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Sensor Networks and The Separation Theorem

Typical sensor network problem: collect data at sensors
and communicate the average to a central node

Typical solution: distributed compression +
multiple-access channel (MAC) protocol

Motivated by Shannon’s Separation Theorem: for
point-to-point communication, compression can be
separated from reliable communication

This does not apply in general for networks.

What about sending functions over channels? (ex: sums)
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Problem Statement

S1 ENC1
X1

S2 ENC2
X2

SM ENCM
XM

...
...

PY |X1X2...XM

Y
DEC Û

U = f (S1, S2, . . . , SM)

M users each observe a source

We want to reliably send a function of the sources,
U = f (S1, S2, . . . , SM) to a receiver, P(Û 6= U) → 0

We measure our performance by the computation rate,
κ = number of functions that get sent per channel use

Is there a separation theorem for sending functions?
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A Summation Channel

S1 and S2 are independent B( 1
2) sources.

Want to sent U = S1 ⊕ S2 over this channel:
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A Summation Channel

S1

S2

S1 ⊕ S2

S1 and S2 are independent B( 1
2) sources.

Want to sent U = S1 ⊕ S2 over this channel:

Uncoded

κCOMP = 1
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A Summation Channel

S1

S2

S1 ⊕ S2

S1

S1

S1 and S2 are independent B( 1
2) sources.

Want to sent U = S1 ⊕ S2 over this channel:

Uncoded Separation

κCOMP = 1
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A Summation Channel

S2

S2

S1

S2

S1 ⊕ S2

S1

S1

S1 and S2 are independent B( 1
2) sources.

Want to sent U = S1 ⊕ S2 over this channel:

Uncoded Separation

κSEP = 1
2κCOMP = 1
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A Summation Channel

We want to develop schemes that take advantage of the
channel structure.

Problem: How can we send functions reliably?

Uncoded transmission will boost our performance at the
cost of noise in the received signal.

Can we get these gains and communicate losslessly?

First, some background on separation.
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Standard Multiple-Access Problem

W1
ENCC

1

X1

W2
ENCC

2

X2

WM
ENCC

M

XM

... ...

PY |X1X2...XM

Y
DECC

Ŵ1

Ŵ2

ŴM

...

M users with independent messages, Wi ∈ {1, . . . , 2nRi}

Encoders possibly subject to cost constraints

Capacity region completely known [Ahlswede 71, Liao 72]
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Standard Multiple-Access Problem

S1 ENCS
1 ENCC

1

X1

S2 ENCS
2 ENCC

2

X2

SM ENCS
M ENCC

M

XM

...
...

...

PY |X1X2...XM

Y
DECC DECS

Ŝ1

Ŝ2

ŜM

...

bits

bits

M users with possibly correlated sources, Si

Must perfectly recover the sources

Source encoders do distributed compression
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Standard Multiple-Access Problem

Correlated sources, want each source perfectly

Distributed compression rate region was completely
characterized by Slepian and Wolf

Separation: combine Slepian-Wolf source coding with
MAC coding

Is this optimal?

R2

R1

CMAC

R(D)
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Standard Multiple-Access Problem

U
V 0 1

1

0 1
3

0

1
3

1
3

P(U, V )

U ENC1
X1

V ENC2
X2

Y
DEC

V̂

Û

Example from [Cover-El Gamal-Salehi 80]

X1,X2 = {0, 1}, Y = X1 + X2, Y = {0, 1, 2}

distributed compression requires H(U, V ) = log2 3 bits
= 1.58 bits

CMAC = 1.5 bits, so separation fails

X1 = U, X2 = V is perfectly decodable

Separation not optimal for dependent sources
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Motivating Example

S1
S2

0 1

1

0 1−p
2

p
2

p
2

1−p
2

P(S1, S2)

U = S1 ⊕ S2, H(U) = hB(p)

S1 ENC1
X1

S2 ENC2
X2

PY |X1,X2
Y

DEC Û

Must losslessly transmit the mod-2 sum, U = S1 ⊕ S2,
across a MAC

Sources have uniform marginals, independent when p = 1
2

S2 looks like S1 passed through a BSC
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Naive Source Coding: Slepian-Wolf

Let’s find the optimal separation scheme. Optimize source
coding scheme first.

Slepian-Wolf binning can be used to compress S1 and S2.

