11|2SNR
)

,

log
(

1 + |h12|2SNR
)

)

(5.45)

In Figure 5.13, we plot the performance of these schemes for SNRBC = 2SNR and outage
probability ρ = 1/3. Note that here there is no possibility of rank failure for compute-and-
forward and it is always at least as good as decode-and-forward. However, unlike the no
fading case, compute-and-forward does not approach the upper bound as the SNR increases.
In fact, past a certain SNR (in this case 25dB), compress-and-forward is the best strategy.
This is primarily due to the noise penalty for decoding an integer combination from non-
integer channel coefficients. For the no fading case, the channels coefficients are assumed to
be unity and this penalty does not appear.

The basic insight is that, for certain network topologies, the non-integer penalty can
become significant. This penalty can be managed in several ways, including:

• Adjusting the channel at the transmitters if channel state information is available.

• Using multiple antennas at the relay to steer the coefficients towards integers [163].
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Figure 5.13: Outage rate per user for the two way relay channel with i.i.d. Rayleigh fading only
known at the receivers. Here, we set SNRBC = 2SNR and outage probability ρ = 1/3.

• Selecting transmitters opportunistically based on how close their coefficients are to
integers.

However, despite the non-integer penalty, compute-and-forward offers a strict improve-
ment over classical strategies for reliably recovering equations over a finite field. This, com-
bined with the fact that amplify-and-forward requires fairly high values of SNR to overcome
noise build-up, makes compute-and-forward a promising strategy for physical-layer network
coding for multi-hop networks.
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Distributed Signal Processing

Applications

In many sensor network applications, only certain functions of the sensor readings may
be of interest. These functions may be thought of as sufficient statistics for the detection
or estimation problem task at hand. For example, if the sensors each measure the local
temperature, we may only want the average temperature, for which the sufficient statistic
is the sum of the measurements. One way to compute these sufficient statistics is to first
send all of the observed data to a fusion center. As we have seen in previous chapters, we
can often compute more efficiently by exploiting the natural function of the channel using a
computation code.

If the sensor observations and the desired function take values on a finite set, then we can
simply employ the techniques developed in Chapters 3 and 4. However, for continuous-valued
observations and functions, we need new tools. Unlike in the discrete case, where functions
can be reliably recovered, here we will have to tolerate some distortion. In this chapter,
we develop a computation code for sending the sum of Gaussian sources over a Gaussian
multiple-access channel. We then explore an application to a simple sensor network scenario
first studied by Gastpar and Vetterli [54].

We also apply our tools to construct a new gossip algorithm for distributed averaging.
The standard gossip algorithm computes pairwise averages between sensors until all sensors
converge to the global average. This process is well-understood for the case where the sensors
are connected by a graph of bit pipes [18]. In our variation, we take advantage of the wireless
channel to average over many sensors at once. We show that this can result in both lower
energy usage and delay.
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6.1 Source-Channel Computation Codes

We will now develop a scheme for sending the sum of independent Gaussian sources over
a Gaussian multiple-access channel (see Figure 6.1).1 If we are given one channel use per
source sample, then uncoded transmission is optimal. With more channel uses, we use a
lattice-based scheme to refine our estimate of the sum.

Sk
1 E1

Xn
1

Sk
2 E2

Xn
2

Sk
M EM

Xn
M

... ...

Zn

Y n

D Ûk

Figure 6.1: Refining the sum of Gaussian sources over a Gaussian multiple-access channel.

Definition 54 (Sources). Each transmitter observes a length k i.i.d. Gaussian source Sk
m

with mean zero and variance σ2
S. Let U [i] = S1[i] + S2[i] + · · · + SM [i] be the sum of the

sources.

For ease of analysis, we will assume that we are allocated n = kℓ channel uses for some
positive integer ℓ ∈ Z+.

Definition 55 (Encoders). Each transmitter is equipped with an encoding function Em that
maps its length k observation into a length n channel input Xn

m:

Em : R
k → R

n. (6.1)

The channel input is subject to the usual power constraint:

1

n

n
∑

i=1

(Xm[i])2 ≤ P. (6.2)

Definition 56 (Channel Model). The channel simply takes the sum of its inputs and adds

1This section is drawn from material in [104].
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i.i.d. Gaussian noise Zn with mean zero and variance σ2
Z . The channel output at time i is

Y [i] =

M
∑

m=1

Xm[i] + Z[i]. (6.3)

Definition 57 (Decoders). The receiver has a decoding function D which it uses to make
an estimate Ûk of the sum Uk:

D : R
n → R

k (6.4)

Definition 58 (Distortion). We say that a distortion D is achievable if for any ǫ > 0 and k
large enough, there exist fixed encoders E1, . . . , EM and a decoder D such that the estimate
Ûk satisfies the following mean-squared error constraint:

1

k

k
∑

i=1

E

[

(U [i] − Û [i])2

]

≤ D + ǫ. (6.5)

Our goal is to achieve the smallest possible distortion while still satisfying the power
constraint. First, we will give a lower bound on the achievable distortion.

Lemma 19. The distortion at which the receiver can estimate the sum of the sources is
lower bounded as follows:

D ≥ Mσ2
S

(

σ2
Z

σ2
Z + MP

)ℓ
. (6.6)

Proof. The sum U is a Gaussian random variable with mean 0 and variance Mσ2
S . Thus,

the rate distortion function for U is given by

RU(D) =
1

2
log

(

Mσ2
S

D

)

. (6.7)

The maximum sum rate of the Gaussian multiple-access channel is

CSUM(P ) =
1

2
log

(

1 +
MP

σ2
Z

)

. (6.8)

Using the data processing inequality, we can show RU(D) ≤ ℓCSUM(P ) must be satisfied for
a distortion to be achievable. Solving for D yields the desired result.

Lemma 20. If ℓ = 1, then uncoded transmission is optimal for sending the sum of i.i.d.
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Gaussian sources over a Gaussian MAC and achieves distortion

DUNC = Mσ2
S

σ2
Z

σ2
Z + MP

. (6.9)

Proof. At each encoder, simply feed a source symbol, scaled to meet the power constraint,
into the channel at each time step. At the decoder, we compute the minimum-mean squared
error (MMSE) estimate of U . This results in the following distortion:

D = E[(U − Û)2]

= Mσ2
S − (E[UY ])2

E[Y 2]

= Mσ2
S

σ2
Z

σ2
Z + MP

This matches the lower bound in Lemma 19 when ℓ = 1.

When the channel bandwidth is larger than the source bandwidth (ℓ > 1), then uncoded
transmission will not make use of all the channel resources. One easy fix is to use a repetition
code and repeat each uncoded transmission ℓ times. This results in the following distortion.

DREP = Mσ2
S

σ2
Z

σ2
Z + ℓMP

, (6.10)

While this is an improvement over not using the extra bandwidth, we would like the distortion
to fall exponentially with ℓ. We now develop a lattice-based strategy for refining the estimate
of the sum. In [74; 75], Kochman and Zamir develop an elegant joint source-channel lattice
scheme for sending a Wyner-Ziv Gaussian source over a dirty paper channel. Our distributed
refinement scheme consists of two main steps. First, we use uncoded transmission to send a
noisy sum to the decoder. Then, we have each encoder run a version of the Kochman-Zamir
scheme targeted at the desired sum, U . Unfortunately, there is a penalty for this form of
distributedness. The lattice at each encoder results in channel outputs that violate the power
constraint by a factor of M . Therefore, we must scale down our inputs to meet the power
constraint and accept the resulting increase in distortion at the decoder.

Theorem 28. For n = ℓk, ℓ ∈ Z+, the following distortion is achievable for sending a
Gaussian sum over a Gaussian MAC so long as P > M−1

M
σ2

Z :

D = Mσ2
S

(

σ2
Z

σ2
Z + MP

)(

Mσ2
Z

σ2
Z + MP

)ℓ − 1
. (6.11)
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Proof. We will first show the achievable scheme for ℓ = 2. We thus have 2k channel uses to
convey k sums. We will use the first k channel uses for an uncoded transmission phase as in
Lemma 20. The decoder will then form an MMSE estimate û of the sum u = s1 + · · ·+ sM

and use this as side information for the next phase. Thus, u = q + û where q is an i.i.d.
Gaussian sequence with mean 0 and variance σ2

Q where

σ2
Q = Mσ2

S

σ2
Z

σ2
Z + MP

. (6.12)

Choose a sequence of good lattices, Λk, using Lemma 8 and scale them such that the second
moment of the lattice is MP . Let d1,d2, . . . ,dM be independent dither vectors drawn
uniformly over the fundamental Voronoi region, dm ∼ Unif(V0), and made available to the
encoders and decoder.

Each encoder transmits xm = 1√
M

vm where:

vm = [γsm + dm] mod Λk. (6.13)

for some γ > 0 to be specified later. The channel output is given by:

y =
M
∑

m=1

xm + z =
1√
M

M
∑

m=1

vm + z.

The decoder then computes:

t = αy −
(

M
∑

m=1

dm + γû

)

r = t mod Λk

=

[

α√
M

M
∑

m=1

vm + αz−
M
∑

m=1

(dm + γsm) + γq

]

mod Λk

=

[

(

α√
M

− 1

) M
∑

m=1

vm + αz + γq

]

mod Λk.

If the second moment of the term inside the modulo operation does not exceed MP , the
second moment of the lattice, then we can guarantee that:

lim
k→∞

Pr

(

r =

(

α√
M

− 1

) M
∑

m=1

vm + αz + γq

)

= 1. (6.14)
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since Λk is AWGN good. The second moment can be controlled by requiring that:

(

α√
M

− 1

)2

(M2P ) + α2σ2
Z + γ2σ2

Q ≤ MP. (6.15)

This equation will be satisfied by our final choice of the constants α and γ. The decoder’s
estimate of the sum is given by:

ˆ̂u = βr + û

= β

(

(

α√
M

− 1

) M
∑

m=1

vm + αz + γq

)

+ û

= β

(

(

α√
M

− 1

) M
∑

m=1

vm + αz

)

− (1 − βγ)q + u.

This estimate gives the following mean-squared error:

D = β2

(

(

α√
M

− 1

)2

M2P + α2σ2
Z

)

+ (1 − βγ)2σ2
Q.

We define the following constants:

α =
MP

√
M

MP + σ2
Z

γ0 =

√

MP

σ2
Q

(

1 − Mσ2
Z

MP + σ2
Z

)

,

and let γ → γ0 from below as k → ∞. This ensures that Equation (6.15) is always satisfied.
We also set:

β =
σ2

Qγ

MP
.

As k → ∞, we get that the achieved distortion is:

D = Mσ2
S

σ2
Z

σ2
Z + MP

Mσ2
Z

σ2
Z + MP

. (6.16)

This proves the theorem for ℓ = 2. For all higher values of ℓ, the scheme can be repeated with
the final estimate from the last refinement taken as side information for the next stage.
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Remark 28. A simple achievable scheme for situations where we do not have an integer
number of channel uses per source symbol is to time share between two integers whose
average gives the proper ratio.

Remark 29. This joint source-channel scheme can be easily generalized so that we can send
a linear function of Gaussian sources instead of just a sum. Essentially, the γ coefficient in
(6.13) should be replaced by φmγ at encoder j where φm is the desired coefficient for that
source (U =

∑M
m=1 φmSJ).

We now show that if we want to communicate the sum to the receiver through a
separation-based strategy, the encoders can do no better than send their sources to the
decoder.

Lemma 21. There are M source encoders, Em : R
k → {1, 2, . . . , 2nRm}, each observing

one of the sources Sk
m and compressing it into bits. A decoder, D : {1, 2, . . . , 2nR1} × · · · ×

{1, 2, . . . , 2nRM} → Rk, is given these bits and makes an estimate Ûk of the sum Uk. The
minimum total rate required to reconstruct the sum at distortion D is

M
∑

m=1

Rm =
M

2
log

(

Mσ2
S

D

)

. (6.17)

Proof. (Converse.) Let Wm = Em

(

Sk
m

)

be the message output by the mth encoder for
a length k block of source symbols. Given W = (W1, W2, . . . , WM) at the decoder, the
minimum-mean squared estimate (MMSE) of U is given by the conditional expectation.

D =
1

k

k
∑

i=1

E[(U [i] − Û [i])2] (6.18)

≥ 1

k

k
∑

i=1

E[(U [i] − E[U(i)|W])2] (6.19)

(a)
=

1

k

k
∑

i=1

E





(

M
∑

m=1

Sm[i] − E

[

M
∑

m=1

Sm[i]
∣

∣

∣
W

])2


 (6.20)

(b)
=

1

k

k
∑

i=1

E





(

M
∑

m=1

Sm[i] − E

[

M
∑

m=1

Sm[i]
∣

∣

∣
Wm

])2


 (6.21)
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(c)
=

1

k

M
∑

m=1

k
∑

i=1

E[(Sm[i] − E[Sm[i]|Wm])2] (6.22)

(d)

≥
M
∑

m=1

σ2
S2−2Rm (6.23)

(a) by linearity of expectation
(b), (c) by independence of Sm1

and Sm2
for all m2 6= m1

(d) by the single source rate distortion converse (see [29, pp. 315-318])

Minimizing the function
∑M

m=1 σ2
S2−2Rm is just a convex optimization problem subject to

the convex constraint
∑M

m=1 Rm = R. It easily follows that the minimizing solution satisfies
R1 = R2 = · · · = RM . We obtain:

D ≥ Mσ2
S2−2 R

M

R(D) ≥ M

2
log

(

Mσ2
S

D

)

.

(Achievability.) Each encoder simply uses a standard Gaussian rate distortion code for its

source with distortion target Dm = D
M

. Such a code requires a rate of at least 1
2
log
(

Mσ2

S

D

)

per encoder. See [29, pp. 318-325] for the derivation of such a code. The decoder recovers
each source and sums the individual estimates to get an estimate of the desired sum at
distortion D.

Theorem 29. The best achievable distortion for a separation-based scheme for sending a
Gaussian sum over a Gaussian MAC is

DSEP = Mσ2
S

(

σ2
Z

σ2
Z + MP

)ℓ/M
. (6.24)

Proof. From Lemma 21, we know the minimum sum rate required. We also know that the
maximum sum rate of a Gaussian multiple-access channel is:

1

2
log

(

1 +
MP

σ2
Z

)

. (6.25)

Recall that we are allocated ℓ channel uses per source symbol. Thus, any separation-based
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scheme must satisfy:

M

2
log

(

Mσ2
S

D

)

≤ ℓ

2
log

(

1 +
MP

σ2
Z

)

. (6.26)

Solving for D gives the desired result.

Computation coding can fully utilize the extra channel bandwidth while separation-based
coding must split the extra bandwidth between the M users. In Figure 6.2, we plot the
distortion for repetition coding (6.10), separation-based coding (Theorem 29), computation
coding (Theorem 28), and our lower bound (Lemma 19) for M = 5 transmitters with source
variance σ2

S = 1 communicating over a channel with power P = 3 and noise variance σ2
Z = 1.

The logarithm of the distortion is plotted versus the number of channel uses per source
symbol. As the channel bandwidth increases, computation coding performs exponentially
better than the other strategies.
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Figure 6.2: Refining the Sum of Gaussian Sources over a Gaussian MAC, M = 5, P = 3, σ2
Z = 1,

σ2
S = 1

Recent work by Soundararajan and Vishwanath has examined a related problem where
two transmitters want to send the difference of correlated Gaussian sources over a Gaussian
MAC [147]. They showed that by using a common dither at both encoders, the performance
of the lattice-based scheme can be improved.
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6.2 Sensor Network Case Study

We now apply the computation code developed above to a simple sensor network model
first proposed by Gastpar and Vetterli [54; 55].2 The setup is essentially the same as in the
previous section except that instead of independent sources, each sensor observes a noisy
version of a single source (see Figure 6.3). We would like to reconstruct this source at the
lowest possible distortion at the receiver. Specifically, the desired source Uk is drawn i.i.d.
according to a Gaussian distribution with mean zero and variance σ2

U . Each sensor observes
a version of this source corrupted by i.i.d. Gaussian noise W k with mean zero and variance
σ2

W :

Sm[i] = U [i] + Wm[i]. (6.27)

We are given n = kℓ channel uses and the goal is to make an estimate Ûk at the receiver
with the lowest possible distortion:

1

k

k
∑

i=1

E

[

(U [i] − Û [i])2

]

≤ D (6.28)
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Figure 6.3: A simple Gaussian sensor network model.

