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Abstract

In the standard multiple-access problem, a central access point needs to re-
construct the signals observed by each user separately. Suppose now that the
access point only reconstructs the sum (or any other function) of these observed
signals. For this problem, we develop strategies and information-theoretic perfor-
mance bounds. It is shown that in general, separating source from channel coding
leads to suboptimal performance. For linear functions, a scheme is developed,
analyzed, and shown to perform optimally for a class of multiple-access channels.

1 Introduction

Computing and communicating functions in a distributed fashion is to date an unsolved
problem. On top of taking advantage of source dependencies, there are potential gains
to be made by using the structure of the function in the coding scheme. Solutions to
this problem are of practical interest to distributed computation systems such as sensor
networks. Sending functions using sensor network protocols was studied in [1]; however,
their setting was not information theoretic.

As was shown in [2], separation is not always optimal for communication over MACs.
In this paper, we will show that even when the sources are independent, joint source-
channel encoding may be required for optimally communicating a function. We develop
a joint source-channel strategy that exploits the natural operation of the channel to send
linear functions. This technique was implicitly used in [3] to achieve asymptotically
optimal distortion per unit cost with uncoded transmission and in [4] for asymptotically
efficient parameter estimation. We focus on using block codes to send the desired function
in an undistorted fashion across the channel.

We begin our analysis with a rather simple MAC with some nice properties. For this
channel, we can easily give a full characterization of the separation and computation
coding schemes. Afterwards, we extend the key ideas of the example to a larger class of
MACS. Finally, we show some preliminary work for sending functions over unmatched
channels and computation over Gaussian MACs.

2 The Mod-2 Adder MAC: An Inspiring Example

Our example centers on the mod-2 adder MAC (M2MAC) (Figure 1). The vector source
(S1,S2) is generated iid from the following joint probability distribution function (pdf):



1—
Pr(S) = 0,8 =0) = Pr(Sy=1,5=1) = —2L (1)
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A simple calculation will show that S; and S, have uniform marginal distributions. Each
source is seen by a block encoder:
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Figure 1: The Binary Mod-2 Adder MAC (M2MAC)

Our goal is to losslessly transmit U = S; & S5 across the channel at the highest rate
possible. 'We denote the encoder outputs by X; and X5. These are combined with a
mod-2 addition to yield W and are passed through a binary symmetric channel (BSC)
with crossover probability ¢ to give Y. Finally, Y is decoded by a block decoder

g:{0,1}" — {0,1}" (6)

to give an estimate of the source parity, U. We say that we can reliably communicate U
over the MAC at a computation rate of k = % if we can guarantee:

lim Pr(U* # U*) — 0 (7)

k—o0

2.1 Separation: Korner-Marton Revisited

We define separation to mean that successful transmission is guaranteed iff the rate region
for distributed source coding (with respect to the computation distortion measure) inter-
sects the MAC capacity region. In the case where the rates are symmetric throughout,
only the sum rates are pertinent.

2.1.1 Channel Coding

The MAC capacity region is known [5, p.389]. The region is the closure of the convex
hull of all rate pairs, (Ry, Ry), satisfying the following constraints:
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for any distribution p(z1)p(x2). See (pp.393-402, [5]) for the achievability and converse
proofs. For the M2MAC, this region can easily be worked out to be:

Ry + Ry < 1—hg(q), where hg(q) = —qlogyq — (1 — q)log, (1 — q) (11)

2.1.2 Source Coding

The rate region for distributed source coding of the mod-2 sum, U = S5 ® S5 was derived
by Kérner and Marton in [6]. Crucial to their proof is a linear source coding technique
due to Wyner [7] which is given in the following lemma. First note that a lowercase,
bold version of a random variable represents a length ¢ sequence in row form where ¢ can
always be inferred from context. For example, x = (X[1], X[2], ... X[{]).

