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• How should we deal with interference?
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Possible Coding Strategies:

• Avoid interference / orthogonalize.

• Treat interference as noise.

• Decode interfering codewords.

• Work with the analog channel
output (or a quantized version).

• Decode linear combinations of
codewords.

• Conventional Approach: First, eliminate interference and then
remove noise.

• This Talk: First, remove noise and then eliminate interference.
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ŵ2

...
ŵK
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• Which linear combinations can be sent over a given channel?

• Where can this help us?
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Compute-and-Forward from Nazer-Gastpar ’11:

• Bottom-up approach.

• Explicit mapping from Gaussian to finite-field models.

• More challenging to connect achievable rate region to upper bounds.

• Clear interpretation of physical-layer phenomena such as MIMO and
interference alignment.
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I.I.D. Random Coding

• Generate 2nR1 i.i.d. uniform codewords for user 1.

• Generate 2nR2 i.i.d. uniform codewords for user 2.

• With high probability, (nearly) all sums of codewords are distinct.

• This is ideal for multiple-access but not for computation.

R1 +R2 ≤ I(X1, X2;Y )

= H(Y )−H(Y |X1, X2)

= log p−H(Z)



Random i.i.d. codes are not good for computation
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Linear Codes

• Linear Codebook: A linear map between messages and codewords
(instead of a lookup table).

p-ary Linear Codes

• Message w is a length-k vector over Fp.

• Codeword x is a length-n vector over Fp.

• Encoding process is just a matrix multiplication, x = Gw.








x1
x2
...
xn







=








g11 g12 · · · g1k
g21 g22 · · · g2k
...

...
. . .

...
gn1 gn2 · · · gnk















w1

w2
...
wk








• Recall that, for prime p, operations over Fp are just mod p
operations over the reals.

• Rate R =
k

n
log p (in bits)
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Codeword Distribution

It is more to instead analyze the shifted ensemble x = Gw ⊕ v where
v is an i.i.d. uniform sequence. (See Gallager.)

Shifted Codeword Properties

1. Marginally uniform over Fn
q . For a given message w, the codeword x

looks like an i.i.d. uniform sequence.

P(x = x) =
1

pn
for all x ∈ F

n
p

2. Pairwise independent. For w1 6= w2, the associated codewords
x1 = Gw1 ⊕ v and x2 = Gw2 ⊕ v are independent.

P(x1 = x1,x2 = x2) =
1

p2n
= P(x1 = x1)P(x2 = x2)
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• Transmitter sends: x = Gw ⊕ v.

• Point-to-point channel: y = x⊕ z. Noise is i.i.d.

• Receiver decodes via joint typicality decoding.

• Error occurs if the true codeword x is not jointly typical with y or
any other codeword x̃ is jointly typical with y.

• Using the union bound,

P(ŵ 6= w) ≤ P

((
x,y

)
/∈ T (n)

ǫ

)

+
∑

w̃ 6=w

P

((
x̃,y

)
∈ T (n)

ǫ

)

≤ ǫ+ 2nR 2−n(I(X;Y )−3ǫ)

• It follows that there exists a good fixed generator matrix G and shift
v for any rate R < I(X;Y ) where X is uniform.

• Shift v is unnecessary for additive noise channels.
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P(û 6= u) → 0

w1 E1
x1

w2 E2
x2

z

y
D û
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Random Linear Coding

• User 1 transmits x1 = Gw1.

• User 2 transmits x2 = Gw2. Idea of using the same linear code at
multiple terminals stems from Körner-Marton ’79.

• Receiver observes y = Gw1 ⊕Gw2 ⊕ z

= G(w1 ⊕w2)⊕ z

= Gu⊕ z .

• Nazer-Gastpar ’07: Decoding succeeds w.h.p. if

max(R1, R2) ≤ I(X1 ⊕X2;Y ) = H(Y )−H(Y |X1 ⊕X2)

= log p−H(Z) .
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Computation over Finite Field Multiple-Access Channels

R2
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Linear

I.I.D.

log p−H(Z)

log p−H(Z)

• I.I.D. Random Coding: R1 +R2 ≤ log p−H(Z)

• Random Linear Coding: max (R1, R2) ≤ log p−H(Z)

• Linear codes double the sum rate.

• Are they also useful for sending messages (rather than functions
thereof)?



Two-Way Relay Channel

w1Has

Wants w2 w1

Has

Wants

w2Relay

• Elegant example proposed by Wu-Chou-Kung ’04.

• Closely related to butterfly network from Ahlswede-Cai-Li-Yeung ’00.
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Two-Way Relay Channel – Physical-Layer Network Coding

w1 w2

w1 w2

(a)

(b)

w1 ⊕w2

• Physical-layer network coding: exploiting the wireless medium for
network coding. Independently and concurrently proposed by
Zhang-Liew-Lam ’06, Popovski-Yomo ’06, Nazer-Gastpar ’06.

• Sometimes referred to as Analog Network Coding
Katti-Gollakota-Katabi ’07.

• Some recent surveys Liew-Zhang-Lu ’11, Nazer-Gastpar ’11.
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(Finite Field) Two-Way Relay Channel

zMAC

yMAC

Relay

xBC

z2z1

User 1

x1w1

ŵ2

User 2

x2 w2

ŵ1

• i.i.d. noise sequences with

entropy H(Z).

• Rates R1 and R2.

• Cut-Set Upper Bound:

max (R1, R2) ≤ log p−H(Z)

• I.I.D. Random Coding: Relay decodes w1,w2, transmits w1 ⊕w2.

R1 +R2 ≤ log p−H(Z)

• Random Linear Coding: Relay decodes and retransmits w1 ⊕w2.

max (R1, R2) ≤ log p−H(Z)



(Finite Field) Two-Way Relay Channel

R2

R1

Linear

I.I.D.

log p−H(Z)

log p−H(Z)

• Linear codes can double the sum rate for exchanging messages.



Road Map

• Warm-up: Compute-and-forward over finite field channels.

• Compute-and-forward over Gaussian channels.

• Applications to communication across single-hop Gaussian networks.
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Compute-and-Forward: Problem Statement

w1 E1
x1

h1

w2 E2
x2 h2

wL EL
xL

hL...

z

y
D

û1

û2
...