6.2.1 A Converse Bound

We can slightly extend a bound first presented in [52] to obtain the following theorem:

2This section originally appeared as [107].
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Theorem 30. For the Gaussian sensor network, the incurred distortion must satisfy

DLOWER ≥ σ2
Uσ2

W

Mσ2
U + σ2

W






1 + M

σ2
U

σ2
W





σ2
Z

Mσ2

U
+σ2

W

σ2

U
+σ2

W

MP + σ2
Z





ℓ





. (6.29)

6.2.2 Separation-Based Coding

We will first consider a separation-based approach. The source coding problem corresponding
to our sensor network example has been well studied, under the name of the CEO problem.
This problem was introduced in [14; 154] and the quadratic Gaussian version described above
was solved by Oohama [116], with some recent refinements [123; 27]. From this work, the
sum rate (i.e., the total rate over all M encoders) in order to achieve a certain distortion D
is determined as

R(D) = log+
2

(

σ2
U

D

(

Dσ2
UM

Dσ2
UM − σ2

Uσ2
W + Dσ2

W

)M
)

. (6.30)

For our considerations, we will use Oohama’s simpler lower bound, which can be obtained
easily from the above, noting that σ2

U/D ≥ 1,

R(D) ≥ M log+
2

(

Dσ2
UM

Dσ2
UM − σ2

Uσ2
W + Dσ2

W

)

. (6.31)

Conversely, the smallest achievable distortion satisfies

D(R) ≥ σ2
Uσ2

W

σ2
UM (1 − 2−R/M ) + σ2

W

. (6.32)

By noting that 1 − 2−R/M ≤ R/M , this implies the lower bound

D(R) ≥ σ2
Uσ2

W

σ2
UR + σ2

W

. (6.33)

The total communication rate across the multiple-access channel in our system can be some-
what generously bounded by

Rtot ≤ ℓ

2
log2

(

1 +
M2P

σ2
Z

)

, (6.34)
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where we recall that ℓ is the (average) number of channel uses per source sample. Note
that the M2 factor is due to the correlated observations made by the sensors. Using these
correlations, the sensors could potentially generate channel inputs that combine coherently.
Combining this with the source coding bound yields the following result.

Theorem 31. For the Gaussian sensor network, a separation-based scheme incurs a distor-
tion of at least

DSEP ≥ σ2
Uσ2

W

ℓ
σ2

U

2
log2 (1 + M2P/σ2

Z) + σ2
W

. (6.35)

6.2.3 Uncoded Transmission

For the special case ℓ = 1 (equal bandwidth), the simple sensor network has been thoroughly
investigated. Gastpar showed in [52] that an optimal strategy is for each sensor to transmit
its observation in an uncoded fashion:

Xm[n] =

√

P

σ2
U + σ2

W

Um[n]. (6.36)

Earlier work by Gastpar and Vetterli established that uncoded transmission is asymptotically
optimal as the number of users goes to infinity [53; 54; 55].

Theorem 32. For the Gaussian sensor network with ℓ = 1, uncoded transmission attains
the smallest possible distortion, given by

DUNC =
σ2

Uσ2
W

Mσ2
U + σ2

W



1 +
M(σ2

Uσ2
Z/σ2

W )
Mσ2

U
+σ2

W

σ2

U
+σ2

W

MP + σ2
Z



 . (6.37)

For a proof, see [52]. As before, repetition coding is unable to fully exploit the extra
channel uses:

DREP =
σ2

Uσ2
W

Mσ2
U + σ2

W



1 +
M(σ2

Uσ2
Z/σ2

W )
Mσ2

U
+σ2

W

σ2

U
+σ2

W

ℓMP + σ2
Z



 . (6.38)

6.2.4 Structured Codes

As the converse bound in Theorem 30 shows, we would ideally like the distortion to fall ex-
ponentially with increasing channel bandwidth (or increasing ℓ). However, repetition coding
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only provides a linear descent so we must turn to more clever strategies for ℓ > 1. We now
derive the performance of our computation code.

Theorem 33. For the Gaussian sensor network, the following distortion is achievable for
any ℓ > 1:

DLAT =
σ2

Uσ2
W

Mσ2
U + σ2

W



1 +





M(σ2
Uσ2

Z/σ2
W )

Mσ2

U
+σ2

W

σ2

U
+σ2

W

MP + σ2
Z





(

Mσ2
Z

MP + σ2
Z

)ℓ − 1


 .

Proof. (Sketch.) We first use uncoded transmission to communicate our observation se-
quences across the channel to get an MMSE estimate of their sum

∑M
m=1 Sm[i] at distortion

D
(U)
1 where

DSUM
1 =

(M2σ2
U + Mσ2

W )σ2
Z

P
σ2

U
+σ2

W

(M2σ2
U + Mσ2

W ) + σ2
Z

(6.39)

Denote this MMSE estimate of the sum of observations by V (1)[i].
Now we employ our lattice-based scheme from Theorem 28 to refine this estimate of our

sum with the remaining (ℓ−1)k channel uses. Note that due to the dither step in the proof of
Theorem 28, we do not require the sources to be independent. We can reduce our distortion
down to DSUM

ℓ where

DSUM
ℓ = DSUM

1

(

Mσ2
Z

MP + σ2
Z

)ℓ − 1
(6.40)

We then use this estimate of the sum of observations to make an MMSE estimate E[u|v(1)]
of the original source S. Let sSUM =

∑M
m=1 sm. The distortion for this estimate is given by:

Dℓ =
1

N
E
[

‖u− E[u|v(ℓ)]‖2
]

(6.41)

=
1

N
E
[

‖u− E[u|sSUM] + E[u|sSUM] − E[u|v(ℓ)]‖2
]

(a)
=

1

N
E
[

‖u + E[u|sSUM]‖2
]

+
1

N
E
[

‖E[u|sSUM] − E[u|v(ℓ)]‖2
]

(b)
=

σ2
Uσ2

W

Mσ2
U + σ2

W

+

(

σ2
U

Mσ2
U + σ2

W

)2
1

N
E
[

‖sSUM − E[sSUM|v(ℓ)]‖2
]

=
σ2

Uσ2
W

Mσ2
U + σ2

W

+

(

σ2
U

Mσ2
U + σ2

W

)2

DSUM
ℓ (6.42)

where (a) follows by the orthogonality principle, and (b) is due to the fact that MMSE
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estimation for Gaussian sources is just a rescaling.

As desired, we now have a scheme for which distortion falls exponentially with increasing
ℓ. Unfortunately, its performance does not match that of our lower bound from Theorem
30. It is unclear whether our scheme can be significantly improved upon or that there is a
fundamental penalty for distributed encoding beyond the ℓ = 1. It seems likely that any
scheme that employs quantization at the encoders will face a penalty that keeps it away from
the lower bound.

One shortcoming of our scheme is that it only results in a reduction in distortion for
ℓ > 1 if an SNR requirement is satisfied ( P

σ2

Z

> 1 − 1
M

). This can be overcome by combining

repetition coding with the lattice scheme in Theorem 33. For instance, if each transmission
is repeated θ ∈ Z+ times then we can run ℓ−1

θ
refinements to get the following distortion

(assume ℓ−1
θ

∈ Z+):

Dℓ =
σ2

Uσ2
W

Mσ2
U + σ2

W






1 +





M(σ2
Uσ2

Z/σ2
W )

Mσ2

U
+σ2

W

σ2

U
+σ2

W

MP + σ2
Z





(

Mσ2
Z

θMP + σ2
Z

)

ℓ−1
θ






.

6.3 Local Interference Can Accelerate Gossip Algo-

rithms

Gossip algorithms are a completely decentralized approach to computing a global function,
such as the average. These algorithms can be used as a key component in constructing
more complicated signal processing and optimization algorithms on networks. The gossip
protocol is quite simple to describe: a sensor randomly wakes up itself and a neighbor and
they replace their current values with their local pairwise average. This process continues
until all nodes converge to within an acceptable distance from the true average. Boyd et
al. [18] give a comprehensive analysis of the convergence speed for gossip algorithms for any
connectivity graph. The convergence time is connected to the mixing time of a Markov chain
on the graph induced by the sensor network communication ranges.

Clearly, if there was no energy penalty for long-range wireless transmissions, each sensor
would broadcast its observation to the entire network and there would be no advantage to
gossiping locally. However, such transmissions are expensive in terms of the energy required,
and in addition generate significant interference which can delay the averaging process. We
will show that with computation codes, we can exploit the interference to average over a
neighborhood of sensors in one shot. This form of computation code relies on a certain mini-
mum channel knowledge at the transmitters and we capture this by the somewhat simplistic
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model of the local neighborhood of a node. We assume that within a local neighborhood,
each node knows its respective channel (fading) parameters towards the center node of the
neighborhood. We further assume that within this local neighborhood, nodes can operate in
a synchronous manner.

Outside of the local neighborhood, no channel state information or synchronization is
required. The size of the local neighborhood is determined by the spatial and temporal
coherence of the particular wireless infrastructure at hand. Our analysis suggests that if
local neighborhoods of a certain size are physically possible, computation codes can yield
exponentially large savings in the required energy, for a fixed averaging time.

√
N

√
M

NBHD(ℓ)

Figure 6.4: Node ℓ efficiently collects the average from its local neighborhood, NBHD(ℓ), using
a computation code.

Computation coding allows us to reliably add numbers in a local neighborhood with
concurrent transmissions over noisy channels. We will use these neighborhood averages as
part of a gossip algorithm on a sensor network. In each round of the algorithm, one randomly
selected node will wake up, collect the average from its local neighborhood, and distribute the
result back to its local neighborhood. First, we show that if each gossip round is computing
averages over a larger neighborhood, we can dramatically reduce the number of required
gossip rounds. At one end of the scale is the case where the spatial and temporal coherence
is so good that the “local” neighborhood includes, in fact, the entire network, and thus,
consensus is achieved in a single “neighborhood gossip” step. At the other end of the scale
is the case where there is almost no coherence at all, and thus, the local neighborhood only
includes the nearest neighbor, and we are back to standard nearest-neighbor gossip. The
interesting question is for which neighborhood size is there a benefit to using interference.
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When averaging over some large neighborhood, sensors will have to transmit over longer
distances and will have to operate at a higher power level, to overcome path loss. The key
idea is that since the neighborhood gossip algorithm requires fewer rounds to converge, each
round can afford to take more time, which can, under some conditions, yield a reduction in
the total energy consumption. As we show, if we allow more time to the nearest-neighbor
gossip it will always consume less energy. However, when we fix the total convergence time,
neighborhoods that are large enough will yield exponential energy gains.

We perform our analysis on the simple topology of a grid network.3 Our techniques can
be extended to more realistic models of wireless network topologies like random geometric
graphs (which can possibly change the results up to polylogarithmic factors) but in this
section we will only address the simplest case.

Related Work

Distributed averaging can be used as a fundamental building block for distributed signal
processing over networks, where the goal is to achieve a global objective (e.g., computing the
global average of all observations) based on purely local computations (in this case, message-
passing between pairs of adjacent nodes). Deterministic variations of gossip algorithms (i.e.
each node communicating with all the one-hop neighbors as opposed to a randomly selected
one) are often called consensus algorithms and their behavior and analysis are very similar.
Gossip and consensus averaging is very useful because it can be easily converted into a
more general algorithm that computes any linear projection of the sensor measurements (as
long as each sensor knows the corresponding coefficient of the projection vector). Recently,
such algorithms have been proposed for distributed filtering and optimization as well as
distributed detection in sensor networks [148; 158; 128].

In a series of papers [18; 17], Boyd et al. have analyzed the performance of standard gossip
algorithms on arbitrary graphs and shown how the gossip parameters can be optimized by
solving an optimization problem to reduce convergence time. Unfortunately, for graphs that
correspond to realistic sensor network topologies (like grids or random geometric graphs)
standard gossip algorithms (even with optimal parameters) are very inefficient and require
Θ(N2) radio transmissions to converge where N is the number of sensors.

Mosk-Aoyama and Shah [94] use an algorithm based on the work of Flajolet and Martin
[46] to compute averages and bound the averaging time in terms of a “spreading time”
associated with the communication graph. Dimakis, Sarwate, and Wainwright [34] proposed
a modified gossip algorithm that uses geographic information of the sensors to reduce the
convergence time to O(N1.5

√
log N) for random geometric graphs. Very similar performance

can also be achieved with only partial geographic information as shown by Li and Dai [85].
Geographic gossip was subsequently used to compute random linear projections and perform

3This section originally appeared as [103].
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distributed compressive sensing [124] for sensor network measurements. Benezit et al. [13]

showed that an extension of geographic gossip that averages along the routed paths can
further reduce the convergence time to O(N log N) which is optimal for random geometric
graphs and grids. In this work we assume that no geographic information is available at the
nodes so such schemes are not applicable.

The issue of noise and quantization in the gossip messages has received significant at-
tention recently [120; 10; 112; 125] and schemes that achieve quantized consensus and tight
convergence bounds can be found in these papers. Sundaram and Hadjicostis [150] show how
infinite accuracy can be achieved in finite number of rounds by extrapolating the consensus
value through appropriate computation.

Other groups have also studied how to best exploit the physical-layer for consensus. For
instance, Aysal et al. exploit the broadcast aspect in [11] and Kirti, Scaglione, and Thomas
exploit the multiple-access aspect in [73]. Dimakis and Sarwate characterized the impact of
sensor mobility on gossip convergence in [134].

6.3.1 Problem Statement

6.3.1.1 Wireless Channel Model

There is a sensor network composed of N nodes. Each node has a unique index ℓ ∈
{1, 2, . . . , N} and a unique position p ∈ {1, 2, . . . ,

√
N} × {1, 2, . . . ,

√
N} on the extended

grid. We assume that the wireless channel has a finite bandwidth so a discrete-time model
is sufficient and we index time (or channel uses) using i. At time i, the received signal at
node ℓ is:

Yℓ[i] =
∑

k∈NBHD(ℓ)

hℓk[i]Xk[i] + Zℓ[i] (6.43)

hℓk = r
−α

2

ℓk ejθℓk[i] (6.44)

where rℓk is distance between nodes ℓ and k, α ∈ R+ is the power path loss coefficient, the
θℓk[i] are phases chosen randomly according to some distribution over the interval [0, 2π],
Xk[i]is the signal transmitted by the kth node at time i, and zℓ[i] is i.i.d. Gaussian noise with
mean zero and variance σ2

Z .
Finally, NBHD(ℓ) ⊂ {1, . . . , N} is the local neighborhood of node ℓ. For ease of analysis,

we assume that the local neighborhood are the nodes in the
√

M by
√

M square around node
ℓ.4 Ignoring boundary effects, each local neighborhood contains M nodes. In general, nodes
do not know the phases, θlk[i], governing the channel to other nodes in the wireless network.
However, we will assume that nodes do know the channels in their local neighborhood.

4Since we are only interested in the scaling law, we can safely ignore integer effects, i.e. assume that
√

M

is always odd and that
√

N

M
is an integer.
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6.3.1.2 Time Model

We will assume that the nodes wake up according to the asynchronous time model in [18].
Each node observes a rate λ Poisson process and wakes up upon an arrival. The rate can be
set such that no two nodes wake up in a given time interval with high probability. We also
assume that the nodes are completely synchronized with respect to their channel uses; the
Poisson clocks only determine when they wake up.

Furthermore, we will count time on two scales, channel uses and gossip rounds, to avoid
confusion between our channel code and our gossip algorithm. Gossip rounds are simply a
count of how many steps the gossip algorithm has taken (see Definition 60). We assume that
within each round we have TR channel uses.

6.3.1.3 Distributed Averaging

We now provide a precise notion of convergence for a gossip algorithm. First, we will review
the standard formulation used in the literature. Since we are including noisy channels in
our analysis, we must use long blocklengths to ensure reliable communication. Thus, we will
allow for a vector of observations at each node, rather than a scalar, and this will allow us
to communicate in a reliable fashion.

6.3.1.4 Standard Formulation

The standard formulation of a gossip algorithm is as follows. Each node k starts out with
a scalar observation sk[0] ∈ R for k = 1, 2, . . . , N . Our goal is to have each node learn the
global average of these observations:

sAVG =
1

N

N
∑

k=1

sk[0] (6.45)

At time t, node k has an estimate sk[t] of the global average. Let s[t] denote the N -vector
of these estimates at round t.

