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Abstract—In prior work, we proposed the compute-and-
forward framework for sending linear combinations of messages
to relays. In this note, we extend the notion of successive
interference cancellation to the compute-and-forward setting. We
find that once a relay has decoded a linear combination, it can
mix it with its channel output to create a new effective channel
output. The resulting effective channel can be tuned so thatit
is more suitable for decoding a second linear combination than
the original channel.

I. I NTRODUCTION

The classical approach to communication over a wireless
relay network treats interference between transmitters asa
nuisance to be avoided. Typically, each relay observes a noisy
linear combination of the transmitted codewords and attempts
to decode one (or more) of them while treating the others as
additional noise. Recent efforts have revealed that interference
can in fact be exploited if we are willing to expand the set
of decoding possibilities to include linear combinations of
codewords. One natural approach, sometimes referred to as
compute-and-forward, is to employ a lattice codebook so that
integer combinations of codewords are themselves codewords
[1]–[5]. Relays are then free to select integer coefficientsthat
match the channel coefficients as closely as possible, thus
reducing the effective noise and increasing the achievable
rates.

Under the classical approach, a relay can employ successive
interference cancellation to remove decoded codewords from
its channel observation. This decreases the effective noise
encountered in the next decoding step. In this paper, we
devise an analogous technique for the compute-and-forward
framework. After decoding a linear combination, a relay can
combine it with its channel observation to obtain a new
effective channel that is even better for decoding the next
linear combination. For ease of exposition, we will focus on
the case where each relay wants to recover just two linear
combinations.

Owing to space limitations, we do not attempt a full
survey of the literature. We refer interested readers to [2]
for additional references pertaining to compute-and-forward
and to [6], [7] for surveys of the closely related topic of
physical-layer network coding.

II. PROBLEM STATEMENT

Our setting is nearly identical to that of [2] and we repro-
duce some of the key definitions below. For ease of exposition,
we will limit ourselves to real-valued channels and symmetric
rates. We will denote addition and summation overR with +
and

∑

, respectively, and use⊕ and
⊕

to denote the same
overFp.

Each transmitter (indexed byℓ = 1, . . . , L) has a length-
k message that is drawn independently and uniformly over a
prime-sized finite field,wℓ ∈ F

k
p. An encoder,Eℓ : Fk

p → R
n,

then maps the message into a length-n codeword,xℓ = E(wℓ),
which must satisfy the usual power constraint‖xℓ‖

2 ≤ nP .
The message rate isR = (k/n) log p.

Each relay (indexed bym = 1, . . . ,M ) observes a noisy
linear combination of the codewords,

ym =

L
∑

ℓ=1

hmℓxℓ + zm , (1)

where thehmℓ ∈ R are the channel coefficients andzm ∼
N (0, I) is i.i.d. Gaussian noise. Lethm = [hm1 · · · hmL]

T

denote the vector of channel coefficients. The goal is for each
relay to recovertwo linear combinations of the messages of
the form

u(1)
m =

L
⊕

ℓ=1

q
(1)
mℓwℓ u(2)

m =

L
⊕

ℓ=1

q
(2)
mℓwℓ (2)

where theq(1)mℓ, q
(2)
mℓ ∈ Fp are finite field coefficients. To this

end, each relay is equipped with a decoder,D : Rn → F
k
p ×

F
k
p, that produces estimateŝu(1)

m andû(2)
m of its desired linear

combinations. We will say that the average probability of error
is at mostǫ if

P

(

⋃

m

{

û(1)
m 6= u(1)

m

}

∪
{

û(2)
m 6= u(2)

m

}

)

< ǫ . (3)

To map between the real-valued linear combination pro-
vided by the channel and the desired finite field linear com-
binations, we will need a bit of additional nomenclature.
Specifically, we will refer tou(1)

m as the linear combination
with coefficient vectoram = [am1 · · · amL]

T ∈ Z
L if its

finite field coefficients satisfy1

q
(1)
mℓ = [amℓ] mod p . (4)

1This is a slight abuse of notation. More formally, we should explicitly
define a mapping betweenFp and {0, 1, . . . , p − 1}. See [2, Definition 6]
for more details.



Similarly, we will refer tou(2)
m as the linear combination with

coefficient vectorbm = [bm1 · · · bmL]
T ∈ Z

L if

q
(2)
mℓ = [bmℓ] mod p . (5)

We will say that the computation rate region
R(hm, am,bm) is achievable if, for anyǫ > 0 and n
large enough, there exist encoders and decoders, such that
all relays can recover their desired linear combinations with
average probability of errorǫ so long as

R < min
m

R(hm, am,bm) . (6)

Note that the relays are free to choose which linear combina-
tions to decode so long as (6) is satisfied.