ûM

um =

L⊕

ℓ=1

qmℓwℓ

• Messages are finite field vectors,
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û1

û2
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xℓ,y ∈ Rn.

• Power constraint, 1
nE‖xℓ‖2 ≤ P .

• Gaussian noise, z ∼ N (0, I).

• Equal rates: R =
k

n
log2 p

• Decoder wants M linear combinations of the messages with

vanishing probability of error lim
n→∞

P

(
⋃

m{ûm 6= um}
)

= 0.

• Receiver can use its channel state information (CSI) to match the
linear combination coefficients qmℓ ∈ Fp to the channel coefficients
hℓ ∈ R. Transmitters do not require CSI.

• What rates are achievable as a function of hℓ and qmℓ?
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Computation Rate

• Want to characterize achievable rates as a function of hℓ and qmℓ.

• Easier to think about integer rather than finite field coefficients.

• The linear combination with integer coefficient vector
am = [am1 am2 · · · amL]

T ∈ Z
L corresponds to

um =

L⊕

ℓ=1

qmℓwℓ where qmℓ = [amℓ] mod p

(where we assume an implicit mapping between Fp and Zp).

• Key Definition: The computation rate region described by
Rcomp(h,a) is achievable if, for any ǫ > 0 and n, p large enough, a
receiver can decode any linear combinations with integer coefficient
vectors a1, . . . ,aM ∈ Z

L for which the message rate R satisfies

R < min
m

Rcomp(h,am)
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y =
L∑

ℓ=1

hℓxℓ + z

=

L∑

ℓ=1

aℓxℓ +

L∑

ℓ=1

(hℓ − aℓ)xℓ + z
Decode−−−→ L⊕

ℓ=1

qℓwℓ

Effective Noise

Desired Codebook:

• Closed under integer linear combinations =⇒ lattice codebook.

• Independent effective noise =⇒ dithering.

• Isomorphic to F
k
p =⇒ nested lattice codebook.
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• A lattice Λ is a discrete subgroup of
R
n.

• Can express as a linear
transformation of the integer
vectors,

Λ = BZ
n ,

for some (non-unique) B ∈ R
n×n.

Lattice Properties

• Closed under addition:
λ1, λ2 ∈ Λ =⇒ λ1 + λ2 ∈ Λ.

• Symmetric: λ ∈ Λ =⇒ −λ ∈ Λ
Z
n is a simple lattice.
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Nested Lattices

• Two lattices ΛC and ΛF are nested if
ΛC ⊂ ΛF

• Nested Lattice Code: All lattice
points from ΛF that fall in the
fundamental Voronoi region VC of
ΛC.

• Coarse lattice ΛC enforces the power
constraint.

• Fine lattice ΛF protects against
noise.

B(0,
√
nP )
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Modulo Operation

• Modulo operation with respect to
lattice Λ is just the residual
quantization error,

[x] mod Λ = x−QΛ(x) .

• Distributive Law:
[

a1[x1] mod Λ + a2[x2] mod Λ
]

mod Λ

= [a1x1 + a2x2] mod Λ

for any a1, a2 ∈ Z and x1,x2 ∈ R
n.

mod Λ
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Construction A: Lattice Codes from Linear Codes

• Map elements {0, 1, 2, . . . , p− 1} to
equally spaced points on [0, 1).

• Choose generator matrix G ∈ F
n×k
p

and place its codewords into the unit
cube [0, 1)n. Tile over Zn and scale
by γ to get fine lattice ΛF.

• Generator matrix usually
elementwise i.i.d. uniform over Fp.

• Scaled integers act as coarse lattice,
ΛC = γZn.

0 1 2 3 4 · · · p− 1

0

1

2

3

4

...

p − 1

Fp

Fp

(0, 0) (1, 0)

(0, 1) (1, 1)

• Can design good coarse lattice via a two-stage approach.

• Existence of good nested lattice codes via Construction A:
Loeliger ’97, Forney-Trott-Chung ’00, Erez-Zamir ’04,

Erez-Litsyn-Zamir ’05.



Nested Construction A

• Ordentlich-Erez ’12: Use nested linear code in Construction A to
directly obtain a good nested lattice code.



Nested Construction A

• Ordentlich-Erez ’12: Use nested linear code in Construction A to
directly obtain a good nested lattice code.

• Let GF be the n× kF generator matrix for the fine lattice ΛF.
Choose entries elementwise i.i.d. uniform over Fp.



Nested Construction A

• Ordentlich-Erez ’12: Use nested linear code in Construction A to
directly obtain a good nested lattice code.

• Let GF be the n× kF generator matrix for the fine lattice ΛF.
Choose entries elementwise i.i.d. uniform over Fp.

• Let GC be the n× kC generator matrix for the coarse lattice ΛC.
Set it to be equal to the first kC columns of GF.



Nested Construction A

• Ordentlich-Erez ’12: Use nested linear code in Construction A to
directly obtain a good nested lattice code.

• Let GF be the n× kF generator matrix for the fine lattice ΛF.
Choose entries elementwise i.i.d. uniform over Fp.

• Let GC be the n× kC generator matrix for the coarse lattice ΛC.
Set it to be equal to the first kC columns of GF.

• Generate nested lattices ΛC ⊂ ΛF by using GF in Construction A.



Nested Construction A

• Ordentlich-Erez ’12: Use nested linear code in Construction A to
directly obtain a good nested lattice code.

• Let GF be the n× kF generator matrix for the fine lattice ΛF.
Choose entries elementwise i.i.d. uniform over Fp.

• Let GC be the n× kC generator matrix for the coarse lattice ΛC.
Set it to be equal to the first kC columns of GF.

• Generate nested lattices ΛC ⊂ ΛF by using GF in Construction A.

• Ideally, the resulting code meets the power constraint and tolerates
effective noise, while maintaining a high rate. We would also like an
isomorphism to F

k
p.
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Nested Construction A

Fix P and σ2
eff. It can be shown that, for any ǫ > 0 and n large

enough, there are choices of kF, kC, and p such that

• Power constraint satisfied: If x ∼ Unif(VC), then
1
nE‖x‖2 = P .

• Noise tolerance satisfied: If zeff is effective noise satisfying
P( 1n‖zeff‖2 > σ2

eff) < ǫ, then P
(
QΛF

(t+ zeff) = t
)
> 1− ǫ for any

fine lattice point t ∈ ΛF.