Definition 59. Choose ǫ > 0. Let RAVG(N, ǫ) be the minimum number of gossip rounds
required to get all nodes estimates of the average to within ǫ of the true average with
probability greater than 1 − ǫ.

RAVG(N, ǫ) = sup
s[0]

inf

{

t : P

(

‖s[t] − sAVG
−→
1 ‖

‖s[0]‖ ≥ ǫ

)

≤ ǫ

}
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6.3.1.5 Vector Formulation

We slightly modify the standard gossip problem statement by having each node k start out
with a length-L vector observation vk = (sk1, sk2, . . . , skL) ∈ RL for k = 1, 2, . . . , N . Our
goal is now to have each node learn the global average of these vectors:

vAVG =

(

1

N

N
∑

k=1

sk1[0], . . . ,
1

N

N
∑

k=1

skL[0]

)

(6.46)

To ensure finite transmission energies, we will also assume that the measurement vectors vk

have bounded ℓ2 norm:

‖vk‖2 ≤ ΓL (6.47)

where Γ ∈ R+ is a constant.
At time t, node k has an estimate skq[t] of the global average of the qth element. Let

sq[t] denote the N -vector of these estimates at round t. We use the following definition for
convergence of the vector gossip algorithm.

Definition 60. Choose ǫ > 0. Let RAVG(N, M, ǫ) be the minimum number of gossip rounds
with neighborhood size M required to get all nodes estimates of the average vector to within
ǫ of the true average with probability greater than 1 − ǫ.

β =

∑L
q=1 ‖sq[t] − sAVGq

−→
1 ‖

∑L
q=1 ‖sq[0]‖

(6.48)

RAVG(N, M, ǫ) = sup
sq [0]

inf {t : P (β ≥ ǫ) ≤ ǫ} (6.49)

The total time spent by our algorithm is easily computed by multiplying the number of
gossip rounds by the amount of channel uses used per gossip round TR. However, it may
be possible to schedule multiple gossip rounds simultaneously and therefore we divide this
quantity by reuse factor F :

TTOTAL =
TRRAVG(N, M, ǫ)

F . (6.50)

Note that the reuse factor might be different for different neighborhood sizes and we bound
this quantity in a subsequent section.
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6.3.1.6 Energy Model

We assume that energy consumption is dominated by wireless transmissions and measure to-
tal energy consumption, ETOTAL, by the sum of of the squared amplitudes of all transmissions
in the network:

ETOTAL =

TTOTAL
∑

i=1

N
∑

ℓ=1

(xℓ[i])
2 (6.51)

By construction, each gossip round will consume the same amount of energy, ER. Thus,
the total energy consumption can also be computed by multiplying this quantity by the
number of gossip rounds:

ETOTAL = ERRAVG(N, M, ǫ) (6.52)

6.3.1.7 Time-Energy Tradeoff

Our goal is to minimize both the total time and the transmit energy cost for making the global
average available at each node. Clearly, there is a tradeoff between these two quantities.
Intuitively, if we demand the average in smaller amount of time, it will cost more energy.
Thus, our goal is to find the best possible time-energy tradeoff curve and the algorithm
that provides it. In the next section, we will provide a high-level description of our gossip
algorithm.

6.3.2 Algorithm Sketch

Our algorithm operates at two levels of abstraction: At the higher level, we show how to
select a good sequence of “neighborhood gossip” rounds in such a way as to attain global con-
sensus as quickly as possible. More precisely, we show that a random sequence of uniformly
chosen nodes performs well with high probability. At the lower level, we provide (physical-
layer) algorithms that permit to efficiently perform “neighborhood gossip,” exploiting the
structure and coherence of the local interference, and leading to local consensus within the
neighborhood. In this section, we give an overview and rough outline of the two key steps
in the resulting “neighborhood gossip” algorithm.

6.3.2.1 Neighborhood Gossip

Assume node ℓ wakes up for the tth gossip round. The following steps describe the gossip
round:

1. Node ℓ wakes up all of the nodes in its local neighborhood, NBHD(ℓ).
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2. All nodes in the local neighborhood transmit their estimates to node ℓ using a com-
putation code. The computation code is designed such that node ℓ receives only the
average of these values.

3. Node ℓ uses the received information and its own value to compute the average of
the estimates from its local neighborhood. It replaces its current estimate for the qth

element with this new estimate for the next gossip round:

sℓq[t + 1] =
1

M

∑

k∈NBHD(ℓ)

skq[t] (6.53)

for q = 1, 2, . . . , L.

4. Node ℓ broadcasts its updated estimate to all nodes in its local neighborhood. All
local neighborhood nodes replace their current estimate with the transmitted one for
the next gossip round:

suq[t + 1] =
1

M

∑

k∈NBHD(ℓ)

skq[t] ∀u ∈ NBHD(ℓ) (6.54)

As one might expect, the convergence time of such an algorithm is highly dependent on
the topology of the network and the choice of the local neighborhoods. In Section 6.3.3, we
will examine a network where the nodes are placed on a

√
N ×

√
N extended grid and the

local neighborhoods are squares of size
√

M ×
√

M centered around the nodes and show that

the algorithm converge in O
(

N2

M2 log
(

1
ǫ

)

)

rounds.

6.3.2.2 Computation Coding

The critical step in the neighborhood gossip algorithm is Step 2 in the description given
above: All nodes in the local neighborhood need to communicate to the center node. It
may be tempting at first to implement this using some form of orthogonal accessing where
each node communicates to the center node on a separate channel. However, this approach
would consume virtually all the potential advantages of neighborhood gossip. The key insight
is that the center node does not need to know the exact data at each of the nodes in the
neighborhood. Rather, it only needs to know the average. We show how this can be achieved
very efficiently using computation codes. To give an intuition as to where this efficiency is
coming from, consider the following two-step procedure:

1. By our definition of a local neighborhood, every node k ∈ NBHD(ℓ) knows the channel
characteristics (rℓk, θℓk[i]) (as in Equations (6.43, 6.44)) from itself to the center node
ℓ. Exploiting this knowledge, the nodes in the local neighborhood can transform the
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actual multiple-access channel between them and the center node ℓ into the following
simple multiple-access channel:

Yℓ[i] =
∑

k∈NBHD(ℓ)\{ℓ}
Xℓk[i] + Zℓ[i]. (6.55)

2. (Computation Coding) All nodes simultaneously encode and transmit their values using
identical linear codebooks. The selected codewords will be added on the channel and
node ℓ will receive the sum of the codewords. Since the codebook is linear, the sum of
the codewords is also a codeword and is actually the codeword corresponding to the
desired average.

In Section 6.3.4, we characterize the tradeoff between the number of channel uses, the
precision of the received average, and the expended energy for computation coding.

6.3.3 Neighborhood Gossip on an Extended Grid

Assume that the nodes are placed on an
√

N ×
√

N grid with unit distance between both
rows and columns. Furthermore, assume that the local neighborhood, NBHD(ℓ), of node ℓ
is the

√
M ×

√
M square of nodes centered on itself.

Therefore, for each gossip round, a random node ℓ activates and when the round is over,
everyone in its local neighborhood NBHD(ℓ) has replaced their value with the average of that
neighborhood. In particular, we assume that after the computation coding phase of a gossip
round has finished, the average of the local neighborhood estimates of the global average is
available at the active node up to precision δ where δ is much smaller than ǫ.

Without loss of generality, we focus on a scalar observation (L = 1). Recall that s[t] is
the vector of node estimates of the global average at round t and that s[0] is just the vector
of the nodes’ initial observations. Every time a node ℓ activates, all the nodes in NBHD(ℓ)
get averaged while other nodes stay invariant, and this can be written compactly as:

s[t + 1] = W[t]s[t] (6.56)

where W(t) is the matrix that corresponds to averaging nodes in NBHD(ℓ). When the
selection of which node activates is i.i.d. random, the corresponding W[t] matrices for each
round t are also i.i.d.

Now let W̄ denote the mean of the i.i.d. W[t] matrices. The distribution on the random
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matrices is such that W̄ satisfies the following three properties:

1TW̄ = 1T (6.57)

W̄1 = 1 (6.58)

ρ

(

W̄ − 11T

N

)

< 1 (6.59)

where 1 is the all ones vector and ρ(·) is the spectral radius of a matrix.
These conditions guarantee convergence of the gossip algorithm[18] will converge to the

true average. The main result of this section is abound on the number of gossip rounds
require to converge:

Theorem 34. The averaging time of neighborhood gossip on an extended grid of size
√

N ×√
N , and neighborhoods of size

√
M ×

√
M in gossip rounds, satisfies

RAVG(N, M, ǫ) ≤ c
N2

M2
log

(

1

ǫ

)

, (6.60)

where c is a fixed constant.

Proof. To bound the averaging time, we will use the following lemma, that uses the second
eigenvalue of the expected matrix W̄. The main technical problem is that computing the
second eigenvalue of this expected matrix is quite complicated, since even determining the
expected matrix itself is not straightforward. We are going to be able to provide a good
bound on the second eigenvalue of W̄ without actually computing the entries of the matrix,
but rather bounding the conductance of W̄.

We begin with a bound connecting the averaging time with the second eigenvalue of W̄:

Lemma 22 (Boyd et al.). The averaging time in gossip rounds, RAVG(N, ǫ), of a gossip
algorithm is upper bounded by:

RAVG(N, ǫ) ≤ 3 log (ǫ−1)

log
(

1
λ2(W̄)

) (6.61)

where λ2(W̄) is the second eigenvalue of the expected matrix W̄.

Since log (1 + x) ≤ x (this bound is tight for small x), we can instead use the following
simpler upper bound for our analysis:

RAVG(N, ǫ) ≤ 3 log (ǫ−1)

1 − λ2(W̄)
(6.62)
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For our gossip algorithm, W[t] is drawn uniformly from the set W:

W = {W(ℓ) : ℓ = 1, 2, . . . , N} (6.63)

W(ℓ)uv =







1
|NBHD(ℓ)| , u, v ∈ NBHD(ℓ);

1, u = v, u, v /∈ NBHD(ℓ);
0, otherwise.

(6.64)

where W(ℓ)uv is the entry in row u and column v in the matrix W(ℓ). Essentially, if node
ℓ is chosen, nodes in its local neighborhood compute their local average and the rest keep
their values the same. Unfortunately, computing the mean, W̄, of matrices drawn from W
is difficult. However, we will still be able to give bounds on the spectral gap, 1 − λ2(W̄).
First, we will need a basic linear algebra lemma to connect our matrix, W̄, to one for which
we can give a tighter bound on the spectral gap.

Lemma 23. Let W̄FAST be chosen such that W̄ = pSTAYI+(1−pSTAY)W̄FAST where pSTAY ∈
[0, 1]. Let λ2(W̄FAST) be the second eigenvalue of W̄FAST. Then, the spectral gap of W̄ is
given by:

1 − λ2(W̄) = (1 − pSTAY)(1 − λ2(W̄FAST)) (6.65)

Proof. Let a2 be the second eigenvector of W̄. We have that:

W̄FASTa2 =

(

1

1 − pSTAY

W̄ − pSTAY

1 − pSTAY

I

)

a2 (6.66)

=

(

λ2(W̄) − pSTAY

1 − pSTAY

)

a2 (6.67)

λ2(W̄FAST) =
λ2(W̄) − pSTAY

1 − pSTAY

(6.68)

The lemma follows immediately.

The above lemma connects our matrix to a matrix that is not ”lazy.” Now observe that
W̄ is a stochastic and symmetric matrix and corresponds to a Markov chain on the

√
N×

√
N

grid that is reversible and ergodic. We can therefore use techniques that bound mixing times
of Markov chains [57; 13] to bound the spectral gap of W̄.

Definition 61. The conductance [144] of a stochastic matrix W̄ (that corresponds to a
reversible Markov chain) is defined by:

Φ(W̄) = min
S⊂{1,...,N}
0<π(S)≤ 1

2

QW(S,SC)

π(S)
(6.69)
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where QW(u, v) = π(u)W̄uv = π(v)W̄uv, π(S) is the probability density of S under the
stationary distribution of π of W̄ and QW(S,SC) is the sum of QW(u, v) over all (u, v) ∈
S × ({1, . . . , N} \ S)

Now we use the fact [144; 57] that conductance can be used to provide a lower bound on
the spectral gap:

Lemma 24. The second eigenvalue of a reversible Markov chain with transition probabilities
given by W̄ satisfies:

1

1 − λ2(W̄)
≤ 2

(Φ(W̄))2
. (6.70)

Finally, we will need a simple fact about conductance given by the following lemma.

Lemma 25. Let V̄ be a matrix whose off-diagonal elements are less than or equal to those
of W̄. Then the conductance of W̄ satisfies the following lower bound:

Φ(W̄) ≥ min
S⊂{1,...,N}
0<π(S)≤ 1

2

QV(S,SC)

π(S)
(6.71)

where QV(u, v) = π(u)V̄uv = π(v)V̄uv, π(S) is the probability density of S under the sta-
tionary distribution of π of W̄ and QV(S,SC) is the sum of QV(u, v) over all (u, v) ∈
S × ({1, . . . , N} \ S)

Proof. Since we are just reducing the numerator in every term inside the minimization then
the result is no higher than the original.

We are now ready to bound the spectral gap of W̄. First, define a non-lazy matrix WNL

with pSTAY = 1 − M
N

. Each non-diagonal entry of this matrix will be 1
M

if the indices are in
the same neighborhood. Now consider a cut across the center axis of the grid. (It is not hard
to see that any other cut will only yield larger conductance.) Clearly, π(S) = 1

2
. We now

obtain a lower bound on QWNL
(S,SC). Since ignoring nodes and edges only reduces Q, we

will only consider the nodes in S who have distance
√

M/4 or less from the separating axis.
There are

√
N ×

√
M/4 such nodes and each one has at least

√
M/2 ×

√
M/4 neighbors

in SC . Since all these edges have weight 1/M and the stationary distribution is uniform,
π(u) = 1

N
, we get:

QWNL
(S,SC) ≥

√
N
√

M

4

√
M

√
M

8

1

N

1

M
=

√
M

32
√

N
, (6.72)

so

Φ(WNL) ≥ M

16N
. (6.73)
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which implies that the spectral gap of the non-lazy chain is bounded as follows

1

1 − λ2(WNL)
≤ 2

(Φ(WNL))2
≤ 512

N

M
. (6.74)

So using to bound the spectral gap of the non-lazy matrix W̄ we simply need to multiply
by 1

pSTAY
= N

M
which yields the result.

6.3.4 Computation Coding

Inside a local neighborhood, due to the channel knowledge at the transmitters, we can invert
the phases and make the channel into a noisy sum:

Yℓ[i] =

(

1

Mα/2

)

∑

k∈NBHD(ℓ)

Xk[i] + Zℓ[i] (6.75)

where the M−α/2 factor comes from considering the worst path loss within the neighborhood.
As mentioned earlier, we will only be attempting to send our averages up to some specified

precision. Our error metric for a real number is the usual mean-squared error criterion.
Recall that each sequence of observations has a bounded ℓ2 norm: ‖vk‖2 ≤ LΓ for

k = 1, 2, . . . , n. Finally we say that node k consumes power P if the average energy during
a transmission of length T satisfies:

1

T

T
∑

i=1

(Xk[i])
2 = P (6.76)

Theorem 35. Choose ǫ > 0. Assume each node in a local neighborhood of size m has
a length L bounded real-valued observation vector, ‖vk‖2 ≤ ΓL. For L large enough, there
exists a coding scheme such that the receiving node can make an estimate v̂AVG of the average
vAVG = 1

M

∑

vk that satisfies:

Pr

(

‖vAVG − v̂AVG‖2 ≥ Γ

M
2−2B

)

< ǫ (6.77)

so long as:

T

2
log

(

1

M
+

P

M
−α
2 σ2

Z

)

> B (6.78)
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for some choice of T channel uses (per observation symbol), power P and precision B bits.

Proof. This follows directly from the proof of Theorem 28 (without the uncoded transmission
step). Note that due to the dither step, the sources are not required to be Gaussian, they
only need to satisfy second moment bounds (given here by ‖vk‖2 ≤ ΓL). Here, the variance
of the desired average vAVG is γL

M
instead of Mσ2

S and the distortion D is equivalent to
1
L
‖vAVG − v̂AVG‖2. Thus, we just need that:

(

Mσ2
Z

σ2
Z + MP

)ℓ
= 2−2B. (6.79)

Solving for B yields the desired result.