Lemma 1. For any iid B(p) source S, € > 0 and m large enough, there exists a binary
k x m encoding matriz H with associated decoding function b(.) such that Pr(b(sH) #
s) < e if k <mhg(p).

See [7] for a complete proof. Korner and Marton [6] use Lemma 1 to give the dis-
tributed source coding region for the sum U. Their main result is reproduced below as
Lemma 2.

Lemma 2. SF and S§ from the M2MAC are separately encoded by two source coders at
rates Ry and Ry. The mod-2 sum, U, can be reconstructed with Pr(U* # U*) < € Ve > 0
iff Ry > hp(p) and Ry > hg(p).

Proof. (Achievability.) Choose an k x m source coding matrix, H, appropriate for a
B(p) source (see Lemma 1) and its associated decoding function b(.). Apply this to
both sources to get z; = s;H and z; = ssH. At the decoder compute z = z; ® zo =
(z1 ® z2)H = uH and 4 = b(z). By Lemma 1, Pr(ft # u) < e¢ Ve > 0 and m large
enough so long as £ < hp(p).

(Converse.) Consider the relaxation where the decoder has full knowledge of Sy and we
would like to jointly encode S; and U to losslessly reconstruct U at the decoder. Note that
any scheme that accomplishes this also gives the decoder a lossless reconstruction of S.
Thus, it can be shown that for joint encoding, R > H(S1,U|Ss) = H(U|S;) = H{U) =
hg(p) is required for a vanishing probability of error. This implies that for separate
encoding of Sy and U, Ry + Ry > hp(p). Similarly, we can get that Ry + Ry > hg(p).
Setting Ry = 0 gives the desired result. O

We can now give the best possible rate available using separation. The sum source
coding rate required is 2hp(p) and the MAC sum capacity is 1 — hp(g). Reliable com-
munication requires that k(2hp(p)) < n(l — hp(q)). This gives the optimal separation
computation rate of:

1 —hp(q)

EP — -6 Y9>0 12
s 2hp(p) ( )

Remark: The Korner-Marton scheme allows for a strictly lower sum rate than Slepian-

Wolf coding of S7 and S,.



2.2 Computation Coding

We now present a block coding scheme, that we will refer to as computation coding, that
takes advantage of the channel’s natural operation and optimally trades off code rate for
reliable communication of U. First, we will need the dual of the linear source coding
scheme presented in Lemma 1. The lemma below was originally given by Elias in [8] and
can also be found as Theorem 6.2.1 in [9)].

Lemma 3. Consider a BSC with crossover probability q, encoder input V', channel input
X, channel output Y and decoder output V. For any € > 0 and n large enough, there
exists a binary m X n encoding matriz G with associated decoding function c(.) such that
when x = vG, Pr(c(y) #v) <eifm(l —hg(q) <n.

See [9, §6.2] for a full proof. We are now prepared to combine our linear source and
channel coding methods into a computation code.

Theorem 1. There exists a linear block coding scheme for the M2MAC that can achieve
any computation rate satisfying Kk < 1;;@)()‘1) with Pr(U* # U*) < e Ve >0 for n large
enough. Furthermore, this is the best possible computation rate for lossless transmission

of U over this channel.

Proof. (Achievability.) By Lemma 1, there exists a k x m binary matrix H with associ-
ated decoding function b(.) for linearly encoding an iid B(p) source to its entropy rate.
Similarly, by Lemma 3, there exists an m x n binary matrix G with associated decoding
function ¢(.) for reliable communication approaching capacity over a BSC with crossover
probability ¢q. Let x; = s;HG and x5 = ssHG. Then w = s HG ®soHG = uHG. We
decode using @t = ¢(b(y)). Select an € > 0. The error can be upper bounded by a simple
union bound:

Pr(@ # u) < Pr(b(y) # uH) + Pr(c¢(uH) # u) (13)
Pr((y) # ub) < § (14)
Pr(c(uH) # u) (2) % (15)