R1 > hB(p)

R2 > hB(p)

R1 + R2 > 1 + hB(p)

If the above constraints are satisfied, the source decoder
can losslessly recover S1 and S2 and compute U.

Not optimal! Wastefully sent the sources, S1 and S2, while
only reconstructing the sum, U.
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Optimal Source Coding: Körner-Marton

Then what is the optimal source code?

Idea: use a linear source code.

Any iid B(p) source can be compressed to the entropy
rate, hB(p), with a linear code

This code can be written as a matrix H

u = [U(1)U(2) · · ·U(k)]

w = uH

Example: [1 0] = [1 0 0]





1 0
0 1
1 1







Reliable
Computation
over MACs

Bobak Nazer,
Michael
Gastpar

Motivation

Problem
Statement and
Background

Motivating
Example

Discrete
Linear MACs

Conclusions

Optimal Source Coding: Körner-Marton

Now use this source coding matrix at both terminals

w1 = s1H

w2 = s2H

w1 and w2 are provided to the decoder. Neither source
can be reconstructed but U comes through perfectly by
decoding from the mod-2 sum of the compressed bits
w = w1 ⊕ w2 = (s1 ⊕ s2)H = uH

Körner-Marton scheme achieves:

R1 > hB(p)

R2 > hB(p)
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Optimal Source Coding: Körner-Marton

S1 ENC1

R1

U ENCU

RU

DEC

S2

Ŝ1

Û

Converse: S1 and U must be perfectly reconstructed at
the decoder. S2 is available at the decoder so recovering
one variable gives the other for free. A rate of at least
H(U) = hB(p) is needed.

R1 + RU ≥ hB(p)

R2 + RU ≥ hB(p)

Set RU = 0.
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Optimal Source Coding: Körner-Marton

R2

R1

S-W

K-M

hB(p)

hB(p)

1 + hB(p)

If S1 and S2 are independent, R1 ≥ 1, R2 ≥ 1 required.

Independence ⇒ Slepian-Wolf and Körner-Marton are
equivalent
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An Appropriately Matched MAC

S1 ENC1
X1

S2 ENC2
X2

W BSCq
Y

DEC Û

Channel takes a mod-2 sum of the inputs: Y = X1 ⊕ X2

This is followed by a BSC with crossover probability q

Sum rate capacity, CMAC = 1 − hB(q)

Capacity region is a simplex, time-sharing is optimal
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Performance Metric Bounds

S1 ENC1
X1

S2 ENC2
X2

W BSCq
Y

DEC Û

Recall performance metric: computation rate, κ = number
of U’s (functions) sent per channel symbol

Lower bound: Send each source individually over the
MAC. Gives κ = 1−hB (q)

2 .

Upper bound: joint encoder. Gives κ = 1−hB (q)
hB (p) .

How well does separation do?
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Separation-Based Scheme

Use Körner-Marton scheme to compress U:

RS1 + RS2 > 2hB(p)

Then use a MAC channel code:

RX1 + RX2 < 1 − hB(q)

Achieves any computation rate satisfying:

κSEP <
1 − hB(q)

2hB(p)

Can we do better?
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Linear Channel Code for the BSC

Random coding does not take advantage of the channel
structure

We need a linear channel code and a linear source code

For any BSC, there is a linear channel code that can
achieve capacity.

Any linear channel code can be written as a generator
matrix: G

x = wG

Example: [1 1 0] = [1 1]

[

1 0 1
0 1 1

]
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Computation Coding

Theorem

There exists a linear code that can approach the computation

rate κ = 1−hB(q)
hB(p) . This is the best available computation rate

for lossless transmission of U = S1 ⊕ S2 over this channel.

Achievability. Choose G for the BSC and H for
compressing U to entropy. Set

x1 = s1HG

x2 = s2HG

After the channel, it looks as if U was jointly encoded.

Converse. Relax to joint encoding of U. By the data
processing inequality, I (U; Û) ≤ I (X1, X2; Y ).
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Separation vs. Joint Source-Channel Coding

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

p

κ

Computation
Separation
Slepian−Wolf

Our scheme dominates separation by a factor of 2, even

when the sources are independent.

We can get the benefits of uncoded transmission and
maintain reliable communication.
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Computation Codes: Desired Properties

function noise Y

X1

XM

PY |X1,X2,...,XM

Idea: we can very efficiently send functions close to the
”natural function” of a MAC.

Channel is a function followed by noise.

