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Wired Networks

• Wired Network: users connected by
point-to-point links or bit pipes.

• Interference only if two users share
the same link.

• Success Story: The Internet

Success due in part to layered digital architecture.

· · · =⇒ Flows =⇒ Packets =⇒ Bits =⇒ Signals

Physical Layer
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Wireless Networks

• Users share wireless medium.

• Fading due to different signal
paths through the
environment.

Current approach: Adapt existing wired network algorithms.

Current approach: Avoid interference at all costs.
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Wireless Network Model

• Must cope with interference, fading, and noise.
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Wireless Network Model

• Must cope with interference, fading, and noise.

• Receivers observe noisy linear combinations of transmitted signals:

y =
∑

j

hjxj + z
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Treating Interference as Noise

• Establish connection between two users by treating other
transmissions as noise:

y =
∑

j

hjxj + z
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Treating Interference as Noise

• Establish connection between two users by treating other
transmissions as noise:

y = hixi +
∑

j 6=i

hjxj + z

• Convert into network of reliable bit pipes.

Bobak Nazer UC Berkeley Wireless Foundations 5 / 48



Physical-Layer Cooperation

Lack of cooperation leads to treating other users as noise.

If users cooperate, we can exploit the noisy linear combinations of the
wireless channel for throughput gains.

Two well-studied approaches:

• Compress-and-Forward: Send out vector-quantized received
signal.

• Amplify-and-Forward: Repeat received signal.

See, for instance, Cover-El Gamal ’79, Schein-Gallager ’00,

Sendonaris-Erkip-Aazhang ’03, Laneman-Tse-Wornell ’04,

Kramer-Gastpar-Gupta ’05, Gastpar-Vetterli ’05,

Özgur-Lévêque-Tse ’07, Aleksic-Razaghi-Yu ’07.
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Example: Cooperative Communication
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H

z1
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y2

x1

x2

• Two users want to send messages across the network with the
help of two relays.

Bobak Nazer UC Berkeley Wireless Foundations 7 / 48



Example: Cooperative Communication

x1

x2

z1

y1

z2

y2

x1

x2

• Two users want to send messages across the network with the
help of two relays.

Bobak Nazer UC Berkeley Wireless Foundations 7 / 48



Example: Cooperative Communication

x1

x2

z1

y1

z2

y2

x1

x2

x1

x2

• Two users want to send messages across the network with the
help of two relays.

• Strategy 1: Each relay decodes one message.

Bobak Nazer UC Berkeley Wireless Foundations 7 / 48



Example: Cooperative Communication

x1
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x1 + x2 + z1

x1 − x2 + z2

x1

x2

• Two users want to send messages across the network with the
help of two relays.

• Strategy 1: Each relay decodes one message.

• Strategy 2: Relays send their observed signal to the destination
without decoding.
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Example: Cooperative Communication

• Interference can be useful!

• Not captured by bit pipe approach.
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Example: Cooperative Communication
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• What if each relay could decode a linear equation?
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Example: Cooperative Communication
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x2

• What if each relay could decode a linear equation?

• Compute-and-Forward: One relay decodes the sum of codewords.
Other relay decodes the difference.
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Example: Cooperative Communication

• Compute-and-Forward is nearly optimal!
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Talk Overview

1. How can we (reliably) compute over noisy channels?

2. What does this mean for wireless networks?

3. Beyond bits: Distributed signal processing applications.
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Reliable Computation over Noisy Channels

Finite field messages:

wj ∈ F
k
p

Real-valued channel:

xj ,yj , zj ∈ R
n

Random fading:

hij ∼ N (0, 1)

w1 Tx 1
x1

w2 Tx 2
x2

.

.

.

wM Tx M
xM

H

z1

y1

z2

y2

zM

yM

Rx 1
P

a1jwj

Rx 2
P

a2jwj

.

.

.

Rx M
P

aMjwj
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• Receivers know their fading coefficients. Transmitters do not.
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Rx 2
P

a2jwj

.

.

.

Rx M
P

aMjwj

• Receivers know their fading coefficients. Transmitters do not.