Pr(d #u) <e (16)

(a) for n large enough, so long as m(1 — hg(q)) <n
(b) for m large enough, so long as k < hg(p)m

Thus, we can drive the error to zero so long as &

n

1-hp(q)
< hg(p) -

(Converse.) Consider any (n, k) block code. Since U is an iid B(p) sequence, then it
requires that [(U%; U ¥) > khp(p) to attain a vanishing probability of error. Messages
can only be sent reliably if the sum rate does not exceed the maximum mutual information
available on the channel I(X;, X5;Y) = 1 — hg(q). By the data processing inequality,
I(U*, U%) < I(X7, X2;Y™). Tt can be shown that this implies that k< %@S’) is required
for a vanishing probability of error. This is actually also an upper bound on % for joint

encoding of U. O]

Our distributed scheme achieves the best performance available for joint encoding.
We can now conclude that computation codes achieve the best possible computation rate:

1_

hg(p)



Remark: Somewhat surprisingly, this strategy allows for a rate twice that of the
separation scheme, regardless of the source statistics. Even if S7 and S5 are independent,
our strategy provides a clear advantage over separation. This suggests that in general,
optimal distributed computation over a MAC requires a joint-source channel strategy
that focuses primarily on the desired function. The computation rate for computation
coding, Korner-Marton optimal separation, and Slepian-Wolf suboptimal separation over
a BSC with crossover probability ¢ = 0.1 is shown in Figure 2.

—— Computation
--- Separation
1 Slepian-Wolf

Figure 2: Comparison of schemes for sending U

3 Linear Functions over Discrete Linear MACs

Our first extension of the M2MAC is to a much larger class of MACs matched to linear
functions, which we call discrete linear MACs (Figure 3). The computation code we
developed can be extended to send any set of possibly dependent linear functions over
these channels.
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Figure 3: Discrete Linear MAC



3.1 Problem Statement

There are M sources S1, Sy, ..., Sy taking values on the Galois field X'. The sources are
generated iid according to a joint probability distribution p(Si, Se,...,Sa). Each source
S, is seen by a separate source-channel encoder which outputs a channel symbol X; at
each time step according to an (n, k) block code:

fi Xk —san i=1,2....M (18)

Note that the channel input alphabet for each user is also X. We can represent the
channel output Y as coming from a discrete memoryless channel (DMC), pyw, where:

M
W = Z B;X; for some (3; € X\ {0} where 0 is the zero symbol in X (19)
i=1

Our goal is to reliably communicate the linear functions Uy, Us, ..., U; where:
M
szzajisi Oéjie.)(, g=12,...,J (20)
i=1

where we allow «j; = 0 for some ¢ and j. There are J block decoders:
g X" —XxF j=1,2,...,J (21)

each outputting an estimate of the j™ function, g(Y") = (jj. We would like to maximize
the computation rate, kK = %, while satisfying:

Jim Pr((Uf,05,...,U5) # (Uf,Us,...,.Uj)) =0 (22)
Remark: The random variables Uy, Us,...,U; can be arbitrarily correlated. As a re-

sult, this setting is general enough to contain the problem of sending correlated sources
over the MAC as a special case. (Set aj; = 0;;, the Kronecker delta, and M = J.)

Finally, we need the following definition from [9, p.94]:

Definition. We say that a DMC is symmetric if the output symbols can be placed into
subsets such that for each subset the probability transition matrix satisfies the following
two conditions:

1. Each row is a permutation of every other row.
2. Each column is a permutation of every other column.

It can easily be shown that the uniform distribution achieves capacity on symmetric
DMCs. This concept can also be extended to channels with discrete inputs and continuous
outputs such as a binary-input Gaussian channel. However, in the interests of space, we
limit ourselves to discrete alphabets.



3.2 Computation Coding for Discrete Linear M ACs

We now generalize the computation code used for the M2MAC for Galois fields. First,
we will need a result of Csiszar’s for linear Slepian-Wolf coding [10].