Note that this scheme performs significantly better than a standard multiple-access
scheme that attempts to inform the receiver of all the individual observation vectors be-
fore it computes the sum.

In order to compare our neighborhood scheme, to a nearest neighbor scheme, we need
to characterize the resources needed to send a bounded real-valued vector over a Gaussian
channel. This easily follows as a corollary of the above theorem.

Corollary 4. Choose ǫ > 0. Assume node k has a length-L bounded real-valued observation
vector, ‖vbk‖2 ≤ ΓL. A node at distance 1 away needs to make an estimate v̂k up to precision
B. For L large enough, there exists a coding scheme such that:

Pr
(

‖vk − v̂k‖2 ≥ Γ2−2B
)

< ǫ (6.80)

so long as:

T

2
log

(

1 +
P

σ2
Z

)

> B (6.81)

for some choice of T channel uses (per observation symbol) and power P .

Of course, the receiving node needs to communicate the average back to the sender(s).
However, it can be shown that this only requires a constant factor more energy so we omit
it from our analysis.

6.3.5 Performance Comparisons

Now that we have characterized the number of gossip rounds required for neighborhood
gossip and the resources required for computation coding, we can determine the scaling laws
for both the time and energy consumed by our scheme. First, for comparison purposes, we
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will calculate the total time (in a scaling law sense) it takes for nearest neighbor gossip to
converge on the grid:

TPAIR = c1
RAVG(N, ǫ)T1

FPAIR
= c1

N2T1

FPAIR
. (6.82)

where T1 is the number of channel uses per gossip round and c1 is a constant.
Similarly, we can use our result from Theorem 34 to get the total time it takes for

neighborhood gossip to converge on the grid.

TNBHD = c2
RAVG(N, M, ǫ)T2

FNBHD
= c2

N2

M2

T2

FNBHD
(6.83)

where T2 is the number of channel uses per gossip round and c2 is a constant.
We can upper bound FPAIR by allowing all N nodes to gossip concurrently in one round

of nearest neighbor gossip, FPAIR ≤ N . Also, we can lower bound FNBHD by allowing only
one neighborhood gossip to take place per round, FNBHD ≥ 1. This clearly is an upper bound
on the time savings and we get that the ratio of total time to converge is bounded as follows:

TNBHD

TPAIR

≤ c2T2N

c1T1M2
. (6.84)

Next, we calculate the total energy EPAIR used by the nearest neighbor gossip scheme.
First, we need to determine the energy used in a single gossip round using Corollary 4. Let
P1 be the average power per channel use and B1 the precision in bits.

ER1 = T1P1 = T1σ
2
Z(22B1/T1 − 1) (6.85)

where the second step follows from solving for P1 in Corollary 4.

EPAIR = ER1RAVG(N, ǫ) = c3N
2T1σ

2
Z(22B1/T1 − 1) (6.86)

where c3 is some constant.
Finally, we calculate the total energy ENBHD used by the neighborhood gossip scheme.

First, we determine the energy used in a single gossip round using Theorem 35. Let P2 be
the average power per channel use and B2 the precision in bits.

ER2 = T2P2 = Mα/2σ2
Z

(

22B2/T2 − 1

M

)

(6.87)
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where the second step follows from solving for P1 in Corollary 4.
One can show that the above expression decreases as the number of channel uses T2 is

increased but then begins to increase again. This is due to the computation coding expending
energy to overcome the path loss. At some point these expenditures overcome the savings
from using the channel addition. Thus, past this critical T2 we should not use any more
channel uses in a round even if they are allowed.

ENBHD = ER2RAVG(N, M, ǫ) = c4
N2

M2
Mα/2T2σ

2
Z

(

22B2/T2 − 1

M

)

where c4 is some constant.
Finally, we take the ratio of the total expended energies

ENBHD

EPAIR
=

c4T2

c3T1
M

α
2

22B2/T2 − 1
M

22B1/T1 − 1
. (6.88)

Now we should choose B1 and B2 appropriately so that the gossip algorithms converge.
As mentioned earlier, noise or quantization effects in gossip algorithms have been the topic
of much recent study. For our purposes, we simply assume that if the nearest neighbor
gossip uses a constant number of bits of precision in each round, the algorithm is “noise-
free”, B1 ∈ Z+. Furthermore, we assume that our scheme requires a worst-case log N bits of
precision per round for convergence, B2 = c5 log N . This is equivalent to assuming that all
of the quantization noises add up linearly (in other words, the noise is adversarial). See [112]

for details. This serves as an upper bound on the energy ratio as it can only make our scheme
look less favorable.

We will now examine the tradeoff on three operating points. First, we will fix the total
time per gossip round by allowing the same number of channel uses per round to each
algorithm T1 = T2. Next, we will fix the total convergence time by setting TNBHD = TPAIR.
Finally, we look at the case where neighborhood gossip converges faster than pairwise gossip,
TNBHD = N−τTPAIR, and show where energy savings are possible.

6.3.5.1 Fixed Round Time

Assume that T1 = T2. In this case, so long as M >
√

N , neighborhood gossip converges
faster.

Remark 30. Note that if we assume both algorithms get the same number of concurrent
gossips per round (FPAIR = FNBHD), then neighborhood gossip always converges faster (if
M increases with N).
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The energy ratio can be written as:

ENBHD

EPAIR

= c6M
α/2 22c5 log N/T1 − 1

M

22B1/T1 − 1
= c6M

α/2 N2c5/T1 − 1
M

22B1/T1 − 1
(6.89)

It can be shown that this ratio is always larger than 1. Thus, neighborhood gossip is less
energy efficient than nearest neighbor gossip if it is only given the same number of channel
uses per gossip round. This is because the computation code must expend extra energy to
overcome the long hop to the receiver.

6.3.5.2 Fixed Convergence Time

Assume that TNBHD = TPAIR so that both algorithms are allowed the same amount of time to
converge. In order to achieve this equality, we need to set T1 = T2N

M2 so that nearest neighbor
gossip is permitted fewer channel uses per gossip round for M large enough. We will let T2

be a constant.
Now we can write the energy ratio as:

ENBHD

EPAIR

=
c4M

2

c3N
Mα/2 22c5 log n/T2 − 1

M

22B1M2/(T2N) − 1
(6.90)

Now we bring all of the terms up into the exponent (base 2) to get:

ENBHD

EPAIR

< c7 exp

[(

2c5

T2

− 1

)

log N +
(α

2
+ 2
)

log M − 2B1

T2

M2

N

]

(6.91)

From this equation, we can see that there is a phase transition for the neighborhood size. If
the following condition is satisfied then neighborhood gossip uses exponentially less energy
in N :

(

2c5

T2

− 1

)

log N +
(α

2
+ 2
)

log M <
2B1

T2

M2

N
(6.92)

This condition can be satisfied if the number of nodes is increasing and the neighborhood
size M is large enough. For instance, we can let M scale like N1/2+ǫ for any ǫ > 0.

6.3.5.3 Accelerated Gossip

Finally, we show that neighborhood gossip can simultaneously accelerate convergence and
save energy. Assume that we would like a speedup factor of N τ over pairwise gossip so that
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TNBHD = N−τTPAIR. The energy ratio is upper bounded as follows:

ENBHD

EPAIR

< c7 exp

[(

2c5

T2

− 1

)

log N +
(α

2
+ 2
)

log M − 2B1

T2

M2

N1+τ

]

(6.93)

If M scales like N (1+τ)/2+ǫ for any ǫ > 0, then neighborhood gossip uses exponentially less
energy in N . Thus, it is possible save both energy and time through the use of computation
codes.
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Chapter 7

Interference Alignment via

Computation

Consider M transmitter-receiver pairs that communicate over a wireless channel on the
same frequency band. If the users are not allowed to cooperate, it is clear that concurrent
transmissions will interfere with one another. The key question is at what rate can each pair
communicate in the presence of interference from all other pairs. If only one pair is active, this
reduces to an interference-free point-to-point communication problem for which the capacity
is known. Intuitively, it seems that the best possible scheme for M active pairs would allow
each transmitter to operate at roughly 1

M
its interference-free rate. Surprisingly, through a

new strategy known as interference alignment, it is possible to have each transmitter operate
all the way up to 1

2
its interference-free rate.

Interference alignment was originally proposed by Maddah-Ali, Motahari and Khandani
for the 2-user MIMO X channel [91] and subsequently applied to the M-user interference
channel by Cadambe and Jafar [21]. The basic idea is that, from the viewpoint of each
receiver, the interference should look as if it originated from a single user. For the interference
channel, this can be accomplished by a vector space strategy over many parallel channels
(which can be obtained by using multiple frequency bands or time instances). The end result
is that each receiver sees its desired signal in half the dimensions while the interfering signals
occupy the other half. As shown by Cadambe and Jafar, this allows each user to achieve
1
2

its interference-free rate as the SNR goes to infinity. In this chapter, we develop a new
alignment scheme for time-varying interference channels that permits each user to achieve
at least half its interference-free rate at any SNR.

We now provide a high level description of our scheme. Assume that the M transmitters
send out signals X1, X2, . . . , XM at time t under channel matrix H = {hmℓ} and that the M
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receivers observe:

Y [t] =

M
∑

ℓ=1

hmℓXℓ + Zm[t] (7.1)

where Zm[t] is i.i.d. Rayleigh additive noise. The transmitters wait until the complementary
channel matrix HC occurs at time tC where

HC =











h11 −h12 · · · −h1M

−h21 h22 · · · −h2M
...

...
. . .

...
−hM1 −hM2 · · · hMM











(7.2)

and then resend X1, X2, . . . , XM . This gives each receiver access to

Ym[tC ] = hmmXm +
∑

ℓ 6=m

hmℓXℓ + Zm[tC ] (7.3)

which it can add to Ym[t] to get

Ym[t] + Ym[tC ] = 2hmmXm + Zm[t] + Zm[tC ]. (7.4)

So, for the cost of two channel uses, we can get an interference-free channel. The observant
reader will have noticed that, for most reasonable fading distributions, any single HC ∈
CM×M has measure zero and will effectively never occur. Fortunately, for our purposes, it is
enough to wait until the channel matrix is fairly close to HC to retransmit the signals. The
description above is meant only to illustrate the key principles at work and we will make our
analysis rigorous in the sequel.

Our primary focus is the M-user Gaussian interference channel with time-varying fading.
We show that the above strategy allows each user to communicate at slightly more than half
its interference-free rate regardless of M . We work with the standard information theoretic
assumptions and only require that each user has causal knowledge of the channel matrix.
Later, we will extend this strategy so that each receiver can recover more than one message.
We also consider the X channel configuration where each transmitter has an independent
message for each receiver. Here, we can only cope with 2 receivers and we comment on the
difficulties of the N receiver case. Finally, we show how to employ this strategy beyond the
Gaussian setting and derive the capacity region of a finite field interference channel with
time-varying fading.1

1The material in this chapter is drawn from [109; 110].
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Related Work

To date, the capacity region of the Gaussian interference channel is unknown except in some
special cases. If the interference strength at each receiver is very strong, then it has been
shown that it is optimal to first decode the interference and then extract the desired message
[26; 135; 58; 133]. Conversely, if the interference strength is very weak, it is optimal to treat
the interference as noise [96; 141; 8]. For the two-user case, Etkin, Wang, and Tse showed
that a version of the Han-Kobayashi scheme [58] is approximately optimal and achieves the
capacity region to within one bit [44].

For interference channels with more than two transmitter-receiver pairs, interference
alignment can be used to mitigate the effects of interference. This strategy has been used
to study capacity regions in the high SNR limit (i.e. degrees-of-freedom) for the interference
channel [21] and X channel [91; 65; 22]. Recent work by Motahari, Gharan, Maddah-Ali, and
Khandani has shown that alignment is possible by embedding vectors into scalar irrationals,
thus circumventing the need for multiple frequency bands or time slots in the high SNR
limit [95]. For static channels at finite SNR, lattice codes can be used for alignment. This
was first shown by Bresler, Parekh, and Tse for the many-to-one interference channel [19].
Subsequent work has extended this strategy to fully connected, symmetric channels [149].

Our strategy makes use of the fact that parallel interference channels are inseparable [23;
133]. Usually, for parallel channels, we use a single code and simply optimize our resource
allocation over the channels with water-filling. For the interference channel, this approach
is insufficient as one can gain by coding over parallel channels.

Many of the interference alignment schemes make use of many independent channel
realizations. For instance, for M users, the Cadambe-Jafar scheme requires 2M2

time slots
and our own scheme requires considerably more. For the three-user interference channel, two
recent papers have characterized the degrees-of-freedom (when restricted to linear strategies)
for limited channel realizations. First, Cadambe, Jafar, and Wang solved the case with a
single complex-valued channel matrix [24]. Next, Bresler and Tse found the degrees-of-
freedom for an arbitrary number of channel realizations [20].

In concurrent work to our own, Jeon and Chung have developed a similar alignment
strategy for finite-field interference networks [67]. For a single-hop interference network,
they match up pairs of channel matrices as we do to get interference-free channels. For a
multi-hop network, they use subsequent hops to invert the channel matrix from the first hop.
Another concurrent paper by Özgür and Tse examined the interference alignment scheme of
Cadambe and Jafar [21] and found a lower bound on the rate at finite SNR for phase fading
[119].

Finally, a recent paper by Wu and Dimakis has shown that interference alignment is also
useful for designing codes for distributed storage with failures [156].
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7.1 Time-Varying Gaussian Interference Channel

There are M transmitter-receiver pairs that communicate across a narrowband wireless chan-
nel over T time steps (see Figure 7.1).

w1 E1
X1

w2 E2
X2

...

wM EM
XM

H(t)

Z1

Y1

Z2

Y2

ZM

YM

D1 ŵ1

D2 ŵ2

...

DM ŵM

Figure 7.1: M-user interference channel.

Definition 62 (Messages). Each transmitter has a message wm chosen independently and

uniformly from the set {1, 2, . . . , 2nR̃m} for some R̃m ≥ 0.

Definition 63 (Encoders). Each transmitter has an encoding function, Em, that maps its
message wm into a length T channel input XT

m ∈ CT that satisfies the power constraint :

1

T

T
∑

t=1

∣

∣Xm[t]
∣

∣

2 ≤ Pm. (7.5)

Definition 64 (Channel Model). The channel output observed by each receiver is a noisy
linear combination of the inputs:

Ym[t] =
K
∑

ℓ=1

hmℓ[t]Xℓ[t] + Zm[t] (7.6)

where the hmℓ[t] are time-varying channel coefficients and Zm[t] is additive i.i.d. noise and
drawn from a circularly symmetric complex Gaussian distribution with variance σ2

n, Zm[t] ∼
CN (0, σ2

m). We assume that at each time step each channel coefficient is drawn i.i.d. from
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a distribution with uniform phase2:

phmℓ
(a) = phmℓ

(aejb) ∀a ∈ C, b ∈ [0, 2π). (7.7)

We also require that channel coefficients are independent of one another (although they may
be drawn from different distributions). The transmitters and receivers are given access to
the channel realizations causally. That is, before time t, each transmitter and receiver is
given hmℓ[t] for all m and ℓ.

Definition 65 (Decoders). Each receiver has a decoding function that maps its length T
channel observations Y T

m into an estimate ŵm of its desired message wm.

Definition 66 (Achievable Rate). We say that a rate tuple (R1, R2, . . . , RM) is achievable
if for all ǫ > 0 and n large enough there exist channel encoding and decoding functions
E1, . . . , EM ,D1, . . . ,DM such that:

R̃m > Rm − ǫ, m = 1, 2, . . . , M, (7.8)

Pr ({ŵ1 6= w1} ∪ . . . ∪ {ŵM 6= wM}) < ǫ. (7.9)

Definition 67 (Capacity). The capacity region is the closure of the set of all achievable rate
tuples.

7.2 Channel Quantization

Our scheme relies on matching up time indices based on the phase and magnitude of the
channel coefficients. In order to ensure that most channel coefficients are matched, we need
strong typicality and for this we need the channel coefficients to take values on a finite set.
We will accomplish this by quantizing the channel coefficients with a resolution determined
by our desired gap to the target rate. By taking finer and finer quantizations, we can achieve
the target rate in the limit.