U is the same function of the sources.
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Computation Codes: Desired Properties

C1

C2

Channel Function CU

C = codebook

After the channel function, output looks like a codebook
for joint encoding of U for a point-to-point channel.

Purely random codes do not work. We need structure (ex:
linear codes).

Codebooks may not be valid for recovering individual
sources even before noise.

Let’s consider channels that sum.
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Discrete Linear Multiple-Access Channels

S1 f1
X1

β1

S2 f2
X2

β2

SM fM
XM

βM

...
...

W Y
DMC g

Û1

Û2

ÛJ

...

Si ∈ X where X is a Galois field, i ∈ {1, . . . , M}

M block encoders, fi , and a block decoder, g

W =
∑M

i=1 βiSi where βi ∈ X \ {0}
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Discrete Linear Multiple-Access Channels

S1 f1
X1

β1

S2 f2
X2

β2

SM fM
XM

βM

...
...

W Y
DMC g

Û1

Û2

ÛJ

...

Would like to losslessly communicate U1, U2, . . . , UJ

Uj =
∑M

i=1 αjiSi αji ∈ X , j = 1, 2, . . . , J

U1, U2, . . . , UJ can be correlated
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Computation Coding for Discrete Linear MACs

Theorem

There is a linear code that can approach the rate

κ == CMAC

H(U1,U2,...,UJ)
. This is the maximum computation rate for

lossless transmission of U1, U2, . . . , UJ over a symmetric

discrete linear MAC.

Converse. Relax to joint encoding of U = (U1, U2, . . . , UJ). By
the data processing inequality, I (U; Û) ≤ I (X1, X2, . . . , XM ; Y ).

min
p(Û|U)

I (U; Û) = H(U1, U2, . . . , UJ)

.
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Linear Source and Channel Coding

Any source can be compressed to its entropy rate with a
linear code over a Galois field.

This linear code can be written as a matrix H

For any symmetric DMC whose input alphabet is a Galois
field, there is a linear code that achieves capacity.

This linear code can be written as a generator matrix G
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Computation Coding: Achievability

Coding scheme

0

0
Ai =











α1i I
k1×k1

α2i I
k2×k2

. . .

αJi I
kJ×kJ











Choose H for joint compression of (U1, U2, . . . , UJ)

Choose G for achieving capacity over the symmetric DMC

Set Bi = β−1
i I

n×n

xi = AisiHGBi

si = [(S [1]S [2] · · · S [k])]
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Computation Coding: Achievability

Corollary

The rate κ = I (W ;Y )
H(U1,U2,...,UJ)

where p(W ) is uniform is

achievable over any discrete linear MAC.

Linear codes result in a uniform input distribution to the
channel.

Completely linear codes can get us very high (and
sometimes optimal) performance. How does separation
do?
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Separation over Discrete Linear MACs

Körner-Marton scheme does not generalize

Example: Let S1 and S2 be independent random variables
on GF(3) with mod-3 sum U = S1 ⊕ S2. Their pdfs are
given by the following table:

V P(S1 = V ) P(S2 = V ) P(U = V )

0 0.5 0 0.25
1 0.5 0.5 0.25
2 0 0.5 0.5

H(S1) = H(S2) = 1 and H(U) = 1.5

In this case, sending sources makes more sense

No converse though
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Rate Gains

We can’t give the separation scheme in general.

Still for most situations of interest our scheme achieves a
computation rate, κ, M times larger than separation-based
schemes.

Our rate gain is proportional to the number of users.

This suggests that even in mismatched cases, large gains
are possible.

Cost of maintaining synchronization is worthwhile.
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Unmatched Channels

Ideally, want to optimally transmit any function over any
channel. This is hard.

Example: S1 and S2 independent B( 1
2) processes. Want to

send U = S1 ⊕ S2. Channel is a real addition,
W = S1 + S2, followed by symmetric noise.

PY |W =





1 − 2ε ε ε

ε 1 − 2ε ε

ε ε 1 − 2ε





ε = 0.1 gives κSEP = 0.3104.

Interpreting 2 as 0 at the channel output, we can achieve
κCOMP = 0.3973.
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Future Work

Linear codes for sending sums over the Gaussian MAC

Bounds for sending mismatched functions over channels
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Conclusions

Large gains are possible for reliable computation with joint
source-channel codes.

Very simple codes, such as linear codes can completely
achieve these gains.

Even mismatched functions can benefit.
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