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Abstract—In prior work, we proposed the compute-and- Il. PROBLEM STATEMENT

forward framework for sending linear comblnat!ons of messaes Our setting is nearly identical to that of [2] and we repro-
to relays. In this note, we extend the notion of successive

interference cancellation to the compute-and-forward seing. we ~duce some of the key definitions below. For ease of exposition
find that once a relay has decoded a linear combination, it can We Wwill limit ourselves to real-valued channels and symiuetr
mix it with its channel output to create a new effective chanel rates. We will denote addition and summation oRewith +
output. Tht_e resulting effec_tive channel can be tune_d SO thait gng 3", respectively, and use and @ to denote the same
is more suitable for decoding a second linear combination tn overF,.
the original channel. Each transmitter (indexed b§ = 1,..., L) has a length-

k message that is drawn independently and uniformly over a

| INTRODUCTION prime-sized finite fieldw, € Fy. An encoderg, : Fi — R",
then maps the message into a lengtbedewordx, = £(wy),

. o . which must satisfy the usual power constrajia||? < nP.
The classical approach to communication over a W|rele.T.}s1
e message rate B = (k/n)logp.

relay network treats interference between transmittera as . .

. . . . Each relay (indexed byn = 1,..., M) observes a noisy
nuisance to be avoided. Typically, each relay observessynoi 7
. - 4 linear combination of the codewords,
linear combination of the transmitted codewords and attesmp .
to decode one (or more) of them while treating the others as B b 1
additional noise. Recent efforts have revealed that ieterfce Ym = Z meXe + Zm 1)
can in fact be exploited if we are willing to expand the set =t .
of decoding possibilities to include linear combinatiorfs gVhere thehn,, € R are the channel coefficients ang, =
codewords. One natural approach, sometimes referred 1’40, I) is i.i.d. Gaussian noise. Lét,, = [Am1 -+ himi]
compute-and-forward, is to employ a lattice codebook s6 th%enote the vector of channel coefficients. The goal is foheac

integer combinations of codewords are themselves codawofgldy t0 recoveitwo linear combinations of the messages of

[1]-[5]. Relays are then free to select integer coefficiengt € form
match the channel coefficients as closely as possible, thus L
. : : . 4 .’ (1) — M) (2 _ 2
reducing the effective noise and increasing the achievable — Ym = @qméwf U™ = @qméw‘f @)
rates. =1 =1
. 1 2 .. . .. .

Under the classical approach, a relay can employ successifere theq(\, QSn; € I, are finite field coefficients. To this
interference cancellation to remove decoded codeworas fr@nd, each relay is equipped with a decoder, R™ — Fk x
its channel observation. This decreases the eﬁectiveeno@, that produces estimatés,’ anda'? of its desired linear
encountered in the next decoding step. In this paper, wembinations. We will say that the average probability ober
devise an analogous technique for the compute-and-forwgscht moste if
framework. After decoding a linear combination, a relay can . (1) 1) . (2) (2) )
combine it with its channel observation to obtain a new P(U{um 7 U, }U{um #um} <€ (3)
effective channel that is even better for decoding the next "
linear combination. For ease of exposition, We.WIII focus_ 0\r}ided by the channel and the desired finite field linear com-
the case where each relay wants to recover just two ImeDar . . . .
combinations. Inations, we will need a bit of additional homenclature.

, o Specifically, we will refer t0u$71L) as the linear combination
Owing to space limitations, we do not attempt a full i ~oefficient vectora,, = [ami - amr]’ € ZV if its
survey of the literature. We refer interested readers to [%ite field coefficients satisfy

for additional references pertaining to compute-and-éodv )

and to [6], [7] for surveys of the closely related topic of Gy = [@me] mod p . 4)
physical-layer network coding.

L

To map between the real-valued linear combination pro-

1This is a slight abuse of notation. More formally, we shoulglieitly
define a mapping betwedR, and {0,1,...,p — 1}. See [2, Definition 6]
for more details.



Similarly, we will refer tOuss) as the linear combination with  We now provide a brief overview of the basic compute-

coefficient vectob,, = [byn1 -+ bnr]? € ZE if and-forward encoding and decoding functions which will be
@ _ d 5 useful in the proof of our main result. Using Construction A
Gme = [bme] mod p - () [g], [9], we select a pair of nested latticdsC Arne that can

We will say that the computation rate regiorapproach the capacity of a point-to-point Gaussian charnel
R(h,,,am,b,,) is achievable if, for anye > 0 and n can be shown that there is a one-to-one r’@abetweenF’;
large enough, there exist encoders and decoders, such @it the nested lattice codethat preserves linearity (see [2,
all relays can recover their desired linear combinationth wiLemma 5]). Using this mapping, the encoder chooses a lattice

average probability of errar so long as point t, = ¢(wy). It then applies a dithed, that is drawn
R < min Ry, aym, ) - () independent and uniformly ovét and transmits the result,
" x; = [ty —dg] mod A . (10)

Note that the relays are free to choose which linear combina-
tions to decode so long as (6) is satisfied. Relay m observesy,, and has access to every dithelt

1. NESTEDLATTICE CODES scales its observation by the minimum mean-squared error
' (MMSE) coefficient

One key requirement of our scheme is that all integer com- T
binations of codewords must be afforded protection against Q= _Phyan
noise. Nested lattice codes are a natural fit for this purplse 1+ Plhp,|?
lattice A is a discrete subgroup @” with the property that and removes the dithers according to the desired coefficient
if t1,t2 € A thent; +t2 € A. By construction, all of our ¢,,,. Afterwards, it quantizes the result onto the fine lattice

lattices will contain the zero vector. A pair of latticAsArine  and takes the modulus with respect to the coarse lattice,
is nested ifA C ApNE.