First, we will threshold the channel coefficients by throwing out any time indices that
contain a channel coefficient magnitude larger than hMAX. This threshold is chosen such
that the probability that one or more channel coefficients violate it in one time instant is τ .

Each channel coefficient is quantized as follows. The complex plane (up to radius hMAX) is
divided up into κ disjoint rings of equal width. These rings are further subdivided into equal
segments based on η angles spaced equally between 0 and 2π where η > 0 will be specified
later. Each segment is a quantization cell for the channel coefficients. The parameters κ and
η are chosen such that the maximum distance between any two points in any segment is ν

2In the literature, a fading process that varies rapidly over the duration of the codeword is often called
fast fading.
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where ν > 0 will be specified later. We also assign all channel coefficients with magnitude
larger than hMAX to an erasure symbol.

The following lemma will allow us to show that for ν small enough, matching up channel
coefficients based on their quantization cells has a negligible effect on the overall rate.

Lemma 26. Given hk ∈ C satisfying |hk| < hMAX for k = 1, 2, . . . , K, let ĥk be any other
element of the quantization cell of hk. For any ak ∈ C, the following upper bound holds:

∣

∣

∣

∣

∣

K
∑

k=1

akĥk

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

K
∑

k=1

akhk

∣

∣

∣

∣

∣

+ ν

K
∑

k=1

|ak|. (7.10)

Furthermore, if ak is chosen such that
∣

∣

∣

∑K
k=1 akhk

∣

∣

∣
> ν

∑K
k=1 |ak|, then the following lower

bound holds:
∣

∣

∣

∣

∣

K
∑

k=1

akĥk

∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

∣

K
∑

k=1

akhk

∣

∣

∣

∣

∣

− ν

K
∑

k=1

|ak|. (7.11)

Proof. First, write each ĥk = hk+ek where |ek| < ν. Now, we have by the triangle inequality:

∣

∣

∣

∣

∣

K
∑

k=1

akĥk

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

K
∑

k=1

ak(hk + ek)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

K
∑

k=1

akhk

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

K
∑

k=1

akek

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

K
∑

k=1

akhk

∣

∣

∣

∣

∣

+ ν
K
∑

k=1

|ak|.

Similarly, by the reverse triangle inequality, we have that:

∣

∣

∣

∣

∣

K
∑

k=1

ak(hk + ek)

∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

∣

K
∑

k=1

akhk

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

K
∑

k=1

akek

∣

∣

∣

∣

∣

(7.12)

≥
∣

∣

∣

∣

∣

K
∑

k=1

akhk

∣

∣

∣

∣

∣

− ν
K
∑

k=1

|ak|. (7.13)

For the remainder of this chapter, we will treat all channel coefficients as if they are
quantized. Thus, we can treat them as if drawn from a discrete set where the probability of
each quantization cell is given by the total probability of all channel coefficients in that cell.
By construction, all quantization cells at a given radius have the same probability. Note
that this depends strongly on the assumption of uniform phase.
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We now recall the notion of strong typicality for sequences of discrete random variables.
Let H = {hnm} be the matrix of (quantized) channel coefficients which takes values in the
set H, P (H) the probability of drawing H under the channel model, and H[T ] denote the
sequence of such matrices over T channel uses. Let #(H|H[T ]) denote the number of times
the channel matrix H occurs in the sequence H[T ].

Definition 68. A sequence of channel matrices, H[T ], is γ-typical if:

∣

∣

∣

∣

1

T
#(H|H[T ]) − P (H)

∣

∣

∣

∣

≤ γ ∀H ∈ H. (7.14)

Let AT
γ denote the set of all γ-typical channel matrix sequences.

Lemma 27 (Csiszar-Körner 2.12). For any i.i.d. sequence of channel matrices, H[T ], the
probability of the set of all γ-typical sequences, AT

γ , is lower bounded by:

P (AT
γ ) ≥ 1 − |H|

4Tγ2
(7.15)

For a proof, see [63]. Due to the channel quantization, the size of H is |H| = (κη +1)MN .
We will only work with sequences of channel matrices that are γ-typical and declare errors
on the rest. This ensures that nearly all time indices can be matched up appropriately.

7.3 Ergodic Interference Alignment

Since the receivers cannot cooperate, the highest rates are achieved when there is no interfer-
ence between users. Specifically, when hmℓ = 0 ∀ℓ 6= m, each receiver sees a point-to-point
channel from its transmitter and can achieve

Rm = E

[

log

(

1 + |hmm|2
Pm

σ2
m

)]

. (7.16)

We call this the interference-free rate and we will use it as a benchmark to gauge our
performance.

Remark 31. Note that this assumes a uniform power allocation across all time slots and one
can do better by using the causal channel state information to optimize the power allocation
[25]. For simplicity, we use a uniform power allocation throughout our derivations. The
optimization techniques employed in the point-to-point case can be applied identically to our
results as well. See [152] for a study of power allocation for fast fading 2-user interference
channels.
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A simple approach to interference management is to have transmitters take turns using
the channel. For instance, if we partition the channel equally between transmitters, each
one can achieve

Rm =
1

M
E

[

log

(

1 + M |hmm|2
Pm

σ2
m

)]

. (7.17)

The extra M factor inside the log comes from saving up power while the transmitter is
required to stay silent. Under this approach, the sum rate stays nearly constant as we add
users to the network. With interference alignment, we can do significantly better. Cadambe
and Jafar’s alignment scheme allows for the sum rate to increase linearly with the number
of users:

lim
Pm→∞

∑M
m=1 Rm

log (1 + Pm)
=

M

2
. (7.18)

This means that each user is guaranteed a fixed rate (at high SNR) regardless of the number
of users in the network. We now develop a new technique, ergodic interference alignment,
that allows each user to achieve at least half its interference-free rate at any SNR.

Theorem 36. For the M-user Gaussian interference channel with fast fading and uniform
phases, each transmitter can achieve the following rate:

Rm =
1

2
E

[

log

(

1 + 2|hmm|2
Pm

σ2
m

)]

. (7.19)

Proof. Choose ǫ > 0. For ease of analysis, we divide up our T channel uses into two intervals
at the halfway point T/2. Using Lemma 27, we have that for T large enough, both intervals
will be γ-typical with probability at least (1− ǫ

2
) (with γ to be specified later). By Definition

68, this means that the number of occurrences of each possible channel matrix in each interval
is bounded as follows:

T

2
(P (H) − γ) ≤ #(H|H[T/K]) ≤ T

2
(P (H) + γ) (7.20)

for all H ∈ H.
Each encoder uses a length λT codebook Cm for some λ > 0 with rate R̃m. The code-

book is generated elementwise i.i.d. from a circularly symmetric Gaussian distribution with
variance Pm − ǫ.

Assume that the intervals are γ-typical so that each matrix will occur at least T
2

(P (H) − γ)
times in each interval. A time slot t in an interval is useable unless:

1. The channel matrix H[t] contains one or more elements with magnitude larger than
hMAX.
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2. The channel matrix H[t] does not violate the threshold but has already occurred at
least T

2
(P (H) − γ) times.

We give a lower bound on the number of useable time slots below which we set to be equal
to the length of the codebook:

λT =
T

2

∑

H:|hmℓ|<hMAX

(P (H) − γ) (7.21)

=
T

2

(

1 − τ − (κη)M2

γ
)

. (7.22)

Recall that τ is the probability the channel matrix contains an element larger than hMAX

and κ and ν are parameters in the channel quantization.
During the first interval, each transmitter sends out a new symbol from its length λT

codeword during each useable time slot t1 and records the channel matrix H[t1]. We match
up each useable time slot t1 from the first interval with a useable time slot t2 from the second
interval for which the channel matrix H[t2] is complementary :

H[t2] =











h11[t1] −h12[t1] · · · −h1M [t1]
−h21[t1] h22[t1] · · · −h2M [t1]

...
...

. . .
...

−hM1[t1] −hM2[t1] · · · hMM [t1]











. (7.23)

Note that this can be done using only causal channel knowledge by greedily matching time
slots from the first interval in the order in which they occur. At the end of T channel uses,
each receiver has access to equations of the form

Ym[t1] = hmmXm[t1] +
∑

ℓ 6=m

hmℓ[t1]Xm[t1] + Zm[t1] (7.24)

Ym[t2] = hmmXm[t1] −
∑

ℓ 6=m

hmℓ[t1]Xm[t1] + Zm[t2]. (7.25)

Each receiver adds these two equations together to get a nearly interference-free channel.
Since the channel matrices are paired up according to their quantization cells, some residual
interference will remain which we will treat as noise. Using Lemma 28, it can be shown that
the signal-to-interference-and-noise is bounded below as follows:

SINRm ≥ Pm (2|hmm| − 2ν)2

4ν2
∑

ℓ 6=m Pℓ + 2σ2
m

. (7.26)

Note that by letting ν → 0, we get that SINRm ≥ 2|hmm|2
σ2

m
.By choosing ν, γ, and τ small
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enough and T large enough, we can guarantee that SINRm and λ are such that we can find
a good code with probability of error at most ǫ

2
and rate at least

1

2
E

[

log

(

1 + 2|hmm|2
Pm

σ2
m

)]

− ǫ. (7.27)

Recall also that with probability ǫ
2

the channel is not γ-typical. Since the total probability
of error is less than ǫ, we get the desired result.

Note that this achievable strategy does not, in general, yield the capacity region. For
instance, if the cross-channel gains are very small, then it is better to treat the interference
as noise, rather than spending two channel uses to cancel it out. Thus, for Rayleigh fading,
we can achieve higher rates by using this weak interference strategy over certain channel
matrices and the alignment strategy over the rest. We can also expand the achievable rate
region by time-sharing. One user is given a fraction of the channel uses for its exclusive
use while the rest are used for interference alignment. See the proof of Theorem 40 for an
application to the finite field setting.

For some special cases, it turns out that our strategy is optimal. In [64], Jafar developed
the concept of a “bottleneck state” and showed that ergodic alignment is capacity-achieving.
Roughly speaking, in a bottleneck state, receivers see interference at equal strength to their
desired signal.

Overall, our scheme shows that it is possible to benefit from interference alignment at
finite SNR. Moreover, the analysis is considerably simpler than for the original scheme
proposed in [21] (with the assumption of uniform phase). It remains an open question
whether this performance can be attained using less channel diversity or more limited channel
state information.

7.4 Recovering More Messages

For the standard interference channel, we assume that each receiver is only interested in
one of the transmitted messages. Here, we generalize our alignment scheme to handle the
case where each receiver attempts to decode more than one message. The problem setup is
largely the same as in Section 7.1 except that now there are M transmitters, each with a
single message wm with rate Rm, and N receivers that want exactly L messages each. For
simplicity, we will assume that all messages are requested by the same number of receivers.
(Note that this implicitly assumes that NL

M
is an integer.) Denote the subset of receivers that

want message m by Sm. In Figure 7.2, we provide a block diagram of a case with M = 4
transmitters, N = 4 receivers, and message requests S1 = {1, 2},S2 = {2, 3},S3 = {3, 4},
and S4 = {4, 1}.
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w1 E1
X1

w2 E2
X2

w3 E3
X3

w4 E4
X4

H(t)

Z1

Y1

Z2

Y2

Z3

Y3

Z4

Y4

D1 ŵ1, ŵ2

D2 ŵ2, ŵ3

D3 ŵ3, ŵ4

D4 ŵ4, ŵ1

Figure 7.2: Interference channel where each receiver wants L = 2 messages.

7.4.1 Equation Coefficients

As before, we will create equations of the transmitted codewords at the receivers which
can be solved for the desired messages. Essentially, at well-chosen time indices, all encoders
retransmit symbols that were sent at an earlier time. This has the effect of giving the decoders
equations with the symbols as the variables and the coefficients given by the channel. Here,
it is insufficient to look for pairs of matrices that exactly cancel. In general, we will match
up K matrices that allow all receivers to solve for their desired messages.

First, we assume that all channel coefficients are quantized as described in Section 7.2. In
order to ensure that all channel coefficients can be appropriately matched, we only consider
matchings between individual coefficients of the same magnitude. Since the phase of each
coefficient is assumed to be uniform, all equations will have the same probability.

The goal is to specify a set of K equations such that the receiver can recover its desired
messages. Each receiver is free to choose its own equations and repeat transmissions only
occur when all receivers see the appropriate equations. These equations are fully specified
by phase shifts φ

(k)
nm (with φ

(1)
nm = 1 by default). For ease of analysis, these are restricted to

take values on the set {ejb : b = 0, 2π
η

, 4π
η

, . . . , 2π(η−1)
η

} so that they are in correspondence
with the quantization cells. We write the phase shifts at each receiver for the kth equation
in matrix form below:
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Φ(k) =











φ
(k)
11 φ

(k)
12 · · · φ

(k)
1M

φ
(k)
21 φ

(k)
22 · · · φ

(k)
2M

...
...

. . .
...

φ
(k)
N1 φ

(k)
N2 · · · φ

(k)
NM











(7.28)

We now show how to match up channel matrices based on these phase shifts. Let A⊙B ,

{anmbnm} denote the Hadamard product of A and B. We divide up the T channel uses into
K intervals of length T/K. Using Lemma 27, we have that for T large enough, all K intervals
will be γ-typical with probability at least (1 − ǫ

2
). By Definition 68, this means that the

number of occurrences of each possible channel matrix in each interval is bounded as follows:

T

K
(P (H) − γ) ≤ #(H|H[T/K]) ≤ T

K
(P (H) + γ) (7.29)

for all H ∈ H.
Each encoder uses a length λT codebook Cm with rate R̃m generated i.i.d. from a circu-

larly symmetric Gaussian distribution with variance Pm − ǫ.
Assume that the intervals are γ-typical. Each matrix will occur at least T

K
(P (H) − γ)

times in each interval. During the first time interval, each encoder transmits a new symbol
from its codeword at each time step t unless:

1. The channel matrix H[t] contains one or more elements with magnitude larger than
hMAX.

2. The channel matrix H[t] does not violate the threshold but has already occurred at
least T

K
(P (H) − γ) times.

We give a lower bound on the number of useable time slots below which we set to be equal
to the length of the codebook:

λT =
T

K

∑

H:|hnm|<hMAX

(P (H) − γ) (7.30)

=
T

K

(

1 − τ − (κη)MNγ
)

. (7.31)

We then match up used time slots from the first interval with time slots in the remaining
K − 1 intervals. During the kth time interval, when the channel matrix Φ(k) ⊙ H occurs,
it is matched with the first unmatched time slot from the first interval that had channel
matrix H. The encoders retransmit the symbols from the first interval for all matched time
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slots. Since are intervals are assumed to be γ-typical, all T
K

(P (H) − γ) time indices for each
matrix from the first interval can be successfully matched.

After T time steps, receiver n has access to equations of the form:

y(1)
n =

M
∑

m=1

hnmxm + z(1)
n (7.32)

y(2)
n =

M
∑

m=1

φ(2)
nmhnmxm + z(2)

n (7.33)

... (7.34)

y(K)
n =

M
∑

m=1

φ(K)
nm hnmxm + z(K)

n (7.35)

where xm are the symbols from a single index in the chosen codewords, hnm are fixed channel
coefficients (up to the quantization cells), and z

(k)
n are the noise terms from the matched time

indices.
Given these equations, the receiver attempts to recover the symbols from its desired by

applying linear transformations. For each desired symbol xℓ, the receiver forms an estimate:

unℓ =

K
∑

k=1

a
(k)
nℓ y(k)

n (7.36)

=
M
∑

m=1

hnmxm

K
∑

k=1

a
(k)
nℓ φ(k)

nm +
K
∑

k=1

a
(k)
nℓ z(k)

n (7.37)

for some choice of a
(k)
nℓ ∈ C.

Let δ[ℓ] be the Kronecker delta function. The following lemma establishes a worst-case
signal-to-interference-and-noise ratio (SINR) for the channel between xℓ and uℓ.

