Reliable Computation over MACs

Bobak Nazer Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MACs

Conclusions

Reliable Computation over Multiple-Access Channels

Bobak Nazer Michael Gastpar

Department of Electrical Engineering and Computer Sciences University of California, Berkeley

September 28, 2005

Allerton 2005

Outline

Reliable Computation over MACs

Bobak Nazer Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MAC

Conclusions

1 Motivation

2 Problem Statement and Background

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ

- 3 Motivating Example
- 4 Discrete Linear MACs
- 5 Conclusions

Sensor Networks and The Separation Theorem

Reliable Computation over MACs

Bobak Nazer, Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MAC

Conclusions

- Typical sensor network problem: collect data at sensors and communicate the average to a central node
- Typical solution: distributed compression + multiple-access channel (MAC) protocol
- Motivated by Shannon's Separation Theorem: for point-to-point communication, compression can be separated from reliable communication
- This does *not* apply in general for networks.
- What about sending functions over channels? (ex: sums)

Problem Statement

Reliable Computation over MACs

Bobak Nazer Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MAC

Conclusions

$$S_{1} \rightarrow \overline{ENC_{1}} \xrightarrow{X_{1}} P_{Y|X_{1}X_{2}...X_{M}} \xrightarrow{Y} DEC \rightarrow \hat{U}$$

$$\vdots \qquad \vdots$$

$$S_{M} \rightarrow \overline{ENC_{M}} \xrightarrow{X_{M}} U = f(S_{1}, S_{2}, ..., S_{M})$$

■ *M* users each observe a source

- We want to reliably send a function of the sources, $U = f(S_1, S_2, ..., S_M)$ to a receiver, $P(\hat{U} \neq U) \rightarrow 0$
- We measure our performance by the *computation rate*, $\kappa =$ number of functions that get sent per channel use
- Is there a separation theorem for sending functions?

Reliable Computation over MACs

Bobak Nazer Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MACs

Conclusions

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ

Reliable Computation over MACs

Bobak Nazer, Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MAC

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のの⊙

 $\kappa_{\mathsf{COMP}} = 1$

Bobak Nazer, Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MAC

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のQ@

 $\kappa_{\mathsf{COMP}} = 1$

Reliable Computation over MACs

Bobak Nazer, Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MAC

Conclusions

- We want to develop schemes that take advantage of the channel structure.
- Problem: How can we send functions reliably?
- Uncoded transmission will boost our performance at the cost of noise in the received signal.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ●

- Can we get these gains and communicate losslessly?
- First, some background on separation.

- *M* users with independent messages, $W_i \in \{1, \ldots, 2^{nR_i}\}$
- Encoders possibly subject to cost constraints
- Capacity region completely known [Ahlswede 71, Liao 72]

 \hat{W}_1 \hat{W}_2

Bobak Nazer, Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MACs

Conclusions

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• M users with possibly correlated sources, S_i

- Must perfectly recover the sources
- Source encoders do distributed compression

Reliable Computation over MACs

Bobak Nazer Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MACs

Conclusions

- Correlated sources, want each source perfectly
- Distributed compression rate region was completely characterized by Slepian and Wolf
- Separation: combine Slepian-Wolf source coding with MAC coding
- Is this optimal?

Reliable Computation over MACs

Bobak Nazer, Michael Gastpar

Motivation

Problem Statement and Background

Motivatin Example

Discrete Linear MAC

Conclusions

- Example from [Cover-El Gamal-Salehi 80]
- $\mathcal{X}_1, \mathcal{X}_2 = \{0, 1\}, \ Y = X_1 + X_2, \ \mathcal{Y} = \{0, 1, 2\}$
- distributed compression requires $H(U, V) = \log_2 3$ bits = 1.58 bits
- $C_{MAC} = 1.5$ bits, so separation fails
- $X_1 = U$, $X_2 = V$ is perfectly decodable
- Separation not optimal for dependent sources

Motivating Example

Reliable Computation over MACs

Bobak Nazer, Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MACs

Conclusions

$$U = S_1 \oplus S_2, \quad H(U) = h_B(p)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

- Must losslessly transmit the mod-2 sum, $U = S_1 \oplus S_2$, across a MAC
- Sources have uniform marginals, independent when $p = \frac{1}{2}$
- S_2 looks like S_1 passed through a BSC