III. N ESTEDLATTICE CODES

One key requirement of our scheme is that all integer com-
binations of codewords must be afforded protection against
noise. Nested lattice codes are a natural fit for this purpose. A
lattice Λ is a discrete subgroup ofRn with the property that
if t1, t2 ∈ Λ then t1 + t2 ∈ Λ. By construction, all of our
lattices will contain the zero vector. A pair of latticesΛ,ΛFINE

is nested ifΛ ⊂ ΛFINE.
A lattice quantizer is a function,QΛ : Rn → Λ, that maps

vectors to the nearest lattice point in Euclidean distance,

QΛ(x) = argmin
t∈Λ

‖x− t‖ . (7)

The fundamental Voronoi region is the subset of points inR
n

that quantize to the zero vector,V = {x : QΛ(x) = 0}. The
modulo operation returns the quantization error with respect
to the lattice,

[x] mod Λ = x−QΛ(x) , (8)

and satisfies the distributive law,
[

a[x] mod Λ + b[y] mod Λ
]

mod Λ =
[

ax+ by
]

mod Λ ,

for any a, b ∈ Z.
A nested lattice codeC is created by taking the set of fine

lattice points that fall within the fundamental Voronoi region
of the coarse lattice,C = ΛFINE ∩ V . Erez and Zamir have
shown that their exist nested lattice codes that can approach
the capacity of a point-to-point Gaussian channel [8].

IV. COMPUTE-AND-FORWARD

In [2], we proposed the compute-and-forward framework
as a way of communicating linear combinations of messages.
Our focus was on the case where each relay decodes a single
linear combination with coefficient vectoram. Define

RCF(h, a) ,
1

2
log+

((

‖am‖2 −
(hT

mam)2P

1 + P‖hm‖2

)−1)

wherelog+(x) , max(log(x), 0).
Theorem 1 ( [2, Theorem 2]): For any set of channel vec-

torshm ∈ R
L and coefficient vectorsam ∈ Z

L, the following
computation rate region is achievable:

R(hm, am) = RCF(hm, am) . (9)

We now provide a brief overview of the basic compute-
and-forward encoding and decoding functions which will be
useful in the proof of our main result. Using Construction A
[8], [9], we select a pair of nested latticesΛ ⊂ ΛFINE that can
approach the capacity of a point-to-point Gaussian channel. It
can be shown that there is a one-to-one mapφ betweenFk

p

and the nested lattice codeC that preserves linearity (see [2,
Lemma 5]). Using this mapping, the encoder chooses a lattice
point tℓ = φ(wℓ). It then applies a ditherdℓ that is drawn
independent and uniformly overV and transmits the result,

xℓ = [tℓ − dℓ] mod Λ . (10)

Relay m observesym and has access to every dither2. It
scales its observation by the minimum mean-squared error
(MMSE) coefficient

αm =
PhT

mam

1 + P‖hm‖2
(11)

and removes the dithers according to the desired coefficients
amℓ. Afterwards, it quantizes the result onto the fine lattice
and takes the modulus with respect to the coarse lattice,

v̂(1)
m =

[

QΛFINE

(

αmym +

L
∑

ℓ=1

amℓdℓ

)

]

mod Λ . (12)

It can be shown that, with high probability, this is equal to

v(1)
m =

[ L
∑

ℓ=1

amℓtℓ

]

mod Λ (13)

so long as

R < min
m

1

2
log+

(

P

α2
m + P‖αmhm − am‖2

)

. (14)

Finally, the relay applies the inverse map to get its estimate
û
(1)
m = φ−1(v̂

(1)
m ). Assuming that̂v(1)

m = v
(1)
m , it can be shown

that û(1)
M = u

(1)
m (see [2, Lemma 6]).

V. SUCCESSIVECOMPUTE-AND-FORWARD

Successive interference cancellation is a powerful technique
for decoding several messages at a single receiver. Assume
that, given the channel observationym, a relay has correctly
decodedxi. It can now completely remove the effect ofxi

from its observation,

ym − hmixi =
∑

ℓ 6=i

hmℓxℓ + zm , (15)

which reduces the interference and makes it easier to decode
the next codeword.