Lemma 4. Let (W, Wy, ..., W) be a vector source generated iid by some pdf on a
discrete alphabet. For any point in the Slepian-Wolf rate region and k large enough,
there are matrices Hy, Ha, ..., Hy, of size k x m;, respectively, taking values over a Galois
field with associated decoding function b(.) that can be used to compress the sources in a
distributed fashion with Pr((WF, WE ... WE) £ (WFWE ... WF) <e Ve >0.

For a full proof, see [10]. The following lemma appears as Problem 2.1.11 in [11].

Lemma 5. Consider a symmetric DMC with encoder input W, channel input X over
Galois field X, channel output Y, and capacity C. For any € > 0 and n large enough,
there exists a matriz G € X™*™ with associated decoding function c(.) such that when
x = WG, Pr(c(y) #w) <eif mC <n.

Due to space constraints, we do not include the proof here. See [9, §6.2] for the basic
structure of one possible proof.

Corollary 1. Lemma 5 also holds for asymmetric DMCs so long as C, the channel
capacity, is replaced with I(W;Y') where p(W) is taken to be uniform.

Theorem 2. For the problem described in Section 3, if pyyw is symmetric and has

capacity C, then k = = A0 s optimal.

Proof. (Achievability.) Using Lemma 4, we choose matrices Hy, Ha, ..., Hy of size k x m,,
respectively, to get (U, Us,...,Uys) to some point in the Slepian-Wolf rate region with
sum rate H(Uy,Us,...,Ur). With these matrices form the following matrix for each
1€ M:

Hisw = [a;Hy ag;Hy -+ oy Hj] (23)

Using Lemma 5, we choose a matrix G of size (Z;’Zl m;) X n to communicate over py
at capacity. We note that each 3; has a multiplicative inverse 3;'. Let B; = 3; 11"
and define: At each encoder we use the following encoding rule: x = A;s;HFWGB;. By
linearity, w = [u; Hy usHs -+ uyHj| G. It is easy to show that using our ML decoders
b(.) and ¢(.) we reach the desired rate point for any error € > 0 for n large enough.
(Converse). Consider any (n, k) block code. We now give an upper bound on the com-
putation rate by using a joint encoding relaxation. The following condition is necessary
for lossless reconstruction of our functions:

~

I, Us, ..., Uy Uy, Us, ..., Uy) > H(U, Us, ..., Uy) (24)
By the data processing inequality, we get that:
LUk Uk Uk Uk Ok, U < (W Yy (25)
It can be shown that the above inequality implies:

kI(Uy, Uy, ..., Up; Uy, Us, ..., Uy) < nI(W;Y) (26)



We know that I(W;Y) < C where C is the channel capacity. Finally, we get the desired
upper bound:

KR =

' c (27)

<
H(U,,Us,...,Uy)
[l

Corollary 2. For the problem described in Section 3, if pyyw is asymmetric, then k =

k= % is achievable where p(W) is taken to be uniform.

Remark: Ideally, we would like to compare computation coding with separation for this
class of MACs. However, the Korner-Marton scheme does not seem to extend to higher
alphabets as shown by the following simple example.

Ezample. Let Sy and S be independent random variables on GF(3) with mod-3 sum
U =5, ®S;. Their pdfs are given by the following table:

VPGS, =V)[P(S,=V)[P(U=V)
0 0.5 0 0.25
1 0.5 0.5 0.25
2 0 0.5 0.5

It is easy to show that H(S;) = H(S2) = 1 and H(U) = 1.5. Clearly, a strategy
that encodes S; and Sy to H(U) bits per symbol is wasteful as we can use the possibly
suboptimal strategy of transmitting the sources separately at 1 bit per symbol.

We have developed a large class of function-matched channels, discrete linear MACS,
for which computation codes allow us to optimally send any linear function.