• Rate target satisfied: Number of useable symbols is k = kF − kC.

R =
k

n
log p >

1

2
log

(
P

σ2
eff

)

− ǫ .

• Isomorphism exists: There is a function φ : Fk
p → ΛF/ΛC such that if

tℓ = φ(wℓ), then

φ−1

([ L∑

ℓ=1

aℓtℓ

]

mod ΛC

)

=
L⊕

ℓ=1

qℓwℓ

for any aℓ ∈ Z and qℓ = [aℓ] mod p.
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• Decoding is successful with high probability if we set σ2
eff > 1. This

means that the rate R = 1
2 log(P ) is achievable.



Point-to-Point AWGN Channel: Lattice Encoding and Decoding

Before returning to the compute-and-forward problem, let’s revisit the
results of Erez-Zamir ’04 for point-to-point AWGN channels.

• Map message to lattice point: t = φ(w).

• Transmit: x = t.

• Receive: y = x+ z.

• Decode: t̂ =
[
QΛF

(y)
]
mod ΛC.

• Map back to finite field: ŵ = φ−1(̂t).

• Decoding is successful with high probability if we set σ2
eff > 1. This

means that the rate R = 1
2 log(P ) is achievable.

• What happened to the “1 +”?
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MMSE Scaling

• It turns out that we can do better by scaling the channel output
prior to decoding.

αy = αx+ αz

= x+ (α− 1)x+ αz
︸ ︷︷ ︸

zeff

• The effective noise variance 1
nE‖zeff‖2 = (α− 1)2P + α2 is uniquely

minimized by the MMSE coefficient αMMSE = P/(1 + P ),

min
α∈R

1

n
E‖zeff‖2 = (αMMSE − 1)2P + α2

MMSE

=
P

1 + P

• Plugging this in as σ2
eff, we find that 1

2 log
(

P
σ2
eff

)

= 1
2 log(1 + P ).

• But what about the dependency between the codeword and the
effective noise?
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Dithering

• Dithering can make the effective noise look
independent from the desired lattice
codeword.

• Map message w to a lattice codeword
t ∈ ΛF.

• Generate a random dither vector d
uniformly over VC.

• Transmitter sends a dithered codeword:

xℓ = [tℓ + dℓ] mod ΛC

• x is now independent of the codeword t.
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Point-to-Point AWGN Channel: Lattice Encoding and Decoding

With MMSE scaling and dithering, we can reach the AWGN capacity.

• Map message to lattice point: t = φ(w).

• Dither + Transmit: x = [t + d] mod ΛC.

• Receive: y = x+ z.

• Scale + Remove dithers: ỹ = [αy − d] mod ΛC

(zeff = (α− 1)x+ αz) = [x+ zeff − d] mod ΛC
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With MMSE scaling and dithering, we can reach the AWGN capacity.

• Map message to lattice point: t = φ(w).

• Dither + Transmit: x = [t + d] mod ΛC.

• Receive: y = x+ z.

• Scale + Remove dithers: ỹ = [αy − d] mod ΛC

(zeff = (α− 1)x+ αz) = [x+ zeff − d] mod ΛC

=
[
[t+ d] mod ΛC − d+ zeff

]
mod ΛC

(Distributive Law) = [t+ zeff] mod ΛC

• Decode: t̂ =
[
QΛF

(ỹ)
]
mod ΛC.

• Map back to finite field: ŵ = φ−1(̂t).

• Decoding is successful with high probability if we set σ2
eff > P

1+P .

This means that the rate R = 1
2 log(1 + P ) is achievable.



Refresher: Compute-and-Forward Problem Statement

w1 E1
x1

h1

w2 E2
x2 h2

wL EL
xL

hL...

z

y
D

û1

û2
...

ûM

um =

L⊕

ℓ=1

qmℓwℓ

• Messages are finite field vectors,
wℓ ∈ Fk

p.

• Real-valued inputs and outputs,
xℓ,y ∈ Rn.

• Power constraint, 1
nE‖xℓ‖2 ≤ P .

• Gaussian noise, z ∼ N (0, I).

• Equal rates: R =
k

n
log2 p

• Decoder wants M linear combinations of the messages with

vanishing probability of error lim
n→∞

P

(
⋃

m{ûm 6= um}
)

= 0.

• The linear combination with integer coefficient vector
am = [am1 am2 · · · amL]

T ∈ Z
L corresponds to

um =
L⊕

ℓ=1

qmℓwℓ where qmℓ = [amℓ] mod p .
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Compute-and-Forward: Lattice Encoding

Encoding operations at the ℓth transmitter:

• Map message to lattice point: tℓ = φ(wℓ).

• Dither + Transmit: xℓ = [tℓ + dℓ] mod ΛC where the dithers dℓ are
chosen independently and uniformly over VC,

• Notice that these operations do not depend on the channel gains.
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Decoding operations at the receiver to recover the linear combination
with integer coefficient vector am = [am1 · · · amL]
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Decoding operations at the receiver to recover the linear combination
with integer coefficient vector am = [am1 · · · amL]

T:
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Decoding operations at the receiver to recover the linear combination
with integer coefficient vector am = [am1 · · · amL]

T:

• Receive: y =
∑L

ℓ=1 hℓxℓ + z.

• Scale + Remove dithers:

ỹ =

[

αy −
L∑

ℓ=1

amℓdℓ

]

mod ΛC

=

[ L∑

ℓ=1

amℓ(xℓ − dℓ) +

L∑

ℓ=1

(αhℓ − amℓ)xℓ + αz

]

mod ΛC

= [v + zeff] mod ΛC (Distributive Law)

v =

[ L∑

ℓ=1

amℓtℓ

]

mod ΛC zeff =

L∑

ℓ=1

(αhℓ − amℓ)xℓ + αz

• Decode: v̂m =
[
QΛF

(ỹ)
]
mod ΛC.

• Map back to finite field: ûm = φ−1(v̂).
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Decode to the closest lattice point:
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Recover integer linear combination mod ΛC:

w2

w1
x1

h1

x2
h2

z

y

αh = [ α1.4 α2.1 ]

am = [ 2 3 ]

Effective noise: α2 + P‖αh − am‖2
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Map back to linear combination of the messages:
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Effective noise: α2 + P‖αh − am‖2
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• Overall, the linear combination with integer coefficient vector am
can be successfully decoded if

σ2
eff > α2 + P‖αh− am‖2 .