Naive Source Coding: Slepian-Wolf

Reliable Computation over MACs

Bobak Nazer Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MACs

Conclusions

- Let's find the optimal separation scheme. Optimize source coding scheme first.
- Slepian-Wolf binning can be used to compress S_1 and S_2 .

$$egin{aligned} R_1 &> h_B(p)\ R_2 &> h_B(p)\ R_1 + R_2 &> 1 + h_B(p) \end{aligned}$$

- If the above constraints are satisfied, the source decoder can losslessly recover *S*₁ and *S*₂ and compute *U*.
 - Not optimal! Wastefully sent the sources, *S*₁ and *S*₂, while only reconstructing the sum, *U*.

イロト (理) (日) (日) (日) (日)

Reliable Computation over MACs

Bobak Nazer Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MACs

Conclusions

- Then what is the optimal source code?
- Idea: use a linear source code.
- Any iid B(p) source can be compressed to the entropy rate, h_B(p), with a linear code
- This code can be written as a matrix H

$$\mathbf{u} = [U(1)U(2)\cdots U(k)]$$

 $\mathbf{w} = \mathbf{u}\mathbf{H}$

• Example:
$$\begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

Reliable Computation over MACs

Bobak Nazer, Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MAC

Conclusions

• Now use this source coding matrix at both terminals

$$\begin{split} \mathbf{w}_1 &= \mathbf{s}_1 \mathbf{H} \\ \mathbf{w}_2 &= \mathbf{s}_2 \mathbf{H} \end{split}$$

- w₁ and w₂ are provided to the decoder. Neither source can be reconstructed but U comes through perfectly by decoding from the mod-2 sum of the compressed bits
 w = w₁ ⊕ w₂ = (s₁ ⊕ s₂)H = uH
 - Körner-Marton scheme achieves:

$$R_1 > h_B(p)$$

 $R_2 > h_B(p)$

Computation over MACs Bobak Nazer, Michael

Reliable

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MACs

Conclusions

• Converse: S_1 and U must be perfectly reconstructed at the decoder. S_2 is available at the decoder so recovering one variable gives the other for free. A rate of at least $H(U) = h_B(p)$ is needed.

$$R_1 + R_U \ge h_B(p)$$

 $R_2 + R_U \ge h_B(p)$

• Set $R_U = 0$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへ⊙

Motivation

Problem Statement an Background

Motivating Example

Discrete Linear MACs

Conclusions

- If S_1 and S_2 are independent, $R_1 \ge 1$, $R_2 \ge 1$ required.
- Independence ⇒ Slepian-Wolf and Körner-Marton are equivalent

An Appropriately Matched MAC

Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MACs

Conclusions

- Channel takes a mod-2 sum of the inputs: $Y = X_1 \oplus X_2$
- This is followed by a BSC with crossover probability q
- Sum rate capacity, $C_{MAC} = 1 h_B(q)$
- Capacity region is a simplex, time-sharing is optimal

Performance Metric Bounds

Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MACs

Conclusions

Recall performance metric: computation rate, κ = number of U's (functions) sent per channel symbol

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

- Lower bound: Send each source individually over the MAC. Gives $\kappa = \frac{1-h_B(q)}{2}$.
- Upper bound: joint encoder. Gives $\kappa = \frac{1-h_B(q)}{h_B(p)}$.
- How well does separation do?

Separation-Based Scheme

Reliable Computation over MACs

Bobak Nazer, Michael Gastpar

Motivation

Problem Statement an Background

Motivating Example

Discrete Linear MAC

Conclusions

Use Körner-Marton scheme to compress U:

$$R_{S_1} + R_{S_2} > 2h_B(p)$$

Then use a MAC channel code:

$$R_{X_1} + R_{X_2} < 1 - h_B(q)$$

Achieves any computation rate satisfying:

$$\kappa_{SEP} < rac{1-h_B(q)}{2h_B(p)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のQ@

Can we do better?

Linear Channel Code for the BSC

Reliable Computation over MACs

Bobak Nazer, Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MACs

Conclusions

- Random coding does not take advantage of the channel structure
- We need a linear channel code and a linear source code
- For any BSC, there is a linear channel code that can achieve capacity.
- Any linear channel code can be written as a generator matrix: G

$$\mathbf{x} = \mathbf{w}\mathbf{G}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のQ@

• Example:
$$\begin{bmatrix} 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Computation Coding

Reliable Computation over MACs

Bobak Nazer, Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MACs

Conclusions

Theorem

There exists a linear code that can approach the computation rate $\kappa = \frac{1-h_B(q)}{h_B(p)}$. This is the best available computation rate for lossless transmission of $U = S_1 \oplus S_2$ over this channel.