• Goal: Recover equations reliably while maximizing rate

R =
k

n
log2 p
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Usual Channel Coding

• Point-to-point communication:
minimum distance between
codewords important to protect
against noise

• Shannon ’48: Channel capacity:

C = max
p(X)

I(X;Y ) =
1

2
log

(

1 + h2SNR
)

w Tx
x h

z

y

Rx w

(Cover and Thomas,
Elements of Information Theory)
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1

2
log

(

1 + h2SNR
)

w Tx
x h

z

y

Rx w

(Cover and Thomas,
Elements of Information Theory)

• Many extensions: multiple-access (many-to-one), broadcast
(one-to-many)

• Can we use these codes for efficient computation?
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Usual Codes Not Good for Computation
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Nested Lattice Codes

• Lattice: linear tiling of R
n.

• ΛFINE: channel codewords
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Nested Lattice Codes

• Lattice: linear tiling of R
n.
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• ΛCOARSE ⊂ ΛFINE: power constraint

• Erez-Zamir ’04: Nested lattice
codes achieve point-to-point
AWGN capacity.
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Nested Lattice Codes

• Lattice: linear tiling of R
n.

• ΛFINE: channel codewords

• ΛCOARSE ⊂ ΛFINE: power constraint

• Erez-Zamir ’04: Nested lattice
codes achieve point-to-point
AWGN capacity.

• Computation Coding Key Idea: All users employ the same nested
lattice code.

• Could use any linear code instead (i.e. LDPC with QAM
constellation).
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Protecting Linear Equations
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Protecting Linear Equations

• Sum of codewords is not a
codeword.

• Must decode individual
messages.
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Computation Coding

All users pick the same nested lattice code:
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Computation Coding

Choose messages over field wi ∈ F
k
p:

w2

w1
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Computation Coding

Map wi to lattice point in ΛFINE mod ΛCOARSE:

w2

w1
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Computation Coding

Transmit lattice points over the channel:

w2

w1
x1

h1

x2
h2

z

y

h = [ 1.4 2.1 ]

a = [ 2 3 ]
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Computation Coding

Lattice codewords are scaled by channel coefficients:

w2

w1
x1

h1

x2
h2

z

y

h = [ 1.4 2.1 ]

a = [ 2 3 ]
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Computation Coding

Scaled codewords added together plus noise:
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Computation Coding

Extra noise penalty for non-integer channel coefficients:

w2

w1
x1

h1

x2
h2

z

y

h = [ 1.4 2.1 ]

a = [ 2 3 ]

Extra noise: SNR‖h − a‖2
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Computation Coding

Scale output by β to reduce non-integer noise penalty:

w2

w1
x1

h1

x2
h2

z

y

βh = [ β1.4 β2.1 ]

a = [ 2 3 ]

Extra noise: SNR‖βh − a‖2
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Computation Coding

Decode to closest lattice point:

w2

w1
x1

h1

x2
h2

z

y

βh = [ β1.4 β2.1 ]

a = [ 2 3 ]

Extra noise: SNR‖βh − a‖2
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Computation Coding

Compute sum of lattice points modulo the coarse lattice:

w2

w1
x1

h1

x2
h2

z

y

βh = [ β1.4 β2.1 ]

a = [ 2 3 ]

Extra noise: SNR‖βh − a‖2
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Computation Coding

Map back to equation of message symbols over the field:

w2

w1
x1

h1

x2
h2

z

y

βh = [ β1.4 β2.1 ]

a = [ 2 3 ]

Extra noise: SNR‖βh − a‖2

∑

aiwi
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Achievable Rates

Theorem (Nazer-Gastpar ISIT ’08, Asilomar ’08)

For channel coefficients h and equation coefficients a, a receiver can

decode
∑

aiwi at rate:

R = max
β∈R

1

2
log

(

SNR

|β|2 + SNR‖βh − a‖2

)

• Plugging in a = [0 · · · 0 1 0 · · · 0] recovers bit pipe rates.
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decode
∑

aiwi at rate:

R = max
β∈R

1

2
log

(

SNR

|β|2 + SNR‖βh − a‖2

)

=
1

2
log

(

1

‖a‖2 − βMMSE < a,h >

)

• The optimal choice of β is always given by the MMSE coefficient:

βMMSE =
SNR < h,a >

1 + SNR‖h‖2

• Plugging in a = [0 · · · 0 1 0 · · · 0] recovers bit pipe rates.
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Example: Recovering the Sum

• Want sum of messages
∑M

i=1 wi

• Channel is perfectly matched y =
∑M

i=1 xi + z

M = 2
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Example: Recovering the Sum