As it turns out, we can employ a similar technique when
decoding several linear combinations. Assuming the relay has
decoded

∑

ℓ amℓxℓ, it can create a new effective channel

ym + γm

L
∑

ℓ=1

amℓxℓ =

L
∑

ℓ=1

(hmℓ + γmamℓ)xℓ + zm . (16)

2These dithers can be replaced with deterministic sequences.



By adjusting the effective channel coefficients, we can make
it easier for the relay to decode its second linear combination,
and thus increase the computation rate region. Note that unlike
successive interference cancellation, it is not always optimal to
subtract the recovered linear combination. Below, we develop
a successive computation scheme that follows the concept
outlined above. We begin by showing that we can always
recover the real sum of codewords if we have access to the
modulo sum and the dithers.

Remark 1: In [2, Theorem 12], we described a limited
version of successive computation. The key drawback is that
this scheme only allows for integer-valuedγm, owing to the
fact that it works directly with the modulo sum of codewords.

As part of the compute-and-forward scheme, the relay
recovers an estimatêv(1)

m of the modulo linear combination of
codewordsv(1)

m from (34). The lemma below shows that this
modulo sum can be used to recover the real sum

∑

ℓ amℓxℓ

that is needed for successive computation.
Lemma 1: The relay can make an estimateŝm of the real

sum of codewords

sm =

L
∑

ℓ=1

amℓxℓ (17)

with vanishing probability of error,limn→∞ P(̂sm 6= sm) = 0,
so long asR < R(hm, am).

Proof: Since R < R(hm, am), we can use Theorem
1 to make an estimatêv(1)

m that is equal tov(1)
m with high

probability. For the remainder of the proof, we will assume
that this estimate is correct. First, the relay dithers thislinear
combination and takes the modulus with respect toΛ. This
gives it access to a modulo combination of the dithered lattice
points,
[

v̂(1)
m −

L
∑

ℓ=1

amℓdℓ

]

mod Λ (18)

=

[

[

∑

ℓ

amℓtℓ

]

mod Λ−
L
∑

ℓ=1

amℓdℓ

]

mod Λ (19)

=

[

∑

ℓ

amℓ(tℓ − dℓ)

]

mod Λ =

[

∑

ℓ

amℓxℓ

]

mod Λ .

It then subtracts this quantity fromαmym,

rm = αmym −

[

∑

ℓ

amℓxℓ

]

mod Λ (20)

=
L
∑

ℓ=1

αmhmℓxℓ + αmzm −
L
∑

ℓ=1

amℓxℓ +QΛ

( L
∑

ℓ=1

amℓxℓ

)

= QΛ

( L
∑

ℓ=1

amℓxℓ

)

+ αmzm +
L
∑

ℓ=1

(αmhmℓ − amℓ)xℓ ,

to get a quantized version of the desired sumsm plus some
effective noise with varianceα2

m + P‖αmhm − am‖2. To
remove this noise, it applies the coarse lattice quantizer.
This operation will be successful with high probability so
long as the second moment ofΛ exceeds the effective noise

variance, i.e.,P > α2
m + P‖αmhm − am‖2. Assuming that

R(hm, am) > 0, this condition holds and we have that

QΛ(rm) = QΛ

(

[ L
∑

ℓ=1

amℓxℓ

]

mod Λ

)

(21)

with high probability. Finally, since the relay knows the
quantized sum as well as its quantization error, it can infer
the desired real sum. Assuming that (21) holds, we have that

ŝm = QΛ(rm) +

[ L
∑

ℓ=1

amℓxℓ

]

mod Λ (22)

=

L
∑

ℓ=1

amℓxℓ = sm . (23)

Using the real sum of the codewords, we can construct a
successive compute-and-forward scheme. Define

RSCF(h, a,b) , (24)

1

2
log+














‖b‖2 −

(aTb)2

‖a‖2
−

P
(

(

h− a
T
h

‖a‖2a
)T

b

)2

1 + P
(

‖h‖2 − (aTh)2

‖a‖2

)







−1








Theorem 2: For any set of channel vectorshm ∈ R
L and

coefficient vectorsam,bm ∈ Z
L, the following computation

rate region is achievable:

R(hm, am,bm) = max(RAB, RBA) (25)

RAB = min
(

RCF(hm, am), RSCF(hm, am,bm

)

(26)

RBA = min
(

RCF(hm,bm), RSCF(hm,bm, am

)

. (27)

Proof: Fix an ǫ > 0. The expressionsRAB and RBA

correspond to the two possible decoding orders. We will
prove thatRAB is achievable by first decoding the linear
combination with coefficient vectoram and then that with
bm. The proof ofRBA follows identically by exchanging the
role of am andbm.

