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Multicasting over AWGN Networks
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Multicasting problem only well understood for point-to-point channel
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• Gaussian
MACs

• Point-to-point
AWGN
channels

• Want a nice reduction to a point-to-point network.

• Usual solution: replace MACs with bit pipes using a MAC code.
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Multicasting over Gaussian Multiple-Access Networks
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• Bit pipe
network

• Multicast
capacity
known

• Reduction ignores linear functions performed by MACs.

• MAC can do network coding with structured random codes.

UC Berkeley Wireless Foundations Nazer and Gastpar
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Overview

Main ideas for this talk:

=⇒ (Structured) random coding technique that exploits structural
gain not beamforming gain.
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Overview

Main ideas for this talk:

=⇒ (Structured) random coding technique that exploits structural
gain not beamforming gain.

=⇒ New relaying strategy that allows relays in a network to
reliably “compute-and-forward” functions of messages.

=⇒ New (achievable) multicast rates for AWGN
networks with multiple-access components.

UC Berkeley Wireless Foundations Nazer and Gastpar



Allerton ’07: Lattices Help in AWGN Networks 6 / 32

Outline

1 Background: Random Coding Theorems

2 Motivating Example

3 Multicasting over AWGN Networks
a. Problem Statement
b. Coding Theorem
c. Proof Ideas

4 Extensions
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Point-to-Point Communication
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• Capacity given by:

C = max
p(x)

I(X;Y )

• Achievability proof: Draw 2nR codewords of length n i.i.d. with
p(x). Expected performance good so there are good codes.
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C = max
p(x)

I(X;Y ) = 1
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• Achievability proof: Draw 2nR codewords of length n i.i.d. with
p(x). Expected performance good so there are good codes.
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Multiple-Access Communication
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• Capacity region is the convex closure of all rate pairs satisfying:

R1 < I(X1;Y |X2)

R2 < I(X2;Y |X1)

R1 + R2 < I(X1,X2;Y )

for some product distribution p(x1)p(x2).

• Achievability proof: Draw 2nR1 codewords i.i.d. with p(x1) and
2nR2 codewords i.i.d. with p(x2).
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for some product distribution p(x1)p(x2).

• Achievability proof: Draw 2nR1 codewords i.i.d. with p(x1) and
2nR2 codewords i.i.d. with p(x2).
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Natural Extension to General Networks

• We expect capacity results in terms of mutual informations of
some distributions. For example:

max
p(x1,x3)p(x2|x3)p(stuff)

min {I(X1, stuff ;Y1|X3) + I(stuff ;Y3),

I(X1,X2;Y4), I(X3;Y1, things)}
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Natural Extension to General Networks

• We expect capacity results in terms of mutual informations of
some distributions. For example:

max
p(x1,x3)p(x2|x3)p(stuff)

min {I(X1, stuff ;Y1|X3) + I(stuff ;Y3),

I(X1,X2;Y4), I(X3;Y1, things)}

• Usual Achievability Proof: Draw codewords i.i.d. from desired
distributions (as well as some very nice generalizations of this).

• Is focusing on the distributions enough? Do we just need better
converses?

• No! These techniques fail (in expectation) as they do not exploit
structure.
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Motivating Example: “AWGN Butterfly”

• Drawing codewords i.i.d. from specified
distributions is insufficient to prove
network capacity theorems in expectation.
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Motivating Example: “AWGN Butterfly”

• Drawing codewords i.i.d. from specified
distributions is insufficient to prove
network capacity theorems in expectation.

• AWGN channels, equal SNRs, Gaussian
MAC in the center.

• Really just need sum on center path.

• Want to benefit from MAC’s addition for
structural gain.
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Motivating Example: “AWGN Butterfly”

Standard relaying strategies:

• Decode-and-forward: Need to decode
both messages then compute the sum.
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Motivating Example: “AWGN Butterfly”

Standard relaying strategies:

• Decode-and-forward: Need to decode
both messages then compute the sum.

• Compress-and-forward: Have to send
messages and noise.

• Amplify-and-forward: Noise builds up with
each transmission.