Lemma 28. Assume that φ
(k)
nm and a

(k)
nℓ are chosen such that

∑K
k=1 a

(k)
nℓ φ

(k)
nm = βδ[ℓ − m] for

some β > 0. Then, the AWGN channel between symbol xℓ and estimate unℓ has an SINR
that is lower bounded by:

SINR ≥
Pℓ

(

β|hnℓ| − ν
∑K

k=1 |a
(k)
nℓ |
)2

ν2
(

∑K
k=1 |a

(k)
nℓ |
)2
∑

m6=ℓ Pm + σ2
n

∑K
k=1 |a

(k)
nℓ |2

.
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Furthermore, as ν goes to zero, we have that:

lim
ν↓0

SINR ≥ Pℓβ
2|hnℓ|2

σ2
n

∑K
k=1 |a

(k)
nℓ |2

. (7.38)

Proof. First, we lower bound the signal power which is slightly diminished due to channel
quantization. By Lemma 26, the signal power is lower bounded as follows:

Pℓ

∣

∣

∣

∣

∣

K
∑

k=1

a
(k)
nℓ hnℓφ

(k)
nℓ

∣

∣

∣

∣

∣

2

≥ Pℓ

(

β|hnℓ| − ν
K
∑

k=1

|a(k)
nℓ |
)2

. (7.39)

Now, we upper bound the power of the remaining interference due to quantization. Again,
by Lemma 26, the power of each interferer m 6= ℓ at receiver n is upper bounded as follows:

Pm

∣

∣

∣

∣

∣

K
∑

k=1

a(k)
nmhnmφ(k)

nm

∣

∣

∣

∣

∣

2

≤ Pm

(

0 + ν
K
∑

k=1

|a(k)
nℓ |
)2

. (7.40)

Finally, the noise terms z
(k)
n are each weighted by a

(k)
nℓ in unℓ. Since the noise is i.i.d. across

time, we get that σ2
n

∑K
k=1 |a

(k)
nℓ |2 as the power of the sum of the noise.

The requirements on a
(k)
nℓ and φ

(k)
nm in Lemma 28 can be restated as a matrix condition.

Let An and Φn be defined as

An =











a
(1)
n1 a

(2)
n1 · · · a

(K)
n1

a
(1)
n2 a

(2)
n2 · · · a

(K)
n2

...
...

. . .
...

a
(1)
nM a

(2)
nM · · · a

(K)
nM











(7.41)

Φn =











φ
(1)
n1 φ

(1)
n2 · · · φ

(1)
nM

φ
(2)
n1 φ

(2)
n2 · · · φ

(2)
nM

...
...

. . .
...

φ
(K)
n1 φ

(K)
n2 · · · φ

(K)
nM











. (7.42)

Assume that receiver n wants messages with indices ℓ1, ℓ2, . . . , ℓI . Then the following
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condition is equivalent to
∑K

k=1 a
(k)
nℓ φ

(k)
nm = βδ[ℓi − m] for i = 1, 2, . . . , I:

AnΦn = β











δ[ℓ1 − 1] δ[ℓ1 − 2] · · · δ[ℓ1 − M ]
δ[ℓ2 − 1] δ[ℓ2 − 2] · · · δ[ℓ2 − M ]

...
...

. . .
...

δ[ℓI − 1] δ[ℓI − 2] · · · δ[ℓI − M ]











Example 15. For the standard interference channel, we have that N = M and Sm = {m}.
The framework above can be used to derive Theorem 36. Each receiver uses K = 2 equations
to recover its desired messages wm. The phase shifts are given by φ

(2)
mm = 1 and φ

(2)
nm = −1 for

n 6= m. The messages are recovered using a
(1)
mm = a

(2)
mm = 1. It follows that

∑2
k=1 a

(k)
mmφ

(k)
nm =

2δ[n − m]. Applying Lemma 28, we get the desired result.

Let ωK , ej2π/K denote the Kth root of unity and let WK be the size K discrete Fourier
transform (DFT) matrix:

WK =















ω0
K ω0

K ω0
K · · · ω0

K

ω0
K ω1

K ω2
K · · · ωK−1

K

ω0
K ω2

K ω4
K · · · ω

2(K−1)
K

...
...

. . .
...

ω0
K ωK−1

K ω
2(K−1)
K · · · ω

(K−1)2

K















. (7.43)

Recall that the inverse DFT matrix has the following form:

W−1
K =

1

K















ω0
K ω0

K · · · ω0
K

ω0
K ω−1

K · · · ω
−(K−1)
K

ω0
K ω−2

K · · · ω
−2(K−1)
K

...
...

. . .
...

ω0
K ω

−(K−1)
K · · · ω

−(K−1)2

K















. (7.44)

Theorem 37. For the fast fading Gaussian interference channel with uniform phase and N
receivers that want L messages, each transmitter can achieve the following rate:

Rm = min
n∈Sm

1

L + 1
E

[

log

(

1 + (L + 1)|hnm|2
Pm

σn

)]

. (7.45)

Proof. Without loss of generality, assume that receiver n is interested in messages from trans-
mitters 1, 2, . . . , L. (Otherwise, just reindex the transmitters.) To recover these messages,
the receiver needs L + 1 equations: L for the messages and one for the interference. The
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phase coefficients are chosen from the DFT matrix of size WL+1:

φ
(k)
nℓ =







exp
(

j2π(ℓ−1)(k−1)
L+1

)

ℓ = 1, 2, . . . , L

exp
(

j2πL(k−1)
L+1

)

ℓ = L + 1, L + 2, . . . , M

and the recovery coefficients are chosen from the inverse DFT matrix WL+1 scaled by L+1:

a
(k)
nℓ = exp

(−j2π(ℓ − 1)(k − 1)

L + 1

)

for ℓ = 1, 2, . . . , L

This immediately gives that AnΦn = (L + 1)I. We can now apply Lemma 28 to show that
the resulting channel from each transmitter has SINRnℓ no worse than:

SINRnℓ ≥
Pℓ ((L + 1)|hnℓ| − (L + 1)ν)2

(L + 1)2ν2
∑

ℓ 6=m Pℓ + (L + 1)σ2
n

.

Since the message from transmitter ℓ is multicast to several receivers, the rate is governed
by the worst channel:

SINRℓ = min
n∈Sℓ

SINRnℓ (7.46)

By choosing ν, γ and τ small enough and T large enough, we can guarantee that SINRℓ is
such that we can find a good code to all receivers with probability of error at most ǫ

2
and

rate at least

min
n∈Sℓ

1

L + 1
E

[

log

(

1 + (L + 1)|hnℓ|2
Pℓ

σ2
n

)]

− ǫ. (7.47)

Recall also that with probability ǫ
2

the channel is not γ-typical. Since the total probability
of error is less than ǫ, we get the desired result.

One way to think about the L + 1 equations used in this scheme is that we use one
equation for each desired message and one for all of the remaining interference. The choice
of the DFT matrix for our coefficients allows us to extract the maximum possible coherence
gain out of these L+1 time slots. Note that if we simply extended the scheme from Theorem
36, to cancel out the interference from each desired message one-by-one, we could not achieve
the same rates. Specifically, if we have

162



Chapter 7. Interference Alignment via Computation

Φ1 =











1 1 · · · 1 1 · · · 1
1 −1 · · · −1 −1 · · · −1
...

...
. . .

...
...

. . .
...

−1 −1 · · · 1 −1 · · · −1











(7.48)

then we only achieve a rate of

Rℓ = min
n∈Sℓ

1

L + 1
E

[

log

(

1 + 2|hnℓ|2
Pℓ

σ2
n

)]

. (7.49)

It can be shown that in the high SNR limit, this scheme achieves the sum degrees-of-
freedom M

L+1
using similar upper bound techniques as found in [21].

7.5 X Message Set

We now turn to a variant of the interference channel, the X channel, that has garnered sig-
nificant attention [65; 91; 22]. In this scenario, there are M transmitters and N receivers and
each transmitter has an independent message for each receiver. For the single antenna case,
Cadambe and Jafar showed that the sum degrees-of-freedom is MN

M+N−1
using interference

alignment [22]. Here, we extend this result to the finite SNR regime for the special case
of N = 2 receivers. Let wmℓ denote the message sent from the mth transmitter to the ℓth

receiver where ℓ takes values from 1 to N . Each message has rate Rmℓ. In Figure 7.3, we
give a block diagram of an X message set for M = 2 transmitters and N = 2 receivers.

w11, w12 E1
X1

w21, w22 E2
X2

H(t)

Z1

Y1

Z2

Y2

D1 ŵ11, ŵ21

D2 ŵ12, ŵ22

Figure 7.3: X message set for M = 2 transmitters and N = 2 receivers.

Unlike in our previous schemes, we cannot hope for the channel to generate an indepen-
dent coefficient for every message. Transmitters must artificially separate their messages by
premultiplying them by phases. This leaves us with fewer variables to work with to align
the interference at every receiver.
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For simplicity, we assume each transmitter splits its power equally between its messages
wm1 and wm2. The phase rotations at the transmitter for the kth equation are given by θ

(k)
m1

and θ
(k)
m2. This results in the following channel input:

X(k)
m = θ

(k)
m1Xm1 + θ

(k)
m2Xm2 (7.50)

It is also convenient to represent these phases in matrix form:

Θn =











θ
(1)
1n θ

(1)
2n · · · θ

(1)
Mn

θ
(2)
1n θ

(2)
2n · · · θ

(2)
Mn

...
...

. . .
...

θ
(K)
1n θ

(K)
2n · · · θ

(K)
Mn











. (7.51)

We are also free to choose the phases provided by the channel φ
(k)
nm. The receivers see

equations of all transmitted messages of the following form:

y
(k)
1 =

M
∑

m=1

φ
(k)
1mhnm(θ

(k)
m1xm1 + θ

(k)
m2xm2) + z

(k)
1 (7.52)

y
(k)
2 =

M
∑

m=1

φ
(k)
2mhnm(θ

(k)
m1xm1 + θ

(k)
m2xm2) + z

(k)
2 (7.53)

We can represent all of the phases seen at each receiver in a single matrix by ordering
the messages as follows w11, w21, . . . , wM1, w12, w22, . . . , wM2. The matrix of phases is

Bn = [Θ1 ⊙Φn Θ2 ⊙ Φn] (7.54)

The key is to choose all of the phases such that the left half of Bn is full rank at receiver 1
and composed of identical columns at receiver 2 while at the same time ensuring the right
half is full rank at receiver 2 and composed of identical columns at receiver 1. This is indeed
possible as shown by the following theorem.

Theorem 38. For the X message set with N = 2 receivers, the following rates are achievable:

Rnm =
1

M + 1
E

[

log

(

1 +
M + 1

2
|hnm|2

Pm

σ2
n

)]

(7.55)

Proof. We will show that it is possible to design the phases so that both receivers see a
DFT matrix with independent columns for the desired messages and the same column for
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undesired messages. Choose the phases as follows:

θ
(k)
m1 = exp

(

j2π(m − 1)k

M + 1

)

(7.56)

θ
(k)
m2 = exp

(

j2πMk

M + 1

)

(7.57)

φ
(k)
1m = 1 (7.58)

φ
(k)
2m = exp

(−j2π(m − 1)k

M + 1

)

(7.59)

Let α = exp(j2π/(M + 1)). We get that B1 is equal to:











1 1 · · · 1 1 1 · · · 1
1 α · · · α(M−1) αM αM · · · αM

...
...

. . .
...

...
...

. . .
...

1 αM · · · α(M−1)M αM2

αM2 · · · αM2











and B2 is equal to:











1 1 · · · 1 1 1 · · · 1
1 1 · · · 1 αM αM−1 · · · α
...

...
. . .

...
...

...
. . .

...

1 1 · · · 1 αM2

αM(M−1) · · · αM











Now, receivers 1 and 2 can treat this as a multicast problem and choose A1 to be the first M
columns of the size M + 1 inverse DFT matrix and A2 to be the last M columns. Following
the remaining steps in the proof of Theorem 37 yields the desired result.

It is not clear how this result can be extended beyond the two receiver case. Ideally,
we would like to choose transmitter phase rotations and channel phases to get a matrix of
phases

Bn = [Θ1 ⊙ Φn Θ2 ⊙ Φn · · · ΘN ⊙Φn] (7.60)

that allows us to appropriately align interference at all receivers. In the best case, we would
only need M equations for our desired messages and N−1 for the interference from messages
intended for other receivers.
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7.6 Time-Varying Finite Field Interference Channel

For the Gaussian case, it has been sufficient to match up channel matrices and add up the
resulting channel outputs. The simplicity of this strategy is in some ways an artifact of the
Gaussian setting. In general, the receivers may need to perform a decoding step prior to
combining the observed signals to avoid noise build-up. In this section, we consider a finite
field interference channel with fast fading and derive the entire capacity region. Each receiver
groups together time instances with the same channel coefficients and decodes a function of
the messages, using a computation code from Chapter 3. By combining two appropriately
chosen functions, the interference can be completely removed.

The problem statement is identical to that in Section 7.1 except for the channel model.
We assume that all additions and multiplications are carried out over a finite field Fq.

Definition 69 (Channel Model). We assume that the channel inputs and outputs take
values on the same finite field Fq. The channel output observed by each receiver is a noisy
linear combination of its inputs:

Ym[t] =
M
∑

ℓ=1

hmℓ[t]Xℓ[t] + Zm[t] (7.61)

where the hmℓ[t] are time-varying channel coefficients and Zm[t] is additive i.i.d. noise drawn
from a distribution that takes values on uniformly on {1, 2, . . . , q − 1} with probability ρ
and is zero otherwise. We define the entropy of Zk(t) to be 0 ≤ H(Z) ≤ log2 q. We assume
that at each time step each channel coefficient is drawn independently and uniformly from
Fq \{0}. The transmitters and receivers are given access to the channel realizations causally.
That is, before time t, each transmitter and receiver is given hmℓ[t] for all m and ℓ.

Remark 32. Our results can be extended to the case where the channel coefficients are
sometimes zero through simple counting arguments. However, this considerably complicates
the description of the capacity region.

Lemma 29. There exists a bijection, g : FM×M
q → FM×M

q such that H + g(H) = I, ∀H
where I is the identity matrix.

Proof. Let f : Fq → Fq be the bijection such that f(α) + α = 1 for all α ∈ Fq. Since Fq is a
finite field, f(·) is guaranteed to exist. Then, define g(·) as follows:

g(H) =











f(h11) −h12 · · · −h1M

−h21 f(h22) · · · −h2M
...

...
. . .

...
−hM1 −hM2 · · · f(hMM)











(7.62)
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where −hkℓ is the additive inverse of hkℓ. Clearly, g(H) + H = I and g(·) is a bijection.

The basic idea underlying our scheme is to add together two well-chosen channel outputs
such that the interference exactly cancels out. However, for the finite field model, if we do
this in an uncoded fashion, we risk accumulating noise. Thus, we denoise the desired linear
functions using the computation code from Theorem 11 prior to combining them together.

We will now show that all users can achieve half the single user rate simultaneously.
Note if a transmitter-receiver pair had the channel to themselves, they could achieve an
interference-free rate of log q − H(Z).

Theorem 39. For the M-user finite field interference channel with fast fading, each trans-
mitter can achieve the following rate :

RSYM =
1

2
(log q − H(Z)) (7.63)

Proof. For any ǫ > 0, let γ be a small positive constant that will be chosen later to satisfy
our rate requirement. Using Lemma 27, choose T large enough so that P (AT

γ ) ≥ 1 − ǫ
3
.

Assume that γ and T are chosen such that T ( 1
|H| − γ) is an even integer. Now condition

on the event that the sequence of channel matrices, H[T ], is γ-typical. Since the channel
coefficients are i.i.d. and uniform, the probability of any channel H ∈ H is 1

|H| . Since H[T ]

is γ-typical we have that for every H ∈ H:

T

(

1

|H| − γ

)

≤ #(H|H[T ]) ≤ T

(

1

|H| − γ

)

(7.64)

We will only use the first T ( 1
|H| −γ) indices for each channel realization H ∈ H. This results

in losing at most a γ fraction of the total rate. Group together all useable time indices
that have channel realization H and call this set of indices TH. We will encode for each
TH separately. For each channel realization H, transmitter ℓ generates a message wℓH ∈ F

k
q

where k = T
2
( 1
|H| − γ)(log q)−1(RSYM − ǫ

3
).