We employ the same encoding framework as in Theorem
1. Relaym uses the same decoding framework to make an
estimateû(1)

m of u
(1)
m . For n large enough, this estimate is

incorrect with probability at mostǫ/3 if

R < min
m

RCF(hm, am) . (28)

As a byproduct of successful decoding, the relay will obtain
a correct estimatêv(1)

m of v(1)
m . Using Lemma 1, it makes an

estimatêsm of sm =
∑

ℓ amℓxℓ that has probability of error
at mostǫ/3 for n large enough. Below, we assumeŝm = sm.

The relay removes the projection ofŝm ontoym from ym

to get

rm = ym −
aTmhm

‖am‖2
ŝm (29)

=

L
∑

ℓ=1

(

hmℓ −
aTmhm

‖am‖2
amℓ

)

xℓ + zm (30)



Define gmℓ = hmℓ −
a
T

m
hm

‖am‖2 amℓ andgm = [gm1 · · · gmL]
T .

It then forms a new effective channel observation

ỹm = βmrm + µmŝm (31)

=

L
∑

ℓ=1

(βmgmℓ + µmamℓ)xℓ + βmzm . (32)

and proceeds to decode the linear combination with coefficient
vectorbm as in Theorem 1. Specifically, it forms the estimate

v̂(2)
m =

[

QΛFINE

(

ỹm +
L
∑

ℓ=1

bmℓdℓ

)

]

mod Λ . (33)

It can be shown that, with probability of error at mostǫ/3,
this is equal to

v(2)
m =

[ L
∑

ℓ=1

bmℓtℓ

]

mod Λ (34)

so long as

R < min
m

1

2
log+

(

P

β2
m + P‖βmgm + µmam − bm‖2

)

.

(35)

Finally, the relay applies the inverse map to get its estimate
û
(2)
m = φ−1(v̂

(2)
m ).

It remains to solve for theβm andµm that minimize the
effective noise variance

f(βm, µm) = β2
m + P‖βmgm + µmam − bm‖2 . (36)

This is a convex function whose global minimum is attained
at

β∗
m =

PgT
mbm

1 + P‖gm‖2
(37)

µ∗
m =

aTmbm

‖am‖2
. (38)

Plugging this back in, we find that

f(β∗
m, µ∗

m) = P‖bm‖2 −
P (aTmbm)2

‖am‖2
−

P 2(gT
mbm)2

1 + P‖gm‖2
.

Substituting this into (35), we get the desired condition

R < min
m

RSCF(hm, am,bm) . (39)

By the union bound, the probability of error is at mostǫ.

Example 1: Consider a single relay with channel vector
h1 = [2 1 1]T that wishes to decode the linear combinations
with coefficient vectorsa1 = [1 1 1]T andb1 = [1 −1 −1]T

using Theorem 2. It is not possible to decodeb1 first as
RCF(h1,b1) = 0. Decodinga1 first requires

R <
1

2
log+

(

1 + 6P

3 + 2P

)

. (40)

After recoveringa1, the relay can adjust the channel and
decodeb1 so long as

R <
1

2
log+

(

9

24
+

P

4

)

. (41)

The example above demonstrates that successive compute-
and-forward can make it possible to recover linear combi-
nations that are not available via a direct application of the
original compute-and-forward framework. In other words, the
relay can first target a linear combination that is “easy” to
decode and then use it to create a better effective channel for
decoding the second linear combination.

From another perspective, successive compute-and-forward
can be used to enlarge the computation rate region for de-
coding a single linear combination with coefficient vector
bm. The relay should order all viable coefficient vectors (i.e.,
those satisfying‖am‖2 ≤ 1 + P‖hm‖2) by computation
rate RCF(hm, am) and set aside thoseam with rates larger
thanRCF(hm,bm). It can then calculate which pair(am,bm)
offers the highest rate using Theorem 2. Finally, it appliessuc-
cessive compute-and-forward for this pair and keeps only the
second equation. Example 1 demonstrates that this procedure
does indeed enlarge the rate region.

VI. GENERALIZATIONS AND EXTENSIONS

Following the framework in [2], successive compute-and-
forward can be generalized to include complex-valued channel
models as well as unequal message rates. One can also
envision extending this technique to the case where each relay
may want more than two linear combinations. In this case, the
linear combinations obtained thus far should be mixed together
with the original channel observation to create a new effective
channel for the next targeted linear combination.
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