• Want sum of messages
∑M

i=1 wi

• Channel is perfectly matched y =
∑M

i=1 xi + z
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Decode the Best Equation

• Receiver chooses equation coefficients a that maximize the rate:

R = max
a∈ZM

1

2
log

(

1

‖a‖2 − βMMSE < a,h >

)

• Only need to check a satisfying ‖a‖2 ≤ 1 + ‖h‖2SNR

Bobak Nazer UC Berkeley Wireless Foundations 20 / 48



Example: Equation Rates

• 4 users

• Bit Pipe Rate = 0.1807

• Maximum Computation
Rate = 1.6343

• Equation Coefficients
= [1 − 1 0 1]

• Channel =
[0.74 −1.06 −0.16 0.88] 0 20 40 60 80 100
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Computation over Multiple-Access Channels

Sk
1 E1

Xn
1

Sk
2 E2

Xn
2

Sk
M EM

Xn
M

...
...

PY |X1X2...XM

Y n
D Ûk

U = f(S1, S2, . . . , SM )

• Goal: maximize computation rate, functions evaluated per
channel use

• Nazer-Gastpar IT ’07: partial results for general functions and
channels, computation capacity for finite field models
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Talk Overview

1. How can we (reliably) compute over noisy channels?

2. What does this mean for wireless networks?

3. Beyond bits: Distributed signal processing applications.
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Wireless Network

• Usually fight interference and convert to network of bit pipes.
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Wireless Network

w1

w2

• Usually fight interference and convert to network of bit pipes.

• Compute-and-Forward: Users decode linear combinations of
messages according to fading coefficients.
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Wireless Network

w1
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• Usually fight interference and convert to network of bit pipes.

• Compute-and-Forward: Users decode linear combinations of
messages according to fading coefficients.

• Physical-layer interface for network coding: collect equations and
solve for desired messages.
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Network Coding for Wired Networks

Ahlswede-Cai-Li-Yeung ’00: Network
coding achieves the multicast capacity of
wired networks. Routing is suboptimal.

• Example: Butterfly Network

• Want to multicast two packets: a

and b.

• Mixing packets (network coding) is
optimal.

• Send mod-2 sum down center path.
a b

a

a b

b

a b

a ⊕ b

a

a

b

b
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Network Coding for Wireless Networks

w Wireless Network

w

w

w

• Bit Pipe Approach: Decode incoming packets. Transmit random
linear combination.

• Compute-and-Forward: Channel does network coding for us.

Bobak Nazer UC Berkeley Wireless Foundations 26 / 48



Network Coding for Wireless Networks

w

Z2

Z1

Z3

w

w

w

• Bit Pipe Approach: Decode incoming packets. Transmit random
linear combination.

• Compute-and-Forward: Channel does network coding for us.

Bobak Nazer UC Berkeley Wireless Foundations 26 / 48



Network Coding for Wireless Networks

w

w

w

w

• Bit Pipe Approach: Decode incoming packets. Transmit random
linear combination.

• Compute-and-Forward: Channel does network coding for us.

Bobak Nazer UC Berkeley Wireless Foundations 26 / 48



Network Coding for Wireless Networks

w

a

b

c

w

w

w

• Bit Pipe Approach: Decode incoming packets. Transmit random
linear combination.

• Compute-and-Forward: Channel does network coding for us.

Bobak Nazer UC Berkeley Wireless Foundations 26 / 48



Network Coding for Wireless Networks

w

a

b

c

a

b

b

c

w

w

w

• Bit Pipe Approach: Decode incoming packets. Transmit random
linear combination.

• Compute-and-Forward: Channel does network coding for us.

Bobak Nazer UC Berkeley Wireless Foundations 26 / 48



Network Coding for Wireless Networks

w

a

b

c

a

b

b

c

b + c

a + b

w

w

w

• Bit Pipe Approach: Decode incoming packets. Transmit random
linear combination.

• Compute-and-Forward: Channel does network coding for us.

Bobak Nazer UC Berkeley Wireless Foundations 26 / 48



Network Coding for Wireless Networks

w

Z2

Z1

Z3

w

w

w

• Bit Pipe Approach: Decode incoming packets. Transmit random
linear combination.

• Compute-and-Forward: Channel does network coding for us.

Bobak Nazer UC Berkeley Wireless Foundations 26 / 48



Network Coding for Wireless Networks

w

w

w

w

• Bit Pipe Approach: Decode incoming packets. Transmit random
linear combination.