. FINE: . . L
A lattice quantizer is a functior, : R — A, that maps G _ {QAHNE (amym N Zamédl):| mod A . (12)
=1

(11)

vectors to the nearest lattice point in Euclidean distance,

Qa(x) = arg Iilin [x—t] . (7) 1t can be shown that, with high probability, this is equal to
S
. . . . L
The fundamental Voronoi region is the subset of point®in a _
that quantize to the zero vectdl,= {x : Qs(x) = 0}. The Vm = ; amete| mod A (13)
modulo operation returns the quantization error with respe =1
to the lattice, so long as
1 P
[x] mod A =x - Qa(x) , (8) in = log™ . (14

and satisfies the distributive law, ) ) ) ) ]
Finally, the relay applies the inverse map to get its esémat

la[x] mod A + bly] mod A] mod A = [ax+by] mod A, gl = =13}y, Assuming that') = vV, it can be shown
for anya, b € Z. thata) = ul) (see [2, Lemma 6]).
A nested lattice cod€ is created by taking the set of fine

lattice points that fall within the fundamental Voronoi reqg o o )
of the coarse lattice¢ = Agne N V. Erez and Zamir have Successive interference cancellation is a powerful tegheni

shown that their exist nested lattice codes that can approdg’ decoding several messages at a single receiver. Assume
the capacity of a point-to-point Gaussian channel [8]. that, given the channel observatign,, a relay has correctly
decodedx;. It can now completely remove the effect &f
IV. COMPUTE-AND-FORWARD from its observation,

In [2], we proposed the compute-and-forward framework

V. SUCCESSIVECOMPUTE-AND-FORWARD

as a way of communicating linear combinations of messages. Ym = hmiXi = Z homexe + 2m (15)
Our focus was on the case where each relay decodes a single i
linear combination with coefficient vectex,,,. Define which reduces the interference and makes it easier to decode
1 (hT a,,)2P \ ! the next codeword. . _
Rce(h,a) 2 ~log™ <<|Iam|2 - %> > As it turns out, we can employ a similar technique when
2 1+ Plhy,[* decoding several linear combinations. Assuming the re&s/ h
wherelog™ (z) £ max(log(x), 0). decoded), anmexy, it can create a new effective channel
Theorem 1 ( [2, Theorem 2]): For any set of channel vec- I L
torsh,, e.RL and cogffici_ent vectora,, € 7", the following Vo + Ym Z UmeXp = Z(hmf + Yot )Xe + Zm - (16)
computation rate region is achievable: — —1
R(hm,am) = Ree(hm, apm) - (9) 2These dithers can be replaced with deterministic sequences



By adjusting the effective channel coefficients, we can makariance, i.e..,P > a2, + P|lam,h,, — a,,||?. Assuming that
it easier for the relay to decode its second linear comhwnati R (h,,, a,,) > 0, this condition holds and we have that
and thus increase the computation rate region. Note thiteunl I

successive interference cancellation, it is not alwaysragtto Qa(rm) = Qa ( [ Z ameXe} mod A) (21)
subtract the recovered linear combination. Below, we agvel =

a successive computation scheme that follows the conceph, high probability. Finally
outlined above. We begin by showing that we can alwa '
recover the real sum of codewords if we have access to
modulo sum and the dithers.

since the relay knows the
antized sum as well as its quantization error, it can infer
@ desired real sum. Assuming that (21) holds, we have that

Remark 1: In [2, Theorem 12], we described a limited X L
version of successive computation. The key drawback is that Sm = Qalrm) + [Zam”‘f] mod A (22)
this scheme only allows for integer-valueg,, owing to the . =1
fact that it works directly with the modulo sum of codewords. _ Z X — 8 23)
As part of the compute-and-forward scheme, the relay mee m

. . . . =1
recovers an estlmal%%) of the modulo linear combination of

codewordsv%) from (34). The lemma below shows that this
modulo sum can be used to recover the real u,x,
that is needed for successive computation.

[
Using the real sum of the codewords, we can construct a
successive compute-and-forward scheme. Define

Lemma 1: The relay can make an estimaig, of the real Rsce(h,a,b) £ (24)
sum of codewords T\ 2
L (e @ P i) )
Sm = 3 amexe an 2R | { P R T p(ge - e
=1 a

with vanishing probability of errotim,,—, oo P(8,, # sm) = 0,
so long ask < R(h,,,an).