Really want to “compute-and-forward”!
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Performance Comparison
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ŵ1 ŵ2
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Lattice Basics

• Lattice is a linear tiling of
R

n

• Channel coding:
codewords are points in a
power constraint ball

• Urbanke-Rimoldi ’98:
∃ lattices that achieve
AWGN capacity with ML
decoding

R
2

Power Constraint
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UC Berkeley Wireless Foundations Nazer and Gastpar



Allerton ’07: Lattices Help in AWGN Networks > Motivating Example 14 / 32

Random Coding vs. Lattice Coding

UC Berkeley Wireless Foundations Nazer and Gastpar



Allerton ’07: Lattices Help in AWGN Networks > Motivating Example 14 / 32

Random Coding vs. Lattice Coding

UC Berkeley Wireless Foundations Nazer and Gastpar



Allerton ’07: Lattices Help in AWGN Networks > Motivating Example 14 / 32

Random Coding vs. Lattice Coding

• Sum of codewords is not a
codeword.

• Must decode individual
messages.

UC Berkeley Wireless Foundations Nazer and Gastpar



Allerton ’07: Lattices Help in AWGN Networks > Motivating Example 14 / 32

Random Coding vs. Lattice Coding

• Sum of codewords is not a
codeword.

• Must decode individual
messages.

UC Berkeley Wireless Foundations Nazer and Gastpar



Allerton ’07: Lattices Help in AWGN Networks > Motivating Example 14 / 32

Random Coding vs. Lattice Coding

• Sum of codewords is not a
codeword.

• Must decode individual
messages.

UC Berkeley Wireless Foundations Nazer and Gastpar



Allerton ’07: Lattices Help in AWGN Networks > Motivating Example 14 / 32

Random Coding vs. Lattice Coding

• Sum of codewords is not a
codeword.

• Must decode individual
messages.

• Sum of codewords is a
codeword.

• Can decode linear
functions of messages.

UC Berkeley Wireless Foundations Nazer and Gastpar
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3 Multicasting over AWGN Networks
a. Problem Statement
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Problem Statement
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• Point-to-point AWGN channels

• Gaussian multiple-access channels
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Channel Model Details

P
Xn

1

P
Xn

2

P
Xn

M

Zn

Y n

• i.i.d. additive Gaussian noise:
Z ∼ N (0, Nj)

• Same transmit power
constraint:

1

n

n
∑

i=1

(xj [i])
2 ≤ P

• Channel quality controlled by noise variance.

• Scheme for different user transmit powers at the end of the talk...

UC Berkeley Wireless Foundations Nazer and Gastpar



Allerton ’07: Lattices Help in AWGN Networks > Multicasting over AWGN Networks 18 / 32

Coding Theorem: New Achievable Rates
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Theorem

Any multicast rate achievable on the resulting network is achievable on

the original network using a compute-and-forward scheme.
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Coding Theorem: New Achievable Rates

w

ŵ
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Theorem

Any multicast rate achievable on the resulting network is achievable on

the original network using a compute-and-forward scheme.
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Random Coding: Interference Between Flows
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• Multicast capacity found by analyzing flows to each receiver.

• Random coding: flows between receivers interfere on MACs.

UC Berkeley Wireless Foundations Nazer and Gastpar



Allerton ’07: Lattices Help in AWGN Networks > Multicasting over AWGN Networks 19 / 32

Random Coding: Interference Between Flows

w

Z2

Z1

Z3

ŵ
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ŵ

ŵ

ŵ

• Multicast capacity found by analyzing flows to each receiver.

• Random coding: flows between receivers interfere on MACs.

UC Berkeley Wireless Foundations Nazer and Gastpar



Allerton ’07: Lattices Help in AWGN Networks > Multicasting over AWGN Networks 19 / 32

Random Coding: Interference Between Flows

w

Z2

Z1

Z3

ŵ
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Compute-and-Forward: No Interference Between Flows

w

ŵ

ŵ

ŵ

• Calculate flows as if MACs are interference free!

• MAC constraints are only: Rj < 1
2 log2

(

1
Mj

+ P
Nj

)
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ŵ

ŵ
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ŵ

ŵ
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Proof Ideas

• Convenient to consider sending blocks of Gaussian sources at
distortion targets and then treating these as supersymbols.

• Computing linear functions of Gaussians sources over Gaussian
MACs and the associated linear processing rate.

• Map appropriate network code to our AWGN network with
lattices.
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From Gaussians to Bits

• Assume, for k large enough, we can send a length-k i.i.d.
Gaussian source with variance σ2 from our sender to every
receiver with distortion D.

• Then we can multicast over the network at any rate less than

R(D) = 1
2 log2

(

σ2

D

)

.