• Compute-and-Forward: Channel does network coding for us.

Bobak Nazer UC Berkeley Wireless Foundations 26 / 48



Example: Wireless Network Coding

Butterfly with a multiple-access channel in
the middle:

y = h1x1 + h2x2 + z

• Compute-and-Forward: Decode any
equation with non-zero coefficients.

w1 w2

w1 w2 w1 w2

x1 x2

y

MAC

a1w1 + a2w2
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Example: Wireless Network Coding

Butterfly with a multiple-access channel in
the middle:

y = h1x1 + h2x2 + z

• Compute-and-Forward: Decode any
equation with non-zero coefficients.

• Bit Pipe: Decode both messages then
compute the sum.

• Amplify-and-Forward: Retransmit
channel observation.
(Katti-Gollakota-Katabi ’07)

w1 w2

w1 w2 w1 w2

x1 x2

y

MAC

y
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Example: Wireless Network Coding
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Beyond Multicast

• Multicasting requires every user to recover every message. Need
full rank set of equations.











a11 a12 · · · a1M

a21 a22 · · · a2M
...

...
. . .

...
aM1 aM2 · · · aMM











• May just want one message at a destination. Need fewer
equations.

[

b1 b2 · · · bM

b1 −b2 · · · −bM

]
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M-User Fast Fading Interference Channel

• Time-varying
fading with i.i.d.
uniform phases.

• Transmitters
know H(t)
before time t.

w1 Tx 1
x1

w2 Tx 2
x2

...

wM Tx M
xM

H(t)

z1

y1

z2

y2

zM

yM

Rx 1 w1

Rx 2 w2

...

Rx M wM
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w1 Tx 1
x1

w2 Tx 2
x2

...

wM Tx M
xM

h11

z1

y1

h22

z2

y2

hMM

zM

yM

Rx 1 w1

Rx 2 w2

...

Rx M wM

• Interference-free rate:

RFREE = E
[

log
(

1 + |hmm|2SNRm

)]
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wM Tx M
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H(t)

z1

y1

z2

y2

zM

yM

Rx 1 w1

Rx 2 w2

...

Rx M wM

• Interference-free rate:

RFREE = E
[

log
(

1 + |hmm|2SNRm

)]

• Time-division:

RTDMA =
1

M
E

[

log
(

1 + M |hmm|2SNRm

)]
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Interference Alignment

Cadambe-Jafar ’08:With careful choice of precoding matrices, each user
can get “half the cake” (at high SNR):

lim
SNR→∞

RIA

log (1 + SNR)
=

1

2
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Ergodic Interference Alignment

Nazer-Gastpar-Jafar-Vishwanath ISIT ’09:

1. Send chunk of bits at time t with channel matrix H:

H =











h11 h12 · · · h1M

h21 h22 · · · h2M
...

...
. . .

...
hM1 hM2 · · · hMM
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...
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...
hM1 hM2 · · · hMM











2. Send same chunk of bits when complementary matrix HC occurs:

HC =











h11 −h12 · · · −h1M

−h21 h22 · · · −h2M
...

...
. . .

...
−hM1 −hM2 · · · hMM











± δ
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Nazer-Gastpar-Jafar-Vishwanath ISIT ’09:

1. Send chunk of bits at time t with channel matrix H:

H =
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h21 h22 · · · h2M
...

...
. . .

...
hM1 hM2 · · · hMM











2. Send same chunk of bits when complementary matrix HC occurs:

HC =











h11 −h12 · · · −h1M

−h21 h22 · · · −h2M
...

...
. . .

...
−hM1 −hM2 · · · hMM











± δ

3. Otherwise, send a different chunk of bits (and wait for its HC too).
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Ergodic Interference Alignment

Sum of channel observations is interference-free:

H + HC =







2h11 0
. . .

0 2hMM






± δ

Choose block length large enough so that sequence of channel matrices
converges in type. Then, most channel matrices will have a match.

Time

1 2 3 4 5 6 7 8 9 10 11 12 13 · · ·

Bobak Nazer UC Berkeley Wireless Foundations 33 / 48



Interference Channel Ergodic Capacity

Theorem (Nazer-Gastpar-Jafar-Vishwanath ISIT ’09)

Each user can achieve at least half its interference-free capacity at any
signal-to-noise ratio:

R =
1

2
E

[

log
(

1 + 2|hmm|2SNRm

)]

>
1

2
RFREE

• Jafar ’09: For uniform phase fading and a large number of users,
scheme achieves the ergodic capacity.