Proof: Since R < R(h,,,a,), we can use Theorem
1 to make an estimate’}) that is equal tov(y) with high
probability. For the remainder of the proof, we will assume R(h.,,a,,by,) = max(Rap, Rpa) (25)
that this estimate is correct. First, the relay dithers linisar .
combination and takes the modulus with respect\toThis Rap = min (RCF(hm’am)’RSCF(hm’am’bm) (26)
gives it access to a modulo combination of the ditheredckatti R, , — min (RCF(hm; bum); Rsce(hym, by, am) . (27)
points,

Theorem 2: For any set of channel vectots,, € R* and
coefficient vectorsa,,,, b,, € Z*, the following computation
rate region is achievable:

. Proof: Fix an e > 0. The expression®ap and Rp4
{0(1) Y ede} mod A (18) correspond to the two possible decoding orders. We wil
m " prove that R4p is achievable by first decoding the linear
combination with coefficient vectoa,, and then that with

L
_ HZ amgtg:| mod A — Z amgdg] mod A (19) b.,,. The proof of Rp 4 follows identically by exchanging the
¢

(=1

—1 role of a,,, andb,,.

We employ the same encoding framework as in Theorem

= [Zame(te - de)] mod A = [Zamexe] mod A . 1. Relaym uses the same decoding framework to make an
¢ ¢

estimated’s of uly. Forn large enough, this estimate is

It then subtracts this quantity from,,y,, incorrect with probability at most/3 if
'm = OmYm — |:Z amlxéj| mod A (20) R< H}%Il RCF(hm’ am) ’ (28)
£

As a byproduct of successful decoding, the relay will obtain

L L L . (1) (1) . .
a correct estimaté&,,” of v;;,’. Using Lemma 1, it makes an
= Z o meXe + Qo Zm — Z ameXe + QA ( Z amexl) estimates,, of s, = 3, amex, that has probability of error

=t . =t . =t at moste/3 for n large enough. Below, we assu®g = s,,.
The relay removes the projection onto from
= QA ( Z améxé) + amZm + Z(amhmé - am[)xé ’ y proj % ym ym
— — to get
to get a quantized version of the desired ssin plus some _ _ ay o, 29
L a quantized version of t ; Fi = Ym — 28 (29)
effective noise with variancey, + P|amnh, — a,||°. To llawm |

remove this noise, it applies the coarse lattice quantizer. L al
This operation will be successful with high probability so = <hme - ﬁamz) X0 + Zm (30)
long as the second moment &f exceeds the effective noise =1 m



]T. After recoveringa;, the relay can adjust the channel and

. Th
Deflnegmé = hme — am—nn;amé and gm = [gml o 9mL
decodeb; so long as

llag.

It then forms a new effective channel observation

~ o 1 9 P
Ym = ﬂmrm + UmSm (31) R — 1 + (= _ 41
. <398 \917 7 (41)

(32) The example above demonstrates that successive compute-
and-forward can make it possible to recover linear combi-
dations that are not available via a direct application @ th
griginal compute-and-forward framework. In other words t
relay can first target a linear combination that is “easy” to
decode and then use it to create a better effective channel fo
decoding the second linear combination.

From another perspective, successive compute-and-fdrwar
can be used to enlarge the computation rate region for de-
coding a single linear combination with coefficient vector
b.,. The relay should order all viable coefficient vectors {i.e.
those satisfying|a,,||2 < 1 + P|/h,,|?) by computation
rate Rcr(h,,,a,) and set aside those,, with rates larger
than Rce(h,,,, by, ). It can then calculate which paja,,, b.,)
offers the highest rate using Theorem 2. Finally, it appdies-
cessive compute-and-forward for this pair and keeps ordy th
second equation. Example 1 demonstrates that this pragedur
does indeed enlarge the rate region.

(Bmgmé + Mmamé))q + ﬁmzm .
£=1

and proceeds to decode the linear combination with coeftici
vectorb,,, as in Theorem 1. Specifically, it forms the estimat

L
{’7(3) = |:QA|:|NE (S’m + Z bmédé)] mod A . (33)
(=1

It can be shown that, with probability of error at mast,
this is equal to

L
v = {megtg] mod A (34)

(=1

so long as

R < min - log™* ( P >

min — 1o,

(35)

) ) ) ) ) VI. GENERALIZATIONS AND EXTENSIONS
Finally, the relay applies the inverse map to get its esémat
5(2) — —16(2)
U = ¢ (V).

It remains to solve for thes,, and p,, that minimize the
effective noise variance

Following the framework in [2], successive compute-and-
forward can be generalized to include complex-valued caann
models as well as unequal message rates. One can also
envision extending this technique to the case where eaa rel
may want more than two linear combinations. In this case, the
linear combinations obtained thus far should be mixed togyet
This is a convex function whose global minimum is attainedith the original channel observation to create a new dffect

FBoms ttm) = Biyy + PllBm&m + ttmam — by [* . (36)

at channel for the next targeted linear combination.
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