• Proof Sketch: Fix encoding and decoding functions for every
interior node in the network. Take Gaussian vectors as
supersymbols in a new block code.
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Linear Functions over a Gaussian MAC

Sk
1 E1

Xkℓ
1

Sk
2 E2

Xkℓ
2

Sk
M EM

Xkℓ
M

...
...

Zkℓ

Y kℓ

D Ûk

• length-k Gaussian sources

• Want linear function
U = α1S1 + α2S2 + · · ·αMSM

at low distortion
D = E[(U − Û)2]

• Erez-Litsyn-Zamir IT Trans. 2005: ∃ lattices good for both source
and channel coding.

• Scale up each source and quantize onto the same lattice and
transmit simultaneously. Receiver decodes the sum.

• Repeat ℓ times with encoders sending quantization errors.
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Linear Processing Rate

• N. and Gastpar IT Trans. Oct. 2007: Linear function received at
distortion at most:

Dℓ = σ2
S max

j
α2

j

(

MN

N + P

)ℓ

• Linear processing rate is given by RLP = limℓ→∞
1
2ℓ

log2 R(Dℓ)

• Thus, structured random code can achieve at least

RLP =
1

2
log2

(

1

M
+

P

N

)

• IID random code only achieves:

RLP =
1

2M
log2

(

1 +
MP

N

)

UC Berkeley Wireless Foundations Nazer and Gastpar



Allerton ’07: Lattices Help in AWGN Networks > Multicasting over AWGN Networks 25 / 32

Building a Network Code

• Reduction to point-to-point network:
• Replacing all MACs with nodes with same connectivity
• New node’s link capacities are given by the MAC’s linear

processing rate

• Consider all channels in terms of equal capacity chunks and draw
appropriate network code over prime-sized finite field.

• Network code equations also full rank over the reals.

• Refine Gaussian vectors across original network according to
network code on the reals

• Receivers make LMMSE estimates.
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Coding Theorem Restated

w

Z2

Z1

Z3

ŵ

ŵ

ŵ

• Reduction to
bit pipe
network

• MACs become
nodes

• New links capacities given by linear processing rate:

RLP =
1

2
log2

(

1

Mj
+

P

Nj

)
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MAC with Unequal Users

P1

Xn
1

P2

Xn
2

PM

Xn
M

Zn

Y n

• Different transmit power
constraints:

1

n

n
∑

i=1

(xj [i])
2 ≤ Pj

PAV G =
1

M

M
∑

j=1

Pj

• Idea: Layer different linear functions on top of each other.

RLP,1 =
1

2
log2

(

1

M
+

αPAV G

N

)

RLP,2 =
1

2
log2

(

1

M
+

(1 − α)PAV G

N + αMPAV G

)
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Beyond Network Coding...

The “Sum-Difference” Relay MAC:

m1 E1
X1

m2 E2
X2

−1

Z1

Y1

Z2

Y2

E3
X3

E4
X4

Z3

Y3

Z4

Y4

D
m̂1

m̂2

• Two senders, one receiver

• Equal transmit powers and noise variances throughout
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The “Sum-Difference” Relay MAC.

Look at symmetric rate point, R = R1 = R2:

• Structured random code allows one relay to decode the sum and
the other the difference:

R =
1

2
log2

(

1

2
+

P

N

)

.

• IID random code results in decoding at the relays or
compress-and-forward:

RDF =
1

4
log2

(

1 +
2P

N

)

RCF =
1

2
log2

(

1 +
P

N

(

2P

3P + N

))

.
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Concluding Remarks

Lattices can be extremely useful for solving AWGN communication
problems.
This has been observed by others, too:

• Philosof-Khisti-Erez-Zamir ISIT 2007: Lattices help for MAC with
two interferences, one known at each encoder

• Krithivasan-Pradhan arXiv July 2007: Lattices help for distributed
source coding of difference of correlated Gaussians

• Narayanan-Wilson-Sprintson Allerton 2007: Lattices help for
two-way relaying

• Bresler-Parekh-Tse Allerton 2007: Lattices help on a many-to-one
Gaussian interference channel
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Concluding Remarks

Structured random codes will be
required to prove capacity (and
rate-distortion) results for many
networks to come...

Some previous work:

• N. and Gastpar IT Trans. October 2007: Computation over
Multiple-Access Channels

• N. and Gastpar ITW 2007 Lake Tahoe: The Case for Structured
Random Codes in Network Communication Theorems
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