• Optimal scaling α given by MMSE coefficient for estimating
∑

ℓ amℓxℓ from
∑

ℓ hℓxℓ + z,

αMMSE =
PaTmh

1 + P‖h‖2 .

• Plugging this in and applying the Matrix Inversion Lemma, we get

σ2
eff > aTm

(
P−1I+ hhT

)−1
am .

• Overall, we find that if the rate satisfies

R < min
m

1

2
log

(
P

aTm
(
P−1I+ hhT

)−1
am

)

we can successfully decode all M linear combinations.



Compute-and-Forward: Achievable Rates

Theorem (Nazer-Gastpar ’11)

The computation rate region described by

Rcomp(h,a) = max
α∈R

1

2
log+

(
P

α2 + P‖αh− a‖2
)

is achievable.
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Theorem (Nazer-Gastpar ’11)

The computation rate region described by

Rcomp(h,a) =
1

2
log+

(

P

aT
(
P−1I+ hhT

)−1
a

)

is achievable.
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if R < min
m

Rcomp(h, am) for some a1, . . . , aM ∈ Z
L satisfying [am] mod p = qm.
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Compute-and-Forward: Achievable Rates

Theorem (Nazer-Gastpar ’11)

The computation rate region described by

Rcomp(h,a) =
1

2
log+

(

P

aT
(
P−1I+ hhT

)−1
a

)

is achievable.

Special Cases:

• Perfect Match: Rcomp(a,a) =
1

2
log+

(
1

‖a‖2 + P

)

• Decode a Message:

Rcomp

(

h, [ 0 · · · 0
︸ ︷︷ ︸

m−1 zeros

1 0 · · · 0]T
)

=
1

2
log

(

1 +
h2mP

1 + P
∑

ℓ 6=m

h2ℓ

)



Random i.i.d. codes are not good for computation

2nR2 codewords

2nR1 codewords

x1

x2

y

2n(R1+R2) codewords



Random i.i.d. codes are not good for computation

2nR2 codewords

2nR1 codewords

x1

x2

y

2n(R1+R2) codewords



Computation over Fading Channels – No CSIT
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• Three transmitters that
do not know the fading
coefficients.

• Average rate plotted for
i.i.d. Gaussian fading.

Relay either decodes some
linear combination of messages
or an individual message.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

Transmitter Power in dB

A
ve

ra
ge

 R
at

e 
in

 b
its

 p
er

 c
ha

nn
el

 u
se

 

 

Decode a Linear Combination
Decode a Message
Interference as Noise
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Road Map

• Warm-up: Compute-and-forward over finite field channels.

• Compute-and-forward over Gaussian channels.

• Applications to communication across single-hop Gaussian networks.

MIMO
Channels

Joint work with Jiening Zhan, Uri Erez, and Michael Gastpar.



MIMO Channels

• Increasing the number of antennas in a wireless system can
significantly increase its capacity.
Foschini ’96, Foschini and Gans ’98, Telatar ’99.

• Enormous body of work has strived to develop receiver architectures
that can approach these capacity gains with manageable complexity.
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MIMO Receiver Architectures

Vast majority of receiver architectures fall into these two categories
(references at the end of the talk):

• Joint Maximum Likelihood Receivers:
• Optimal but prohibitively complex for capacity-approaching codes.
• Often ML detection is performed at the symbol level and coupled with
an outer channel code. This includes the vast literature on
space-time codes, sphere decoding, and lattice-aided reduction.

• Well-suited to the high SNR regime as well as scenarios where
diversity is more important than rate.

• Zero-Forcing and Linear MMSE Receivers:
• First, decouple transmitted data streams via linear equalization at the
cost of noise amplification. Then apply SISO decoding.

• Simple interface with powerful channel coding techniques.
• Performance can be enhanced via successive interference cancellation.
• Well-suited to scenarios where rate is more important than diversity.

We propose a new class of Integer-Forcing Linear Receivers.
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[
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]

Y =

[
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]

+

[
−1 2
1 −1

]

Z

• Effective noise variances: σ2
1 = 5 and σ2

2 = 2.

• Integer-Forcing:

[
1 0
0 1

]

Y =

[
x1 + 2x2

x1 + x2

]

+

[
1 0
0 1

]

Z

• Effective noise variances: σ2
1 = 1 and σ2

2 = 1.

• Does this help beyond integer-valued channel matrices?
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n of rate R

(e.g., V-BLAST setting, cellular uplink). X = [x1 · · · xM ]T.

• Channel model: Y = HX+Z where Z is elementwise i.i.d. N (0, 1).

• CSIR: Only receiver knows channel realization H ∈ R
M×M .

• Probability of error: P
(
{ŵ1 6= w1} ∪ · · · ∪ {ŵM 6= wM}

)
< ǫ

• Joint maximum likelihood decoding is optimal but has high
implementation complexity.
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• Optimal B is the MMSE projection: B = HT
(
P−1I+HHT

)−1
.



Zero-Forcing Linear Receivers

w1 SISO Encoder
x1

w2 SISO Encoder
x2

...
...

wM SISO Encoder
xM

y1 ỹ1
SISO Decoder ŵ1
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Linear
Equalizer

• Zero-Forcing: Project the received signal, Ỹ = BY, to eliminate
interference between data streams.

• Significantly reduces complexity at the expense of performance.

• Ex: If H is full rank, set B = H−1 to get Ỹ = X+H−1Z.

• Optimal B is the MMSE projection: B = HT
(
P−1I+HHT

)−1
.

(Often called the linear MMSE receiver.)
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ûM ŵM
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û2 ŵ2
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• Integer-Forcing: Project the received signal, Ỹ = BY, to create
an integer-valued effective channel matrix.

• Ex: If H is full rank, set B = AH−1 to get Ỹ = AX+AH−1Z.

• Optimize over A ∈ Z
M×M to minimize effective noise.

• Optimal B is the MMSE projection: B = AHT
(
P−1I+HHT

)−1
.

• Includes zero-forcing by setting A = I.
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M∑
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m + Z = HX+ Z.