Using a computation code from Theorem 11, each transmitter ℓ sends its message wℓH

during the first T
2
( 1
|H| − γ) time indices in TH. Receiver m makes an estimate ûmH of

umH =
∑M

ℓ=1 hmℓwℓH.
For each channel realization H ∈ H, pair up the first T

2
( 1
|H| − γ) blocks with H with

the last T
2
( 1
|H| − γ) blocks with g(H) using g(·) from Lemma 29. Since g is a bijection, this

procedure pairs up all of the channel indices. During the last T
2
( 1
|H| −γ) indices with channel

g(H), the transmitters resend the message wℓH using a computation code from Theorem 11.
The receivers make an estimate v̂mH of vmH = vmH = f(hmm)wmH −∑ℓ 6=m hmℓwℓH where
f(·) is the function such that f(hmℓ) + hmℓ = 1.
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For T large enough, the total probability of error for all computation codes is upper
bounded by ǫ

3
. Receiver m makes an estimate of wmH by simply adding up the two equations

to get ŵmH = ûmH + v̂mH. Note that the transmitters do not know a priori which time
indices will be successfully paired. To deal with this, the transmitters use an erasure code
with rate at least (1 − γ)RSYM − 2ǫ

3
with probability of error no greater than ǫ

3
over all

transmissions. By choosing γ small enough, we finally get that each receiver can recover its
message at a rate greater than 1

2
(log q − H(Z)) − ǫ with probability of error less than ǫ as

desired.

Theorem 40. For the M-user finite field interference channel with fast fading, any rate
tuple (R1, . . . , RM), satisfying the following inequalities is achievable:

Rℓ + Rm ≤ log q − H(Z), ∀m 6= ℓ. (7.65)

First, we will give an equivalent description of this rate region and then show that any
rate tuple can be achieved by time sharing the symmetric rate point from Theorem 39 and
a single user transmission scheme.

Lemma 30. Assume, without loss of generality, that the users are labeled according to rate
in descending order, so that R1 ≥ R2 ≥ · · · ≥ RM . The achievable rate region from Theorem
40 is equivalent to the following rate region:

R1 ≤ log q − H(Z) (7.66)

Rm ≤ min{log q − H(Z) − R1,
1

2
(log q − H(Z))}, m ≥ 2

Proof. The key idea is that only one user can achieve a rate higher than 1
2
(log q − H(Z)).

From (7.65), we must have that R1 +R2 ≤ log q−H(Z) so if R1 > 1
2
(log q−H(Z)) all other

users must satisfy Rm ≤ log q − H(Z) − R1. If R1 ≤ 1
2
(log q − H(Z)), then we have that

Rm ≤ 1
2
(log q − H(Z)) for all other users since the rates are in descending order.

Proof of Theorem 40. We show that the equivalent rate region developed by Lemma 30 is
achievable by time-sharing. First, we consider the case where R1 > 1

2
(log q − H(Z)). Let

α = 2(1 − R1

log q−H(Z)
). We allocate αT channel uses to the symmetric scheme from Theorem

39. For, the remaining (1 − α)T channel uses, users 2 through M are silent, and user 1
employs a capacity-achieving point-to-point channel code. This results in user 1 achieving
its target rate R1:

α(log q − H(Z))

2
+ (1 − α)(log q − H(Z)) (7.67)

= log q − H(Z) − R1 − log q + H(Z) + 2R1 = R1
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and users 2 through M achieving Rm = log q −H(Z)−R1. If R1 ≤ 1
2
(log q −H(Z)), we can

achieve any rate point with the use of the symmetric scheme from Theorem 39.

Finally, we will give an upper bound using the techniques in [21] to show that the achiev-
able rate region in Theorem 40 is the capacity region.

Theorem 41. For the M-user finite field interference channel with fast fading, the capacity
region is the set of all rate tuple (R1, . . . , RM) satisfying:

Rℓ + Rm ≤ log q − H(Z), ∀m 6= ℓ. (7.68)

Proof. The required upper bound follows from steps similar to those in Appendix II of [21].
Without loss of generality, we upper bound the rates of users 1 and 2. Note that the capacity
of the interference channel only depends on the noise marginals. Thus, we can assume that
Z1[t] = h12[t](h22[t])

−1Z2[t]. Let Ỹ2[t] = h12[t](h22[t])
−1Y2[t].

We give the receivers full access to the messages from users 3 through M as this can only
increase the upper bound. Let ǫT = (R1 + R2)Pe + hB(Pe) where Pe is the probability of
error. From Fano’s inequality, we have that T (R1 + R2) is upper bounded as follows:

T (R1 + R2) ≤ I(w1; Y
T
1 ) + I(w2; w1, Ỹ

T
2 ) + TǫT

= I(w1; Y
T
1 ) + I(w2; Ỹ

T
2 |w1, X

T
1 ) + TǫT

= I(w1; Y
T
1 ) + I(w2; {h12(t)X2(t) + Z1(t)}T

t=1|w1, X
T
1 ) + TǫT

= I(w1; Y
T
1 ) · · ·

· · ·+ I(w2; {h11(t)X1(t) + h12(t)X2(t) + Z1(t)}T
t=1|w1, X

T
1 ) + TǫT

= I(w1; Y
T
1 ) + I(w2; Y

T
1 |w1) + TǫT

= I(w1, w2; Y
T
1 ) + TǫT

≤ T (log q − H(Z)) + TǫT

As the probability of error Pe tends to zero, ǫT → 0 which yields R1 + R2 ≤ log q − H(Z).
Similar outer bounds hold for all receiver pairs ℓ and m. Comparing these to the achievable
region in Theorem 40 yields the capacity region.

Overall, ergodic interference alignment shows how much can be gained by coding over
parallel interference channels. While in the Gaussian case, we can simply add up two well-
matched channel outputs, in general, we can think about this alignment scheme as organizing
the computations naturally provided by the channel.

169



Chapter 8

Conclusions

In this thesis, we have shown that it is possible to efficiently and reliably evaluate a function
over a noisy channel. Through codes with an appropriately matched algebraic structure,
the redundancy required to overcome noise can be added in a distributed fashion. These
computation codes are clearly useful in situations where we are interested in a function of
the observed data. In many communication networks, the goal is to exchange messages
between users, not functions thereof. In this case, we demonstrated that it is beneficial to
view interference between transmitters as implicit computation and structure our commu-
nication strategy accordingly. This lead us to the compute-and-forward relaying strategy:
intermediate nodes decode the function of messages that is available at the highest rate and
pass it towards the destination which, given enough functions, can infer its desired messages.
Since this strategy works with the interference inherent to a communication network, the
end-to-end throughputs are often higher than for the usual routing strategies that fight the
interference.

We close with a discussion of some research directions that are a natural extension of the
problems considered in this thesis.

Directions

• A New Architecture for Wireless Networks. The current modality for most
wireless networks is a hub-and-spoke architecture. Users in a network are assigned to
a single basestation which uses multiple-access codes for the uplink (many-to-one) and
broadcast codes for the downlink (one-to-many). The basestations are in turn linked up
by a wired network. As the number of wireless devices increases, this paradigm may
eventually be replaced by a many-to-many architecture that makes use of advances
in cooperative communications. Compute-and-forward provides a modular, digital
solution for the physical layer of a many-to-many architecture: relay nodes work with
equations of bits (or symbols over a finite field). Moreover, the underlying computation
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codes are linear, a condition usually imposed for its practical merits. While in this
thesis we focused on finding the linear codes with the highest rates, in practice we
can use any linear code. Of course, there are many other issues to consider, such as
synchronization, but we believe that these can be overcome using the same techniques
used in current systems. From one point of view, the usual encoding and decoding
process is essentially unchanged under compute-and-forward except that the encoders
all use the same codebook and the decoder acts as if there were only one transmitter.

• Necessity of Algebraic Structure. Our results make a strong case that algebraic
structure is useful for proving capacity theorems for networks. Yet, we do not know
if such structure is necessary. Although new upper bound techniques will be needed
to answer such a question, we conjecture that algebraic structure is indeed required.
The answer would have both philosophical and practical consequences as it would shed
some light on what, if not bits, should be the currency of distributed information.

• Beyond Linear Functions. The bulk of our results are for scenarios where both
the channel and the desired function are linear with respect to some field. This is,
in part, due to the availability of good linear and lattice code constructions. Ideally,
we would like to find non-linear structured codes that can be used towards building
computation codes for general channels and functions. It may be that without the
symmetries inherent to linear codes, it may be very difficult to build and analyze a
structured code. In the meantime, progress can be made by extending the hybrid
computation coding strategy from Chapter 3 in which users first transmit uncoded to
take advantage of the channel’s natural (noisy) function and then send linear update
bins.

• Outer Bounds Most outer bound arguments focus on the statistical dependencies
between users in a network. Based on the network topology and the channel charac-
teristics, they attempt to place limits on both the probability distributions that can be
generated and the resulting mutual information expressions. Clearly, these arguments
do not suffice for the problems considered in this thesis as they do not address the role
of structural mismatch. If the channel provides a (noisy) function but we would like
to evaluate another, what is the penalty? This requires new tools that focus on both
the algebraic and the statistical constraints in the problem.

Overall, our aim has to been to challenge the current thinking about computation and
noise. Usually, we try to eliminate noise first and then perform our desired computations.
Our results provide a glimpse of what is possible if we allow for noisy, local computations
while aiming for reliable, global objectives.

171



Bibliography

[1] Agrawal, S., and Vishwanath, S. On the secrecy rate of interference networks
using structured codes. In Proceedings of the IEEE International Symposium on In-
formation Theory (ISIT 2009) (Seoul, South Korea, June 2009).

[2] Ahlswede, R. Group codes do not achieve Shannon’s channel capacity for general
discrete channels. The Annals of Mathematical Statistics 42, 1 (February 1971), 224–
240.

[3] Ahlswede, R. Multi-way communication channels. In Proceedings of the 2nd Inter-
national Symposium on Information Theory, Prague (1971), Publishing House of the
Hungarian Academy of Sciences, pp. 23–52.

[4] Ahlswede, R., Cai, N., Li, S.-Y. R., and Yeung, R. W. Network information
flow. IEEE Transactions on Information Theory 46, 4 (July 2000), 1204–1216.

[5] Ahlswede, R., and Han, T. S. On source coding with side information via a
multiple-access channel and related problems in multi-user information theory. IEEE
Transactions on Information Theory 29, 3 (May 1983), 396–412.

[6] Aleksic, M., Razaghi, P., and Yu, W. Capacity of a class of modulo-sum relay
channels. IEEE Transactions on Information Theory 55, 3 (March 2009), 921–930.

[7] Alon, N., and Spencer, J. H. The Probabilistic Method, 2nd ed. Wiley-Interscience,
New York, NY, 2000.

[8] Annapureddy, V. S., and Veeravalli, V. V. Gaussian interference networks:
Sum capacity in the low-interference regime and new outer bounds on the capacity
region. IEEE Transactions on Information Theory 55, 7 (July 2009), 3032–3050.

[9] Appuswamy, R., Franceschetti, M., Karamchandani, N., and Zeger, K.
Network coding for computing. In 46th Annual Allerton Conference on Communica-
tions, Control, and Computing (Monticello, IL, September 2008).

172



BIBLIOGRAPHY

[10] Aysal, T. C., Coates, M. J., and Rabbat, M. G. Rates of convergence of
distributed average consensus using probabilistic quantization. In 45th Annual Allerton
Conference on Communications, Control, and Computing (Monticello, IL, September
2007).

[11] Aysal, T. C., Yildiz, M. E., Sarwate, A. D., and Scaglione, A. Broadcast
gossip algorithms for consensus. IEEE Transactions on Signal Processing 57, 7 (July
2009), 2748–2761.

[12] Bajwa, W. U., Sayeed, A. M., and Nowak, R. Matched source-channel com-
munication for field estimation in wireless sensor networks. In Proceedings of the
ACM/IEEE International Conference on Information Processing in Sensor Networks
(IPSN 2005) (Los Angeles, CA, April 2005), pp. 332–339.

[13] Benezit, F., Dimakis, A. G., Thiran, P., and Vetterli, M. Order-optimal
consensus through randomized path averaging. In Annual Allerton Conference on
Communications, Control, and Computing (Monticello, IL, September 2007).

[14] Berger, T., Zhang, Z., and Viswanathan, H. The CEO problem. IEEE Trans-
actions on Information Theory 42, 3 (May 1996), 887–902.

[15] Bhadra, S., Gupta, P., and Shakkottai, S. On network coding for interference
networks. In Proceedings of the IEEE International Symposium on Information Theory
(ISIT 2006) (Seattle, WA, July 2006).

[16] Borade, S., Zheng, L., and Gallager, R. Amplify-and-forward in wireless relay
networks: Rate, diversity, and network size. IEEE Transactions on Information Theory
53, 10 (October 2007), 3302–3318.

[17] Boyd, S., Ghosh, A., Prabhakar, B., and Shah, D. Analysis and optimization
of randomized gossip algorithms. In Proceedings of the 43rd IEEE Conference on
Decision and Control (CDC 2004) (Atlantis, Bahamas, December 2004).

[18] Boyd, S., Ghosh, A., Prabhakar, B., and Shah, D. Randomized gossip algo-
rithms. IEEE Transactions on Information Theory 52, 6 (June 2006), 2508–2530.

[19] Bresler, G., Parekh, A., and Tse, D. The approximate capacity of a one-
sided interference channel. In 45th Annual Allerton Conference on Communications,
Control, and Computing (Monticello, IL, September 2007).

[20] Bresler, G., and Tse, D. N. C. 3 user interference channel: Degrees of freedom as a
function of channel diversity. In 47th Annual Allerton Conference on Communications,
Control, and Computing (Monticello, IL, September 2009).

173



BIBLIOGRAPHY

[21] Cadambe, V. R., and Jafar, S. A. Interference alignment and the degrees of
freedom for the K user interference channel. IEEE Transactions on Information Theory
54, 8 (August 2008), 3425–3441.

[22] Cadambe, V. R., and Jafar, S. A. Interference alignment and the degrees of
freedom of wireless X networks. IEEE Transactions on Information Theory 55, 5
(May 2009), 2334–2344.

[23] Cadambe, V. R., and Jafar, S. A. Multiple access outerbounds and the insepara-
bility of parallel interference channels. IEEE Transactions on Information Theory 55,
9 (September 2009), 3983–3990.

[24] Cadambe, V. R., Jafar, S. A., and Wang, C. Interference alignment
with asymmetric complex signaling - settling the Host-Madsen-Nosratinia conjec-
ture. In IEEE Transactions on Information Theory (Submitted April 2009). See
http://arxiv.org/abs/0904.0274.

[25] Caire, G., and Shamai (Shitz), S. On the capacity of some channels with channel
state information. IEEE Transactions on Information Theory 45, 6 (September 1999),
2007–2019.

[26] Carleial, A. B. Interference channels. IEEE Transactions on Information Theory
21, 5 (September 1975), 569–570.

[27] Chen, J., Zhang, X., Berger, T., and Wicker, S. An upper bound on the sum-
rate distortion function and its corresponding rate allocation schemes for the CEO
problem. IEEE Journal on Selected Areas in Communications 22, 6 (August 2004),
977–987.

[28] Cover, T., El Gamal, A., and Salehi, M. Multiple access channels with arbi-
trarily correlated sources. IEEE Transactions on Information Theory 26, 6 (November
1980), 648–657.

[29] Cover, T., and Thomas, J. Elements of Information Theory, 2nd ed. Wiley-
Interscience, Hoboken, NJ, 2006.

[30] Cover, T. M. A proof of the data compression theorem of Slepian and Wolf for
ergodic sources. IEEE Transactions on Information Theory 21, 3 (March 1975), 226–
228.

[31] Cover, T. M. Comments on broadcast channels. IEEE Transactions on Information
Theory 44, 6 (October 1998), 2524–2530.

174



BIBLIOGRAPHY

[32] Cover, T. M., and El Gamal, A. Capacity theorems for the relay channel. IEEE
Transactions on Information Theory 25, 5 (September 1979), 572–584.

[33] Dabora, R., and Servetto, S. D. On the role of estimate-and-forward with time
sharing in cooperative communication. IEEE Transactions on Information Theory 54,
10 (October 2008), 4409–4431.

[34] Dimakis, A. G., Sarwate, A. D., and Wainwright, M. J. Geographic gossip:
Efficient aggregation for sensor networks. IEEE Transactions on Signal Processing 56,
3 (March 2008), 1205–1216.

[35] Dobrushin, R. L. Asymptotic optimality of group and systematic codes for some
channels. Theory of Probability and its Applications 8, 1 (1963), 47–59.

[36] Dohler, M., Gkelias, A., and Aghvami, H. 2-hop distributed MIMO commu-
nication system. Electronics Letters 39, 18 (September 2003), 1350–1351.