• Can also show this approach achieves the ergodic capacity region
for finite field channel models.

• Does not meet outer bound in general. For example, can do
slightly better in Rayleigh channels by including a “strong
interference” mode.
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Structured Codes Help in Networks

Recent research shows that structured codes are needed to approach
the capacity of networks.

• Distributed MIMO (Nazer-Gastpar ’08)

• Distributed Source Coding (Krithivasan-Pradhan ’08)

• Distributed Function Compression (Körner-Marton ’79,

Krithivasan-Pradhan ’07, Wagner ’08)

• Two-Way Relay Channel (Wilson-Narayanan-Pfister-Sprintson ’07, ’08,

Nam-Chung-Lee ’08)

• Dirty Multiple-Access Channel (Philosof-Khisti-Erez-Zamir ’07)

• Interference Channels (Bresler-Parekh-Tse ’07,

Sridharan-Jafarian-Vishwanath-Jafar-Shamai ’08)

• Secrecy (He-Yener ’08, ’09)
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Talk Overview

1. How can we (reliably) compute over noisy channels?

2. What does this mean for wireless networks?

3. Beyond bits: Distributed signal processing applications.
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Gossip Algorithms
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• A node randomly wakes up and computes a local average with a
neighbor.
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Gossip Algorithms
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Gossip Algorithms
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• Usually, we design algorithms to minimize the number of bits
transmitted.

• With computation codes, we can instead minimize the number of
equations computed.

Bobak Nazer UC Berkeley Wireless Foundations 38 / 48



Gossip Algorithms

1

6

5

3

8
3

2 8

• Usually, we design algorithms to minimize the number of bits
transmitted.

• With computation codes, we can instead minimize the number of
equations computed.

Bobak Nazer UC Berkeley Wireless Foundations 38 / 48



Gossip Algorithms

1

6

5

3

8
3

2 8

• Usually, we design algorithms to minimize the number of bits
transmitted.

• With computation codes, we can instead minimize the number of
equations computed.

Bobak Nazer UC Berkeley Wireless Foundations 38 / 48



Gossip Algorithms

1

6

5

3

8
3

2 8

• Usually, we design algorithms to minimize the number of bits
transmitted.

• With computation codes, we can instead minimize the number of
equations computed.

Bobak Nazer UC Berkeley Wireless Foundations 38 / 48



Gossip Algorithms

1

6

5

3

8
3

2 8

• Usually, we design algorithms to minimize the number of bits
transmitted.

• With computation codes, we can instead minimize the number of
equations computed.

Bobak Nazer UC Berkeley Wireless Foundations 38 / 48



Gossip Algorithms

1

6

6

3

8
3

2 8

• Usually, we design algorithms to minimize the number of bits
transmitted.

• With computation codes, we can instead minimize the number of
equations computed.

Bobak Nazer UC Berkeley Wireless Foundations 38 / 48



Gossip Algorithms

1

6

6

3

8
3

2 8

• Usually, we design algorithms to minimize the number of bits
transmitted.

• With computation codes, we can instead minimize the number of
equations computed.

Bobak Nazer UC Berkeley Wireless Foundations 38 / 48



Gossip Algorithms

1

6

6

3

8
3

2 8

• Usually, we design algorithms to minimize the number of bits
transmitted.

• With computation codes, we can instead minimize the number of
equations computed.

Bobak Nazer UC Berkeley Wireless Foundations 38 / 48



Gossip Algorithms

1

6

6

6

6
3

2 6

• Usually, we design algorithms to minimize the number of bits
transmitted.

• With computation codes, we can instead minimize the number of
equations computed.

Bobak Nazer UC Berkeley Wireless Foundations 38 / 48



Problem Statement

• N nodes randomly placed in a
square

• Each node has a real-valued
measurement

• AWGN multiple-access channel
model:

Yℓ =
∑

r
−α/2
mℓ φmℓXm + Zℓ

N nodes

• Want all nodes to learn the global average.
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Problem Statement

• N nodes randomly placed in a
square

• Each node has a real-valued
measurement

• AWGN multiple-access channel
model:

Yℓ =
∑

r
−α/2
mℓ φmℓXm + Zℓ

N nodes

M nodes

• Want all nodes to learn the global average.