• To recover the linear combination with integer coefficient vector
a ∈ Z

L, the receiver projects its observation:

bTY = aTX+ (bTH− aT)X+ bTZ
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zeff

Theorem (Zhan-Nazer-Erez-Gastpar ’14)

The computation rate region described by

Rcomp(H,a) =
1
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(
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(
P−1I+ HTH

)−1
a

)

is achievable.
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Successive Interference Cancellation

• Linear receiver architectures are often augmented using successive
interference cancellation (SIC).

• Basic idea: After decoding codeword xℓ, remove its effect from
channel output to reduce the interference between data streams.

• V-BLAST I: Decodes and cancel the data streams in a
predetermined order, irrespective of the channel realization.

• V-BLAST II: Select the decoding order for each channel realization
to maximize the effective SNR for the data stream that sees the
worst channel.

• V-BLAST III: Decodes and cancel the data streams in a
predetermined order. The rate of each data stream is selected to
maximize the sum rate. (Outside problem statement.)



Simulation: Outage Rates
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Figure: 1 percent outage rates for the 2× 2 complex-valued MIMO channel
with Rayleigh fading.
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Integer-Forcing Geometry

• Integer-forcing can adapt to the channel by choosing a basis (of
integer vectors) close to the maximum singular vector.

• Zero-forcing implicitly decodes using the standard basis.
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a2

Zero-Forcing
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Integer-Forcing
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• Zhan-Nazer-Erez-Gastpar ’14: Integer-forcing can attain the optimal
DMT while conventional linear receivers cannot.
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Diversity-Multiplexing Tradeoff

• Zheng-Tse ’03: The DMTs achieved by the zero-forcing, linear
MMSE, and successive interference cancellation architectures are

dZF(r) = dLMMSE(r) = dV-BLAST I(r) =
(

1− r

M

)

dV-BLAST II(r) ≤ (N − 1)
(

1− r

M

)

dV-BLAST III(r) = piecewise linear curve connecting points (rk, n− k)

where r0 = 0, rk =

k−1∑

i=0

k − i

n− i
1 ≤ k ≤ n

• Zhan-Nazer-Erez-Gastpar ’14: Integer-forcing recovers the optimal
DMT for N ≥ M receive antennas:

dIF(r) = N
(

1− r

M

)
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Extensions and Generalizations

• What about space-time coding at the transmitter?

• Ordentlich-Erez ’13: Linear dispersion codes + integer-forcing
achieves the MIMO capacity universally to within a constant gap.
Includes optimal DMT as a special case.

• What about downlink scenarios?

• Hong-Caire ’13: Proposed integer-forcing beamforming. Each user
decodes the linear combination with the least effective noise. The
transmitter “pre-inverts” linear combinations using the inverse of
[A] mod p over Zp so that each user obtains its desired message.

• He-Nazer-Shamai ’14: Established uplink-downlink duality.

• What about successive cancellation for integer-forcing?

• Ordentlich-Erez-Nazer ’13: Framework for IF-SIC and exact
optimality proof.



Road Map

• Warm-up: Compute-and-forward over finite field channels.

• Compute-and-forward over Gaussian channels.

• Applications to communication across single-hop Gaussian networks.

1

2

K

Multiple-Access
Channels

Joint work with Or Ordentlich and Uri Erez.
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The capacity region is the set of all rate pairs (R1, R2) satisfying:
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1
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log(1 + h21P ) R2 <

1

2
log(1 + h22P )
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1

2
log(1 + ‖h‖2P )

Achievable via joint decoding.
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‖xℓ‖2 ≤ nP , z ∼ N (0, I).

R2

R1

• Treat x2 as noise and decode x1, R1 <
1

2
log

(

1 +
h21P

1 + h22P

)

.

• Cancel x1 and decode x2, R2 <
1
2 log

(
1 + h22P

)
.

• Switch decoding order for the other corner point.

• Achieves capacity when combined with time-sharing
or rate-splitting (Rimoldi-Urbanke ’96).
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Sum of Computation Rates

• Looks as if the sum of computation rates is nearly equal to the MAC
sum capacity. Why is this happening?

• Let F =
(
P−1/2I+ hhT

)−1/2
. Then, each computation rate can be

written as

Rcomp(h,ak) =
1

2
log+

(
P

‖F ak‖2
)

.

• Thus, decoding the best linear combinations is the same as finding
the successive minima λk(F) for the lattice Λ(F) = FZK :

λk(F) , inf

{

r : dim
(

span
(

Λ(F) ∩ B(0, r)
))

≥ k

}

.
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Minkowski’s Theorem on Successive Minima

Theorem (Minkowski)

Let Λ(F) be a lattice spanned by a full-rank K ×K matrix F. Its
successive minima λk(F) satisfy

K∏

k=1

λ2
k(F) ≤ KK

∣
∣det(F)

∣
∣2 .
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Theorem (Minkowski)

Let Λ(F) be a lattice spanned by a full-rank K ×K matrix F. Its
successive minima λk(F) satisfy

K∏

k=1

λ2
k(F) ≤ KK

∣
∣det(F)

∣
∣2 .

Theorem (Ordentlich-Erez-Nazer ’14)

For any channel vector h ∈ R
K , there exist linearly independent

integer vectors a1, . . . ,aK ∈ Z
K satisfying

K∑

k=1

Rcomp(h,ak) ≥
1

2
log(1 + ‖h‖2SNR)− K

2
logK .
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D û1

û2
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D û1

û2
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w1 E1
x1

h1

w2 E2
x2

h2

z

y
D û1

û2

u1 = a11w1 ⊕ a12w2

u2 = a21w1 ⊕ a22w2

• Order linear combinations
by descending
computation rate.

• Associate each
computation rate to a
message.

• Decode u1 first.

• Use u1 to help decode u2 by canceling out the contribution of w1,
in order to lower the effective rate.

Theorem (Ordentlich-Erez-Nazer ’14)

For any linearly independent integer vectors a1, . . . ,aK ∈ Z
K , there

exists a permutation π such that the following rates are achievable:

Rℓ = Rcomp,π(ℓ) .
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ỹSI
2 =

[

s2 − b1v1

]

mod ΛC

=
[(
a22 − b1a12

)
t2 + zeffec(h,a2)

]

mod ΛC .



(Algebraic) Successive Cancellation

• After decoding the first linear combination, the receiver knows

v1 =
[
a11t1 + a12t2

]
mod ΛC .