 Achievability. Choose G for the BSC and H for compressing U to entropy. Set

 $\begin{array}{l} \textbf{x}_1 = \textbf{s}_1 \textbf{H}\textbf{G} \\ \textbf{x}_2 = \textbf{s}_2 \textbf{H}\textbf{G} \end{array}$

- After the channel, it looks as if U was jointly encoded.
- Converse. Relax to joint encoding of U. By the data processing inequality, $I(U; \hat{U}) \leq I(X_1, X_2; Y)$.

Separation vs. Joint Source-Channel Coding

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MACs

Conclusions

- Our scheme dominates separation by a factor of 2, *even* when the sources are independent.
- We can get the benefits of uncoded transmission and maintain reliable communication.

Computation Codes: Desired Properties

- Example
- Discrete Linear MAC
- Conclusions

Idea: we can very efficiently send functions close to the "natural function" of a MAC.

- Channel is a function followed by noise.
- U is the same function of the sources.

Computation Codes: Desired Properties

- Reliable Computation over MACs
- Bobak Nazer Michael Gastpar
- Motivation
- Problem Statement and Background
- Motivating Example
- Discrete Linear MACs
- Conclusions

- After the channel function, output looks like a codebook for joint encoding of U for a point-to-point channel.
- Purely random codes do not work. We need structure (ex: linear codes).
- Codebooks may not be valid for recovering individual sources even before noise.
- Let's consider channels that sum.

Discrete Linear Multiple-Access Channels

- Reliable Computation over MACs Bobak Nazer,
- Michael Gastpar
- Motivation
- Problem Statement an Background
- Motivating Example
- Discrete Linear MACs
- Conclusions

・ロン ・ 御 と ・ ヨ と ・ ヨ と … 三日 …

- $S_i \in \mathcal{X}$ where \mathcal{X} is a Galois field, $i \in \{1, \dots, M\}$
- M block encoders, f_i , and a block decoder, g
- $W = \sum_{i=1}^{M} \beta_i S_i$ where $\beta_i \in \mathcal{X} \setminus \{0\}$

Discrete Linear Multiple-Access Channels

- Reliable Computation over MACs Bobak Nazer,
- Michael Gastpar
- Motivation
- Problem Statement and Background
- Motivating Example
- Discrete Linear MACs
- Conclusions

Would like to losslessly communicate U₁, U₂,..., U_J
U_j = ∑^M_{i=1} α_{ji}S_i α_{ji} ∈ X, j = 1, 2, ..., J
U₁, U₂,..., U_J can be correlated

イロト (四) (日) (日) (日) (日) (0)

Computation Coding for Discrete Linear MACs

Reliable Computation over MACs

Bobak Nazer, Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MACs

Conclusions

Theorem

There is a linear code that can approach the rate $\kappa == \frac{C_{MAC}}{H(U_1, U_2, ..., U_J)}$. This is the maximum computation rate for lossless transmission of $U_1, U_2, ..., U_J$ over a symmetric discrete linear MAC.

Converse. Relax to joint encoding of $\mathbf{U} = (U_1, U_2, \dots, U_J)$. By the data processing inequality, $I(\mathbf{U}; \hat{\mathbf{U}}) \leq I(X_1, X_2, \dots, X_M; Y)$.

$$\min_{\mathbf{U}(\hat{\mathbf{U}}|\mathbf{U})} I(\mathbf{U}; \hat{\mathbf{U}}) = H(U_1, U_2, \dots, U_J)$$

イロト (理) (日) (日) (日) (日)

Linear Source and Channel Coding

Reliable Computation over MACs

Bobak Nazer, Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MACs

Conclusions

- Any source can be compressed to its entropy rate with a linear code over a Galois field.
- This linear code can be written as a matrix H
- For any symmetric DMC whose input alphabet is a Galois field, there is a linear code that achieves capacity.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ●