4 Linear Functions over Unmatched Channels

We have shown that computation codes perform well over appropriately matched chan-
nels. Now, we give an example that demonstrates that linear functions can be commu-
nicated over unmatched channels at rates higher than those possible with separation.

Example. Our setting is the same as the M2MAC. For simplicity, we make S; and S,
independent B(%) processes. The only difference is the channel performs a real addition,
W = S; + 55, and passes the result through the following probability transition matrix
to get Y.

l—a—0 « 15}
Py|W: ﬁ 1-&-6 « (28)
« B l—a-p

Let a = 0.05 and # = 0.1. The computation rate for U under separation is 0.3928. We
now adopt a suboptimal computation code by interpreting 2 as 0 at the channel output.
Even with this crude relaxation, we can construct a computation code that achieves a
computation rate of 0.4989 on the above channel. Note that values for o and 3 can be
found for which separation beats the proposed computation code.

The above example shows that computation codes can provide benefits for sending
functions over unmatched channels. However, a deeper understanding of the mismatch
between the channel and desired functions is required before we can create an elegant
scheme for the general problem.



5 Lossy Computation over MACs

So far we have only given results for lossless computation codes. We now study the
case where some distortion is allowed in our computation. Although we would require
linear distributed source codes to achieve any point on the rate distortion curve, we can
use uncoded transmission to optimally achieve a non-zero point. One can show that an
uncoded scheme is optimal over the M2MAC with respect to the Hamming distortion
measure. Uncoded transmission also gives an elegant result in the Gaussian case.
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Figure 4: Gaussian MAC

There are M independent sources, S, Sa, ..., Sy, each generated iid from a N'(0, 0%)
distribution. Each encoder, f; : R — R, takes in a source symbol, S;, and outputs a
channel input, X;. The encoders must satisfy a joint power constraint:

E[tr(XX")] < MP (29)

At each time step, the channel inputs, X;, are added to the noise, Z, to produce the
channel output Y. For simplicity, Z is assumed to be iid N (0, N) and independent of
the sources.

Yk =) X[k + Z[k] (30)

=1

Finally we have our decoder, g : R — R. We would like to send U = a1S1 + a25, +
..+ aySy, a; € R, across the channel. This estimate, U, is subject to the standard
mean-squared error constraint:

d(U,U) = (U -U)* (31)
E[(U,U)] <D (32)

Our goal is to achieve the lowest D for a given P.

Theorem 3. Uncoded transmission is optimal for transmission of a linear function of

S1,59, ...,y over a Gaussian MAC in the k = % = 1 case. It achieves the following
distortion:
M
N
D=0%2) a (33)
i ; P sz\il ai + N



Proof Sketch.(Converse.) Since the sources are independent, it can be shown that:
I(X1, Xo, ..., Xa3Y) < Cyac(P) (34)

where Cyac(P) is the maximum sum rate achievable on the Gaussian MAC with total
power M P. We can upper bound the sum rate needed to compress U to distortion D
by joining the encoders. Call this R;onr(D). It can be shown using the data processing
inequality and some other information theoretic techniques that Ryonr(D) < Cyac(P).
Using this, we can lower bound the achievable distortion.

We have shown that uncoded transmission is optimal for lossy linear computation
over Gaussian channels. It can be shown that uncoded transmission beats compressing
the sources separately by a factor of M. The next step is to find a scheme to optimally
tradeoff code rate for higher fidelity on the desired computation, real addition. This is
still an open problem.

6 Conclusion

We have developed an example, the M2MAC, that shows that separation is not optimal
for sending functions over multiple-access channels. Instead, we need a joint source-
channel code that takes advantage of whatever match exists between the function per-
formed by the channel and the desired function. For the case of linear functions over
Galois fields, we have shown a strategy, computation coding, and a class of MACs for
which it is optimal. Future work includes developing block codes for optimal real addition
over the Gaussian MAC and developing a more general scheme for sending any function
over any MAC.
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