• The effective channel for the second linear combination is

ỹ2 =
[
a21t1 + a22t2 + zeffec(h,a2)

]
mod ΛC .

• Using v1, we can cancel out t1 from ỹ2 without changing the
effective noise.

ỹSI
2 =

[

s2 − b1v1

]

mod ΛC

=
[(
a22 − b1a12

)
t2 + zeffec(h,a2)

]

mod ΛC .

• Now, the receiver can decode since R2 < Rcomp(h,a2).



Using One Linear Combination to Get Another

• Basic Idea: After decoding the first linear combination with
coefficients a, we should create a new effective channel with
coefficients h+ βa to make it easier to decode the second linear
combination.

• We need the real sum of codewords
∑

ℓ

aℓxℓ.

• Issue: Our decoding scheme recovers the modulo sum of lattice
points

[∑

ℓ aℓtℓ
]
mod ΛC on the way to the linear combination of

messages, not the real sum.
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Successive Computation

• So far, we have only decoded a modulo sum of the lattice points:
[∑

ℓ

aℓtℓ

]

mod ΛC .

• First, add back in the dithers to get the modulo sum of codewords:
[[∑

ℓ

aℓtℓ

]

mod ΛC +
[∑

ℓ

aℓdℓ

]

mod ΛC

]

mod ΛC =
[∑

ℓ

aℓxℓ

]

mod ΛC

• Subtract this from y to expose the coarse lattice point nearest to
the real sum:

y−
[∑

ℓ

aℓxℓ

]

mod ΛC = QΛC

(∑

ℓ

aℓxℓ

)

+
∑

ℓ

(hℓ − aℓ)xℓ + z

• Coarse lattice point easier to decode than fine lattice point:

QΛC

(

QΛC

(∑

ℓ

aℓxℓ

)

+
∑

ℓ

(hℓ − aℓ)xℓ + z

)

= QΛC

(∑

ℓ

aℓxℓ

)

w.h.p.



Successive Computation

• Modulo sum is just the quantization error of the real sum with
respect to the coarse lattice.

• Combine the modulo sum with the quantized sum to get back the
real sum:

[∑

ℓ

aℓxℓ

]

mod ΛC +QΛC

(∑

ℓ

aℓxℓ

)

=
∑

ℓ

aℓxℓ

Lemma

In the compute-and-forward framework, if you can recover the modulo
sum, you can also recover the real sum (with high probability).
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Decode to the closest coarse lattice point.

w2

w1
x1

h1

x2
h2

z

y

αh = [ α1.4 α2.1 ]

a = [ 2 3 ]

Effective noise: α2 + SNR‖αh− a‖2



Successive Computation Illustration

Now we can infer the real sum.

w2

w1
x1

h1

x2
h2

z

y

αh = [ α1.4 α2.1 ]

a = [ 2 3 ]

Effective noise: α2 + SNR‖αh− a‖2

∑

ℓ

aℓxℓ



Successive Computation

• Receiver observes y =

L∑

ℓ=1

hℓxℓ + z
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Successive Computation

• Receiver observes y =

L∑

ℓ=1

hℓxℓ + z

Successive cancellation:

• Decode xi.

• Calculate y − hixi.

• Receiver now has

∑

ℓ 6=i

hℓxℓ + z

Successive computation:

• Decode

L∑

ℓ=1

aℓxℓ.

• Calculate y+ β

L∑

ℓ=1

aℓxℓ.

• Receiver now has

L∑

ℓ=1

(hℓ + βaℓ)xℓ + z
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Exact Sum-Rate Optimality

• Key Idea: Use recovered linear combinations to form a better
effective channel for decoding subsequent linear combinations (as
well as successive cancellation).

• Define the successive effective noise variance

σ2
eff(h,am|a1, . . . ,am−1) = ‖C⊥

mFam‖2

where F =
(
P−1I+ hhT

)−1/2
and C⊥

m is the projection matrix for
the nullspace of F[a1 · · · am−1].

Theorem (Ordentlich-Erez-Nazer Allerton ’13)

For any unimodular integer matrix A = [a1 . . . aK ]T ∈ Z
K×K with

descending successive effective noise variances, we have that

K∑

m=1

1

2
log+

(
P

σ2
eff(h,am|a1, . . . ,am−1)

)

=
1

2
log
(
1 + ‖h‖2P

)
.

Moreover, there exists at least one permutation π that associates each
user’s rate to a computation rate.
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Road Map

• Warm-up: Compute-and-forward over finite field channels.

• Compute-and-forward over Gaussian channels.

• Applications to communication across single-hop Gaussian networks.

1

2

K

1

2

K

Interference
Channels

Joint work with:

Symmetric case: Or Ordentlich and Uri Erez.

Stream-by-stream case: Vasilis Ntranos, Viveck Cadambe, and Giuseppe Caire.
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Interference Alignment

What do we need to get half the cake? (so far)

• Very large channel diversity (e.g., time extensions, frequency bands):

• Cadambe, Jafar ’08: Asymptotic alignment. Achieves K
2 DoF

across roughly 2K
2

channel realizations. Signal space alignment.

• Nazer, Gastpar, Jafar, Vishwanath ’12: Ergodic alignment.
Achieves K

2 log(1 + 2SNR) across roughly (KSNR)K
2/2 channel

realizations. Signal space alignment.

• Very high SNR:
• Motahari, Gharan, Maddah-Ali, Khandani ’09: Real alignment.
Achieves K

2 DoF over one channel realization using roughly 2K
2

codeword layers. Signal scale alignment.
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Basic Coding Framework:

• Each transmitter has one or more data streams, each of which is
drawn from an i.i.d. random codebook.

• Data streams are sent using beamforming vectors, which are selected
to align interference at the receivers.

• Each receiver nulls out the interfering data streams (e.g.,
zero-forcing) and decodes its desired data streams.
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• Powerful optimization algorithms for power allocation and
beamforming vectors.

• Some robustness to imperfect channel state information.



Signal Space Alignment

Basic Coding Framework:

• Each transmitter has one or more data streams, each of which is
drawn from an i.i.d. random codebook.

• Data streams are sent using beamforming vectors, which are selected
to align interference at the receivers.