This linear code can be written as a generator matrix **G**

Computation Coding: Achievability

Reliable Computation over MACs

Bobak Nazer, Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MACs

Conclusions

Coding scheme

$$\mathbf{A}_{\mathbf{i}} = \begin{bmatrix} \alpha_{1i} \mathbb{I}^{k_1 \times k_1} & \mathbf{0} \\ & & & \mathbf{0} \\ \mathbf{0} & & & \ddots \\ & & & & & \alpha_{Ji} \mathbb{I}^{k_J \times k_J} \end{bmatrix}$$

- Choose **H** for joint compression of (U_1, U_2, \ldots, U_J)
- \blacksquare Choose ${\bf G}$ for achieving capacity over the symmetric DMC

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ●

- Set $\mathbf{B}_{\mathbf{i}} = \beta_{\mathbf{i}}^{-1} \mathbb{I}^{n \times n}$
- $\mathbf{x}_{i} = \mathbf{A}_{i}\mathbf{s}_{i}\mathbf{H}\mathbf{G}\mathbf{B}_{i}$
- $\bullet \mathbf{s_i} = [(S[1]S[2]\cdots S[k])]$

Computation Coding: Achievability

Reliable Computation over MACs

Bobak Nazer, Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MACs

Conclusions

Corollary

The rate $\kappa = \frac{I(W;Y)}{H(U_1,U_2,...,U_J)}$ where p(W) is uniform is achievable over any discrete linear MAC.

- Linear codes result in a uniform input distribution to the channel.
- Completely linear codes can get us very high (and sometimes optimal) performance. How does separation do?

Separation over Discrete Linear MACs

Reliable Computation over MACs

Bobak Nazer Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MACs

Conclusions

- Körner-Marton scheme does not generalize
- Example: Let S₁ and S₂ be independent random variables on GF(3) with mod-3 sum U = S₁ ⊕ S₂. Their pdfs are given by the following table:

V	$P(S_1 = V)$	$P(S_2 = V)$	P(U = V)
0	0.5	0	0.25
1	0.5	0.5	0.25
2	0	0.5	0.5

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ●

•
$$H(S_1) = H(S_2) = 1$$
 and $H(U) = 1.5$

- In this case, sending sources makes more sense
- No converse though

Rate Gains

Reliable Computation over MACs

Bobak Nazer, Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MACs

Conclusions

- We can't give the separation scheme in general.
- Still for most situations of interest our scheme achieves a computation rate, κ, M times larger than separation-based schemes.
- Our rate gain is proportional to the number of users.
- This suggests that even in mismatched cases, large gains are possible.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Cost of maintaining synchronization is worthwhile.

Unmatched Channels

Reliable Computation over MACs

Bobak Nazer, Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MACs

Conclusions

- Ideally, want to optimally transmit any function over any channel. This is hard.
- Example: S₁ and S₂ independent B(¹/₂) processes. Want to send U = S₁ ⊕ S₂. Channel is a real addition, W = S₁ + S₂, followed by symmetric noise.

$${\cal P}_{Y|W} = \left(egin{array}{ccc} 1-2\epsilon & \epsilon & \epsilon \ \epsilon & 1-2\epsilon & \epsilon \ \epsilon & \epsilon & 1-2\epsilon \end{array}
ight)$$

- $\epsilon = 0.1$ gives $\kappa_{SEP} = 0.3104$.
- Interpreting 2 as 0 at the channel output, we can achieve $\kappa_{COMP} = 0.3973.$

Future Work

- Reliable Computation over MACs Bobak Nazer, Michael
- Michael Gastpar
- Motivation
- Problem Statement an Background
- Motivating Example
- Discrete Linear MACs
- Conclusions

- Linear codes for sending sums over the Gaussian MAC
- Bounds for sending mismatched functions over channels

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Conclusions

- Reliable Computation over MACs
- Bobak Nazer, Michael Gastpar
- Motivation
- Problem Statement and Background
- Motivating Example
- Discrete Linear MACs
- Conclusions

 Large gains are possible for reliable computation with joint source-channel codes.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ

- Very simple codes, such as linear codes can completely achieve these gains.
- Even mismatched functions can benefit.

Acknowledgements

Reliable Computation over MACs Bobak Nazer,

Michael Gastpar

Motivation

Problem Statement and Background

Motivating Example

Discrete Linear MAC:

Conclusions

We would like to thank Anand Sarwate and Krish Eswaran for helpful discussions.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