[37] Doshi, V., Shah, D., Médard, M., and Jaggi, S. Distributed functional compres-
sion through graph coloring. In Data Compression Conference (DCC 2007) (Snowbird,
UT, March 2007).

[38] El Gamal, A., Hassanpour, N., and Mammen, J. Relay networks with delays.
IEEE Transactions on Information Theory 53, 10 (October 2007), 3413–3431.

[39] Elias, P. Coding for noisy channels. IRE Convention Record 4 (1955), 37–46.

[40] Elias, P., Feinstein, A., and Shannon, C. E. A note on the maximum flow
through a network. IRE Transactions on Information Theory 2, 4 (December 1956),
117–119.

[41] Erez, U., Litsyn, S., and Zamir, R. Lattices which are good for (almost) every-
thing. IEEE Transactions on Information Theory 51, 10 (October 2005), 3401–3416.

[42] Erez, U., and Zamir, R. Achieving 1
2
log (1 + SNR) on the AWGN channel with

lattice encoding and decoding. IEEE Transactions on Information Theory 50, 10
(October 2004), 2293–2314.

[43] Erez, U., and Zamir, R. A modulo-lattice transformation for multiple-access chan-
nels. In Proceedings of the 25th Annual Convention of Electrical and Electronic Engi-
neers in Israel (Eilat, Israel, December 2008).

[44] Etkin, R. H., Tse, D. N. C., and Wang, H. Gaussian interference channel ca-
pacity to within one bit. IEEE Transactions on Information Theory 54, 12 (December
2008), 5534–5562.

175



BIBLIOGRAPHY

[45] Feng, H., Effros, M., and Savari, S. Functional source coding for networks with
receiver side information. In 42nd Annual Allerton Conference on Communications,
Control, and Computing (Monticello, IL, September 2004).

[46] Flajolet, P., and Martin, G. Probabilistic counting algorithms for data base
applications. Journal of Computer and System Sciences 31, 2 (1985), 182–209.

[47] Ford, L. R., and Fulkerson, D. R. Maximal flow through a network. Canadian
Journal of Mathematics 8 (1956), 399–404.

[48] Ford, L. R., and Fulkerson, D. R. Flows in Networks. Princeton University
Press, Princeton, NJ, 1962.

[49] Gallager, R. Information Theory and Reliable Communication. John Wiley and
Sons, Inc., New York, 1968.

[50] Gamal, H. E., Caire, G., and Damen, M. O. Lattice coding and decoding achieve
the optimal diversity-multiplexing tradeoff of MIMO channels. IEEE Transactions on
Information Theory 50, 6 (June 2004), 968–985.

[51] Gastpar, M. To Code or Not To Code. PhD thesis, EPFL, 2002.

[52] Gastpar, M. Uncoded transmission is exactly optimal for a simple Gaussian “sensor”
network. IEEE Transactions on Information Theory 54, 11 (November 2008), 5427–
5251.

[53] Gastpar, M., and Vetterli, M. On the capacity of wireless networks: The
relay case. In Proceedings of the 21st Annual International Conference on Computer
Communications (INFOCOM 2002) (New York, NY, June 2002), vol. 3, pp. 1577 –
1586.

[54] Gastpar, M., and Vetterli, M. Source-channel communication in sensor net-
works. In Proceedings of the ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN 2003) (New York, NY, April 2003), L. J. Guibas
and F. Zhao, Eds., Lecture Notes in Computer Science, Springer, pp. 167–177.

[55] Gastpar, M., and Vetterli, M. On the capacity of large Gaussian relay networks.
IEEE Transactions on Information Theory 51, 3 (March 2005), 765–779.

[56] Giridhar, A., and Kumar, P. R. Computing and communicating functions over
sensor networks. IEEE Journal on Selected Areas in Communications 23, 4 (April
2005), 755–764.

176



BIBLIOGRAPHY

[57] Guruswami, V. Rapidly mixing markov chains: A comparison of techniques. Unpub-
lished. See http://www.cs.cmu.edu/∼venkatg/pubs/papers/markov-survey.ps, 2000.

[58] Han, T. S., and Kobayashi, K. A new achievable rate region for the interference
channel. IEEE Transactions on Information Theory 27, 1 (January 1981), 49–60.

[59] He, X., and Yener, A. Providing secrecy with structured codes: Tools and ap-
plications to two-user Gaussian channels. IEEE Transactions on Information Theory
(Submitted July 2009). See http://arxiv.org/abs/0907.5388.

[60] Ho, T., Karger, D. R., Médard, M., and Koetter, R. Network coding from
a network flow perspective. In Proceedings of the IEEE International Symposium on
Information Theory (ISIT 2003) (Yokohama, Japan, June 2003).

[61] Ho, T., Medard, M., Koetter, R., Karger, D. R., Effros, M., Shi, J., and
Leong, B. A random linear network coding approach to multicast. IEEE Transactions
on Information Theory 52, 10 (October 2006), 4413–4430.

[62] I. Csiszár. Linear codes for sources and source networks: Error exponents, universal
coding. IEEE Transactions on Information Theory 28, 4 (July 1982), 585–592.

[63] I. Csiszár, and Körner, J. Information Theory: Coding Theorems for Discrete
Memoryless Systems. Academic Press, New York, 1982.

[64] Jafar, S. A. The ergodic capacity of interference networks. IEEE Transactions on
Information Theory (Submitted July 2009). See http://arxiv.org/abs/0902.0838.

[65] Jafar, S. A., and Shamai (Shitz), S. Degrees of freedom region for the MIMO
X channel. IEEE Transactions on Information Theory 54, 1 (January 2008), 151–170.

[66] Jaggi, S., Chou, P., and Jain, K. Low complexity algebraic network codes. In
Proceedings of the IEEE International Symposium on Information Theory (ISIT 2003)
(Yokohama, Japan, June 2003).

[67] Jeon, S.-W., and Chung, S.-Y. Capacity of a class of multi-source relay net-
works. IEEE Transactions on Information Theory (Submitted July 2009). See
http://arxiv.org/abs/0907.2510.

[68] Katti, S., Gollakota, S., and Katabi, D. Embracing wireless interference:
Analog network coding. In ACM SIGCOMM (Kyoto, Japan, August 2007).

[69] Katti, S., Rahul, H., Hu, W., Katabi, D., Médard, M., and Crowcroft,
J. XORs in the air: Practical wireless network coding. In ACM SIGCOMM (Pisa,
Italy, September 2006).

177



BIBLIOGRAPHY

[70] Kawadia, V., and Kumar, P. R. A cautionary perspective on cross-layer design.
IEEE Wireless Communications Magazine 12, 1 (February 2005), 3–11.

[71] Khude, N., Prabhakaran, V., and Viswanath, P. Harnessing bursty interfer-
ence. In Proceedings of the IEEE Information Theory Workshop (ITW 2009) (Volos,
Greece, June 2009).

[72] Kim, Y.-H. Capacity of a class of deterministic relay channels. IEEE Transactions
on Information Theory 54, 3 (March 2008), 1328–1329.

[73] Kirti, S., Scaglione, A., and Thomas, R. J. A scalable wireless communication
architecture for average consensus. In Proceedings of the 46th IEEE Conference on
Decision and Control (CDC 2007) (New Orleans, LA, December 2007).

[74] Kochman, Y., and Zamir, R. Analog matching of colored sources to colored chan-
nels. In Proceedings of the IEEE International Symposium on Information Theory
(ISIT 2006) (Seattle, WA, July 2006).

[75] Kochman, Y., and Zamir, R. Joint Wyner-Ziv/dirty-paper coding by modulo-
lattice modulation. IEEE Transactions on Information Theory 55, 11 (November
2009), 4878–4889.

[76] Koetter, R., and Medard, M. An algebraic approach to network coding.
IEEE/ACM Transactions on Networking 11 (October 2003), 782–795.

[77] Körner, J., and Marton, K. How to encode the modulo-two sum of binary sources.
IEEE Transactions on Information Theory 25, 2 (March 1979), 219–221.

[78] Kotelnikov, V. A. On the carrying capacity of the ether and wire in telecommu-
nications. In Material for the First All-Union Conference on the Technological Re-
construction of the Communications Sector and Low-Current Engineering (Moscow,
Russia, 1933).

[79] Kramer, G., Gastpar, M., and Gupta, P. Cooperative strategies and capac-
ity theorems for relay networks. IEEE Transactions on Information Theory 51, 9
(September 2005), 3037–3063.

[80] Krithivasan, D., and Pradhan, S. Lattices for distributed source coding: Jointly
Gaussian sources and reconstruction of a linear function. IEEE Transactions on In-
formation Theory (Submitted July 2007). See http://arxiv.org/abs/0707.3461.

[81] Krithivasan, D., and Pradhan, S. A proof of the existence of
good lattices. Tech. rep., University of Michigan, July 2007. See
http://www.eecs.umich.edu/techreports/systems/cspl/cspl-384.pdf.

178



BIBLIOGRAPHY

[82] Krithivasan, D., and Pradhan, S. Distribued source coding using Abelian group
codes. IEEE Transactions on Information Theory (Submitted August 2008). See
http://arxiv.org/abs/0808.2659.

[83] Laneman, J. N., Tse, D. N. C., and Wornell, G. W. Cooperative diversity
in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on
Information Theory 50, 12 (December 2004), 3062–3080.

[84] Li, S.-Y. R., Yeung, R. W., and Cai, N. Linear network coding. IEEE Transac-
tions on Information Theory 49, 2 (February 2003), 371–381.

[85] Li, W., and Dai, H. Location-aided fast distributed consensus. In IEEE Transactions
on Information Theory (Submitted July 2007). See http://arxiv.org/abs/0707.0500.

[86] Liao, H. Multiple access channels. PhD thesis, University of Hawaii, Honolulu, 1972.

[87] Liu, P., Tao, Z., Narayanan, S., Korakis, T., and Panwar, S. S. CoopMAC:
A cooperative MAC for wireless LANs. IEEE Journal on Selected Areas in Commu-
nications 25, 2 (February 2007), 340–354.

[88] Loeliger, H.-A. Averaging bounds for lattices and linear codes. IEEE Transactions
on Information Theory 43, 6 (November 1997), 1767–1773.

[89] Ma, N., and Ishwar, P. Distributed source coding for interactive function compu-
tation. IEEE Transactions on Information Theory (Submitted November 2008). See
http://arxiv.org/abs/0801.0756.

[90] Ma, N., Ishwar, P., and Gupta, P. Information-theoretic bounds for multiround
function computation in collocated networks. In Proceedings of the IEEE International
Symposium on Information Theory (ISIT 2009) (Seoul, South Korea, June 2009).

[91] Maddah-Ali, M. A., Motahari, A. S., and Khandani, A. K. Communication
over MIMO X channels: Interference alignment, decomposition, and performance
analysis. IEEE Transactions on Information Theory 54, 8 (August 2008), 3457–3470.

[92] Marsch, P., and Fettweis, G. On backhaul-constrained multi-cell cooperative
detection based on superposition coding. In Proceedings of the IEEE International
Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC 2008)
(Cannes, France, September 2008).

[93] Mergen, G., and Tong, L. Type based estimation over multiaccess channels. IEEE
Transactions on Signal Processing 54, 2 (February 2006), 613–626.

179



BIBLIOGRAPHY

[94] Mosk-Aoyama, D., and Shah, D. Information dissemination via gossip: Applica-
tions to averaging and coding. http://arxiv.org/cs.NI/0504029, April 2005.

[95] Motahari, A. S., Gharan, S. O., Maddah-Ali, M.-A., and Khandani,
A. K. Real interference alignment: Exploiting the potential of single antenna sys-
tems. IEEE Transactions on Information Theory (Submitted November 2009). See
http://arxiv.org/abs/0908.2282.

[96] Motahari, A. S., and Khandani, A. K. Capacity bounds for the Gaussian in-
terference channel. IEEE Transactions on Information Theory 55, 2 (February 2009),
620–643.

[97] Mudumbai, R., Wild, B., Madhow, U., and Ramchandran, K. Distributed
beamforming using 1 bit feedback: From concept to realization. In 44th Annual Aller-
ton Conference on Communications, Control, and Computing (Monticello, IL, Septem-
ber 2006).

[98] Murphy, P., Sabharwal, A., and Aazhang, B. Building a cooperative communi-
cations system. Tech. rep., Rice University, July 2007. http://arxiv.org/pdf/0707.2998.

[99] Nam, W., Chung, S.-Y., and Lee, Y. H. Capacity bounds for two-way relay
channels. In Proceedings of the International Zurich Seminar on Communications
(IZS 2008) (Zurich, Switzerland, March 2008).

[100] Nam, W., Chung, S.-Y., and Lee, Y. H. Nested lattice codes for Gaussian relay
networks with interference. IEEE Transactions on Information Theory (Submitted
February 2009). See http://arxiv.org/abs/0902.2436.

[101] Narayanan, K., Wilson, M. P., and Sprintson, A. Joint physical layer coding
and network coding for bi-directional relaying. In 45th Annual Allerton Conference on
Communications, Control, and Computing (Monticello, IL, September 2007).

[102] Nazer, B. Note on structured superposition decoding matrix. Unpublished, January
2009.

[103] Nazer, B., Dimakis, A. G., and Gastpar, M. Local inteference can accelerate
gossip algorithms. In 46th Annual Allerton Conference on Communications, Control,
and Computing (Monticello, IL, September 2008).

[104] Nazer, B., and Gastpar, M. Computation over multiple-access channels. IEEE
Transactions on Information Theory 53, 10 (October 2007), 3498–3516.

180



BIBLIOGRAPHY

[105] Nazer, B., and Gastpar, M. Lattice coding increases multicast rates for Gaussian
multiple-access networks. In 45th Annual Allerton Conference on Communications,
Control, and Computing (Monticello, IL, September 2007).

[106] Nazer, B., and Gastpar, M. The case for structured random codes in network
capacity theorems. European Transactions on Telecommunications 19, 4 (June 2008),
455–474.

[107] Nazer, B., and Gastpar, M. Structured random codes and sensor network coding
theorems. In Proceedings of the International Zurich Seminar on Communications
(IZS 2008) (Zurich, Switzerland, March 2008).

[108] Nazer, B., and Gastpar, M. Compute-and-forward: Harnessing interference
through structured codes. IEEE Transactions on Information Theory (Submitted
August 2009). See http://arxiv.org/abs/0908.2119.

[109] Nazer, B., Gastpar, M., Jafar, S. A., and Vishwanath, S. Ergodic interfer-
ence alignment. In Proceedings of the International Symposium on Information Theory
(ISIT 2009) (Seoul, South Korea, June 2009).

[110] Nazer, B., Gastpar, M., Jafar, S. A., and Vishwanath, S. Interference
alignment at finite SNR: General message sets. In 47th Annual Allerton Conference
on Communications, Control, and Computing (Monticello, IL, September 2009).

[111] Nazer, B., Sanderovich, A., Gastpar, M., and Shamai (Shitz), S. Struc-
tured superposition for backhaul constrained cellular uplink. In Proceedings of the
International Symposium on Information Theory (ISIT 2009) (Seoul, South Korea,
June 2009).

[112] Nedic, A., Olshevsky, A., Ozdaglar, A., and Tsitsiklis, J. On distributed
averaging algorithms and quantization effects. Tech. Rep. 2778, MIT, November 2007.
See http://arxiv.org/abs/0711.4179.

[113] Nyquist, H. Certain topics in telegraph transmission theory. Transactions of the
American Institute of Electrical Engineers (AIEE) 47 (April 1928), 617–644.

[114] Ochiai, H., Mitran, P., Poor, H. V., and Tarokh, V. Collaborative beam-
forming for distributed wireless ad hoc sensor networks. IEEE Transactions on Signal
Processing 53, 11 (November 2005), 4110–4124.

[115] Oechtering, T. J., Schnurr, C., Bjelakovic, I., and Boche, H. Broadcast
capacity region of two-phase bidirectional relaying. IEEE Transactions on Information
Theory 54, 1 (January 2008), 454–458.

181



BIBLIOGRAPHY

[116] Oohama, Y. The rate-distortion function for the quadratic Gaussian CEO problem.
IEEE Transactions on Information Theory 44, 3 (May 1998), 1057–1070.

[117] Orlitsky, A., and Roche, J. R. Coding for computing. IEEE Transactions on
Information Theory 47, 3 (March 2001), 903–917.
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