• Channel knowledge, rmℓ, φmℓ, available about
size M local neighborhood.
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Pairwise Gossip: Convergence

• Gossip Round: a node randomly
wakes up and averages with a
random neighbor.

• Random geometric graph

• Boyd-Ghosh-Prabhakar-Shah ’06:
Converges in Θ(N2) rounds.

• Comes from spectral gap of W̄ ,
the averaging matrix.

N nodes
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Neighborhood Gossip: Convergence

• Gossip Round: a node randomly
wakes up and averages with its
entire neighborhood.

• Averaging matrix W̄ difficult to
compute.

• Idea: Lower bound conductance
of a related Markov chain.

N nodes
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Neighborhood Gossip: Convergence

• Gossip Round: a node randomly
wakes up and averages with its
entire neighborhood.

• Averaging matrix W̄ difficult to
compute.

• Idea: Lower bound conductance
of a related Markov chain.

N nodes

M nodes

Theorem (Nazer-Dimakis-Gastpar ICASSP ’09)

All nodes converge to the global average in O

(

N2

M2

)

rounds.
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Energy Analysis

• Want to compare how much energy each scheme uses to converge
in time T .

• Measured in total transmit energy:

Total Energy =

n
∑

i=1

T
∑

t=1

|xi(t)|
2

• Need to analyze how much energy used for communication
per gossip round in pairwise and neighborhood gossip.
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Time-Energy Tradeoff

• N = number of nodes

• M = neighborhood size

• α = power path-loss coefficient

• τ = speed-up factor =
Pairwise Convergence Time

Neighborhood Convergence Time

log
Pairwise Energy

Neighborhood Energy
=

(α

2
+ 2

)

log M − log τ −
M2

τ

Exponential energy savings possible if the neighborhood size scales
with the network size!
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Exponential Energy Savings

• Energy savings increase as
the neighborhood size
increases.

• Is this a fair comparison?
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Making a Fair Comparison

• Issue 1: Multiple gossip rounds could happen at once.
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Quantization references: Nedic et al. ’07, Frasca et al. ’08, Aysal et al. ’08,

Kar et al. ’09

Bobak Nazer UC Berkeley Wireless Foundations 45 / 48



Making a Fair Comparison

• Issue 1: Multiple gossip rounds could happen at once.

• Solution 1: Assume all nodes can pairwise gossip at once.
Only one neighborhood gossip round at at time.

• Penalty 1: N factor slow-down

• Issue 2: Quantization error could build up.

• Solution 2: Assume no build up for pairwise gossip.
Assume worst-case build up for neighborhood gossip.

Quantization references: Nedic et al. ’07, Frasca et al. ’08, Aysal et al. ’08,

Kar et al. ’09

Bobak Nazer UC Berkeley Wireless Foundations 45 / 48



Making a Fair Comparison

• Issue 1: Multiple gossip rounds could happen at once.

• Solution 1: Assume all nodes can pairwise gossip at once.
Only one neighborhood gossip round at at time.

• Penalty 1: N factor slow-down

• Issue 2: Quantization error could build up.

• Solution 2: Assume no build up for pairwise gossip.
Assume worst-case build up for neighborhood gossip.

• Penalty 2: log N extra quantization bits

Quantization references: Nedic et al. ’07, Frasca et al. ’08, Aysal et al. ’08,

Kar et al. ’09
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Time-Energy Tradeoff Revised

• N = number of nodes

• M = neighborhood size

• α = power path-loss coefficient

• τ = speed-up factor =
Pairwise Convergence Time

Neighborhood Convergence Time

log
Pairwise Energy

Neighborhood Energy
=

(α

2
+ 2

)

log M − log τ −
M2

τ

Exponential energy savings still possible if the neighborhood is large
enough!
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• τ = speed-up factor =
Pairwise Convergence Time

Neighborhood Convergence Time

log
Pairwise Energy

Neighborhood Energy
=

(α

2
+ 2

)

log M + log N − log τ −
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Critical Neighborhood Size

Exponential energy savings if the neighborhood is larger than a
critical value that depends on the power path-loss coefficient and the
speed-up factor.
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Conclusions

• Compute-and-Forward: new communication architecture based on
equations of bits instead of bits.

• Significant gains are possible since it exploits the noisy linear
combinations of the wireless channel.

• Optimal network communication requires both statistical and
algebraic considerations.
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