• Each receiver nulls out the interfering data streams (e.g.,
zero-forcing) and decodes its desired data streams.

Advantages:

• Powerful optimization algorithms for power allocation and
beamforming vectors.

• Some robustness to imperfect channel state information.

Disadvantages:

• May require enormous channel diversity.

• May require high SNR.
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Example: Cadambe-Jafar ’08 over 3 Channel Realizations

Tx 1

Tx 2

Tx 3

Rx 1

Rx 2

Rx 3

Total Degrees of Freedom

DoF =
4 vectors

3 channel uses

=
4

3



Signal Scale Alignment

Basic Coding Framework:

• Each transmitter has one or more codewords, each of which is drawn
from a lattice codebook.

• Transmitter sends a linear combination of the codewords, with
coefficients carefully chosen to align interference at the receivers.

• Each receiver must discern its desired lattice codewords from the
sums of interfering ones.
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Signal Scale Alignment

Basic Coding Framework:

• Each transmitter has one or more codewords, each of which is drawn
from a lattice codebook.

• Transmitter sends a linear combination of the codewords, with
coefficients carefully chosen to align interference at the receivers.

• Each receiver must discern its desired lattice codewords from the
sums of interfering ones.

Advantages:

• Only requires one channel realization.

Disadvantages:

• Seems extremely sensitive to channel gains. DoF changes based on
rationality/irrationality.

• Seems to require extremely high SNR.
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Example: Two-User Lattice Alignment

1

2

• Two lattice codewords can be recovered from their linear
combination if the ratio of the coefficients is irrational.

• If the ratio is rational, it is not always possible to uniquely identify
the pair of codewords.



Symmetric K-User Gaussian Interference Channel
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• Signal space alignment (e.g., beamforming) is infeasible.

• Signal scale alignment attains K/2 degrees-of-freedom for almost all
channel gains, Motahari et al. ’09, Wu-Shamai-Verdu ’11.

• At finite SNR, the approximate capacity known in some special
cases: two-user Etkin-Tse-Wang ’08, many-to-one and one-to-many
Bresler-Parekh-Tse ’10, cyclic Zhou-Yu ’13.



Symmetric K-User Gaussian Interference Channel
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• Signal space alignment (e.g., beamforming) is infeasible.

• Signal scale alignment attains K/2 degrees-of-freedom for almost all
channel gains, Motahari et al. ’09, Wu-Shamai-Verdu ’11.

• At finite SNR, the approximate capacity known in some special
cases: two-user Etkin-Tse-Wang ’08, many-to-one and one-to-many
Bresler-Parekh-Tse ’10, cyclic Zhou-Yu ’13.

• Let’s look at the symmetric case.



Generalized Degrees-of-Freedom

α212
3

1
2

d(α)
1

2
3

1
2

1
K

• Capacity understood in the high SNR regime. Jafar-Vishwanath ’10.

α =
log g2SNR

log SNR
d(α) = lim

SNR→∞

R(SNR)
1
2 log SNR
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• Each receiver sees an effective two-user multiple-access channel,

yk = xk + g
∑

ℓ 6=k

xℓ + zk .

Successive Cancellation Decoding:

• Decode and subtract interference
∑

ℓ 6=k

xℓ, then decode desired

message.

• Only optimal when the interference is very strong, Sridharan et al.

’08.

Joint Decoding:

• Direct analysis is hindered by dependencies between codeword pairs.

• Existing work only applies at very high SNR, Ordentlich-Erez ’13.



Alignment via Two Equations

• Ordentlich-Erez-Nazer ’14: Decode two linear combinations:

a1xk + a2
∑

ℓ 6=k

xℓ b1xk + b2
∑

ℓ 6=k

xℓ

using the compute-and-forward framework from Nazer-Gastpar ’11.

If the coefficients are linearly independent, we can solve for the
desired message.



Alignment via Two Equations

• Ordentlich-Erez-Nazer ’14: Decode two linear combinations:

a1xk + a2
∑

ℓ 6=k

xℓ b1xk + b2
∑

ℓ 6=k

xℓ

using the compute-and-forward framework from Nazer-Gastpar ’11.

If the coefficients are linearly independent, we can solve for the
desired message.

• Set of “bad rationals” depends on the SNR. Only rationals with
denominator

√
SNR or smaller cause issues.
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Alignment via Two Equations

• Each receiver sees an effective two-user multiple-access channel,

yk = xk + g
∑

ℓ 6=k

xℓ + zk .

• Ordentlich-Erez-Nazer ’14:

• Noisy Regime: Decode one linear combination.

• Moderately Weak and Weak Regimes: Send public and private lattice
codewords. Decode three linear combinations.

• Strong and Very Strong Regime: Decode two linear combinations.
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Symmetric K-User Gaussian Interference Channel
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Symmetric K-User Gaussian Interference Channel
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Approximate Capacity Results: Strong Regime

• Using the fact that the sum of the computation rates is nearly equal
to the multiple-access sum capacity, we can approximate the sum
capacity of the symmetric K-user Gaussian interference channel in
all regimes.

Rsym >
1

2
log
(
1 + (1 + 2g2)SNR

)
−max

a∈Z2
Rcomp

(
[1 g]T,a

)
− 1

• Via basic results from Diophantine approximation, we can
approximate the sum capacity up to an outage set.



Approximate Capacity Results: Strong Regime

• Using the fact that the sum of the computation rates is nearly equal
to the multiple-access sum capacity, we can approximate the sum
capacity of the symmetric K-user Gaussian interference channel in
all regimes.

Rsym >
1

2
log
(
1 + (1 + 2g2)SNR

)
−max

a∈Z2
Rcomp

(
[1 g]T,a

)
− 1

• Via basic results from Diophantine approximation, we can
approximate the sum capacity up to an outage set.

• Sample Result: In the strong interference regime,

1

4
log+(g2SNR)− c

2
− 3 ≤ Csym ≤ 1

4
log+(g2SNR) + 1

for all channel gains except for an outage set whose measure is a
fraction of 2−c of the interval 1 < |g| <

√
SNR, for any c > 0.
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Integer-Forcing Interference Alignment

• Ideally, we should combine signal scale (e.g., lattice codes) and
signal space alignment (e.g., beamforming vectors).

• Ntranos-Cadambe-Nazer-Caire ’13: Proposed a new framework,
integer-forcing interference alignment, that can simultaneously
exploit signal space and signal scale alignment.

• Aimed at scenarios with finite channel diversity (e.g., a few
independent fading realizations) and finite SNR.

• Yields a new achievable rate region for any scenario which employs
“stream-by-stream” alignment.
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T , each assigned to
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Zero-Forcing Decoding
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How should each receiver decoder its desired data streams?

Zero-Forcing Interference Alignment:

• Generate the data streams using i.i.d. random coding.
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How should each receiver decoder its desired data streams?

Zero-Forcing Interference Alignment:

• Generate the data streams using i.i.d. random coding.

• First, project the received signal into the nullspace of the
interference.

• Then, jointly decode desired data streams.
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How should each receiver decoder its desired data streams?

Zero-Forcing Interference Alignment:

• Generate the data streams using i.i.d. random coding.

• First, project the received signal into the nullspace of the
interference.

• Then, jointly decode desired data streams.

• Suffices from a degrees-of-freedom perspective.
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How should each receiver decoder its desired data streams?

Joint Typicality Decoding:

• Generate the data streams using i.i.d. random coding.
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decoding each interferer separately.

• This significantly reduces the achievable rate per data stream.
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How should each receiver decoder its desired data streams?

Joint Typicality Decoding:

• Generate the data streams using i.i.d. random coding.

• If we attempt to decode the aligned interference, we will end up
decoding each interferer separately.

• This significantly reduces the achievable rate per data stream.

• Analyzing lattice-coded data streams is beyond the reach of current
techniques owing to dependencies.



Integer-Forcing Interference Alignment
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How should each receiver decoder its desired data streams?

Integer-Forcing Interference Alignment:

• Beamforming directions chosen to induce signal space alignment.
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• Data streams are encoded using nested lattice codes according to
some power allocation. This induces signal scale alignment.
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How should each receiver decoder its desired data streams?

Integer-Forcing Interference Alignment:

• Beamforming directions chosen to induce signal space alignment.

• Data streams are encoded using nested lattice codes according to
some power allocation. This induces signal scale alignment.

• Receiver decodes linear combinations and solves for its desired data
streams.
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How should each receiver decoder its desired data streams?

Integer-Forcing Interference Alignment:

• Beamforming directions chosen to induce signal space alignment.

• Data streams are encoded using nested lattice codes according to
some power allocation. This induces signal scale alignment.

• Receiver decodes linear combinations and solves for its desired data
streams.

• Requires extension of compute-and-forward to unequal powers.
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• Codewords observed through channel matrix H.

• Lattice View: Decode integer-linear combination of the codewords
modulo the coarsest lattice:

[
∑

ℓ

amℓ sℓ

]

mod Λc,1

• Finite Field View: Decode linear combination over Zk
p:

am,1

∗

⊕ am,2 ⊕ · · · ⊕ am,L

∗
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• In both cases, the linear combination with coefficient vector
aTm = [am1 am2 · · · amL] can be decoded reliably if

σ2
eff,ℓ > aTm

(
P−1 +HHT

)−1
am

for all ℓ such that amℓ 6= 0.



Performance Comparison

• 3-user Gaussian
interference channel.

• Can code over 3
independent fading
realizations from an
i.i.d. Rayleigh
distribution.

Strategies:

• CJ ’08 Beamforming
+ Zero-Forcing
Decoding.

• CJ ’08 Beamforming
+ Integer-Forcing
Decoding.
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Challenges

• Currently, we take fixed beamforming directions, such as from
Cadambe-Jafar ’08, and optimize the power allocation and the
integer coefficients.

• Note that choosing the optimal integers is equivalent to finding the
shortest basis in a certain lattice so we use LLL-type approximation
algorithms.

• Ideally, we would like to jointly optimize the beamforming directions,
power allocation, and the integer coefficients. That is, we need
Max-SINR type algorithms for integer-forcing interference alignment.

• Our current results only apply to stream-by-stream alignment, not
subspace alignment. This will likely require more sophisticated
lattice constructions.

• and many more (such as joint decoding, non-unique decoding)...



Codes, Constellations, and Algebraic Structures

Recent coding perspectives on compute-and-forward:

• Feng-Silva-Kschischang ’13: General algebraic framework in terms of
lattice partitions and R-modules.

• Hern-Narayanan ’13, Huang-Narayanan-Tunali ’14: Multilevel codes.

• Ordentlich-Erez ’12, Yang et al. ’12: Binary convolutional codes.

• Hong and Caire ’11, Ordentlich et al. ’11: Binary and p-ary LDPC
codes.

• Belfiore-Ling ’12: Code design criteria.

• Tunali-Narayanan-Pfister ’13: Spatially-coupled LDPC codes.



Algebraic Structure in Network Information Theory

Some topics we did not have a chance to cover:

• Distributed Source Coding: Körner-Marton ’79,
Krithivasan-Pradhan ’09,’11, Wagner ’11, Tse-Maddah-Ali ’10

• Relaying: Wilson-Narayanan-Pfister-Sprintson ’10,
Nam-Chung-Lee ’10, ’11, Goseling-Gastpar-Weber ’11,
Song-Devroye ’13, Nokleby-Aazhang ’12

• Cellular Networks: Sanderovich-Peleg-Shamai ’11,
Nazer-Sanderovich-Gastpar-Shamai ’09, Hong-Caire ’13

• Distributed Dirty-Paper Coding: Philosof-Zamir ’09,
Philosof-Zamir-Erez-Khisti ’11, Wang ’12

• Joint Source-Channel Coding: Kochman-Zamir ’09,
Nazer-Gastpar ’07, ’08, Soundararajan-Vishwanath ’12

• Physical-Layer Secrecy: He-Yener ’11, ’14,
Kashyap-Shashank-Thangaraj ’12



Concluding Remarks

• Even if you only want to recover messages, it can help to
first decode linear combinations.

• Compute-and-forward creates a direct link between Gaussian
interference networks and finite field ones.

• Enables more efficient encoding/decoding for networks where the
capacity is already known.

• Yields new achievable rates for interference channels.

• Broader story: Algebraic Structure in Network Information Theory.
ISIT ’11 Tutorial. Survey on physical-layer network coding in
Proceedings of the IEEE, March 2011.

• Upcoming textbook by Ram Zamir.
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