Computing over Multiple-Access Channels with Connections to Wireless Network Coding

Bobak Nazer and Michael Gastpar

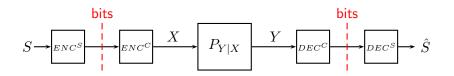
Wireless Foundations Center Department of Electrical Engineering and Computer Sciences University of California, Berkeley

July 12, 2006

ISIT 2006

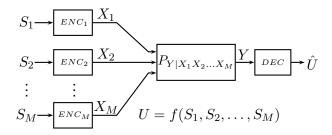
- 1 Source-Channel Separation Theorems
- **2** Computation Coding
- **3** Three Illustrative Examples
- **4** Multicast Capacity for Finite Field MAC Networks

Source-Channel Separation Theorems (or lack thereof)



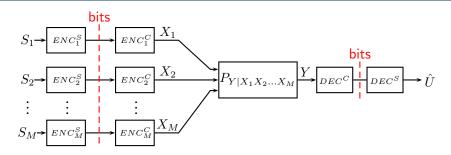
- Shannon (1948): separation optimal for point-to-point links
 - Reliable communication possible if $H(S) < \max_{p(x)} I(X;Y)$
- Cover-El Gamal-Salehi (1980): no separation theorem for multiple-access channels (MACs) with correlated sources.
- Is there a separation theorem for sending functions over MACs?

Problem Statement: Reliable Computation over MACs



- $\bullet \ M$ users each observe a source
- Only want a function of the sources, $U = f(S_1, S_2, \dots, S_M)$
- Reliable computation: $\lim_{k\to\infty} P(\hat{U}^k \neq U^k) = 0$
- Computation rate, $\kappa = \frac{k}{n}$, functions sent per channel use
- No separation theorem even if the sources are independent

Separation-Based Scheme

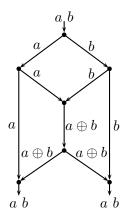


- \mathcal{R}_U : distributed compression rate region, only known in special cases (Slepian-Wolf, Körner-Marton)
- \mathcal{R}_{MAC} : MAC capacity region
 - 2-user MAC: convex closure of all (R_1, R_2) satisfying:

 $R_1 < I(X_1; Y | X_2) \quad R_2 < I(X_2; Y | X_1) \quad R_1 + R_2 < I(X_1, X_2; Y)$

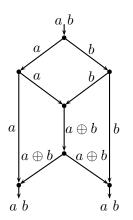
• Separation-based computation possible if $\mathcal{R}_U \cap \mathcal{R}_{\mathsf{MAC}} \neq \emptyset$

Routing Is Suboptimal



- Butterfly example
- One source, two sinks, and noiseless rate $1 \ {\rm links}$
- Max-flow min-cut bound = 2 bits per network use
- Routing suboptimal, only transmits 1.5 bits
- Mixing optimal, send $a \oplus b$ down center path

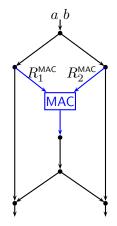
Network Coding



- Ahlswede-Cai-Li-Yeung (2000): for any network of bit pipes, network coding achieves the max-flow min-cut bound
- Later works have generalized the setup and simplified the coding scheme:
 - Li-Yeung-Cai (2003): linear network coding
 - Ho et al., Jaggi et al., Sanders et al. (2003): distributed construction, bounds on field size
- Channel-network separation is optimal for multicasting over a network of point-to-point channels

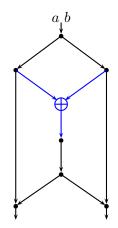
A Simple Network with a MAC

- Add a MAC into the usual butterfly network
- Separation can send a and b iff $R_1^{\rm MAC} \geq 1$ and $R_2^{\rm MAC} \geq 1$
- What if the MAC just takes the mod-2 sum: $Y = X_1 \oplus X_2$
- Uncoded transmission optimal
- Separation-based coding suboptimal
 - Must transmit a and b individually
 - $\bullet \ R_1^{\rm MAC} + R_2^{\rm MAC} \leq 1$
- What if there is noise?



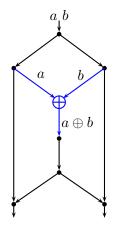
A Simple Network with a MAC

- Add a MAC into the usual butterfly network
- Separation can send a and b iff $R_1^{\rm MAC} \geq 1$ and $R_2^{\rm MAC} \geq 1$
- What if the MAC just takes the mod-2 sum: $Y = X_1 \oplus X_2$
- Uncoded transmission optimal
- Separation-based coding suboptimal
 - Must transmit a and b individually
 - $\bullet \ R_1^{\rm MAC} + R_2^{\rm MAC} \leq 1$
- What if there is noise?



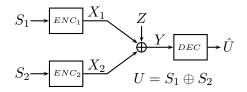
A Simple Network with a MAC

- Add a MAC into the usual butterfly network
- Separation can send a and b iff $R_1^{\rm MAC} \geq 1$ and $R_2^{\rm MAC} \geq 1$
- What if the MAC just takes the mod-2 sum: $Y = X_1 \oplus X_2$
- Uncoded transmission optimal
- Separation-based coding suboptimal
 - Must transmit a and b individually
 - $\bullet \ R_1^{\rm MAC} + R_2^{\rm MAC} \leq 1$
- What if there is noise?



A New Coding Technique: Computation Coding

- Many MACs compute a function of the sources then add noise (ex: Gaussian MAC)
- Uncoded transmission achieves rate gains but incurs a noise penalty
- Trick: Use structured codes
- Example: Mod-2 Noisy Adder MAC (M2MAC)



Computation Coding for the M2MAC: Proof Sketch

- Only want $U = S_1 \oplus S_2$ at the decoder
- Key idea: Use the same linear codebook at each encoder
- Pick good source and channel coding matrices ${\bf H}$ and ${\bf G}$

$$\begin{split} \mathbf{x_1} &= \mathbf{s_1} \mathbf{H} \mathbf{G} \\ \mathbf{x_2} &= \mathbf{s_2} \mathbf{H} \mathbf{G} \\ \mathbf{y} &= \mathbf{s_1} \mathbf{H} \mathbf{G} \oplus \mathbf{s_2} \mathbf{H} \mathbf{G} \oplus \mathbf{z} = \mathbf{u} \mathbf{H} \mathbf{G} \oplus \mathbf{z} \end{split}$$

- After the channel, looks as if \boldsymbol{U} was jointly encoded
- Relies on low complexity codes

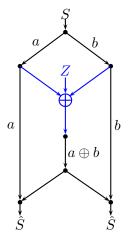
Example 1: Butterfly Network with an M2MAC

- Add the M2MAC into a butterfly network
- Separation-based scheme requires:

$$H(S) < 1 + \left(\frac{1 - h_B(p)}{2}\right)$$

• Computation coding is optimal and meets the max-flow min-cut bound:

$$H(S) < 1 + (1 - h_B(p))$$



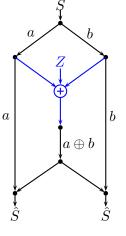
Example 2: Not Just MACs over Fields

- Butterfly network with real-adder MAC
- Channel output is $X_1 + X_2$ passed through a symmetric DMC
- Example: Crossover probability 0.2
- Separation-based scheme requires:

H(S)<1.33

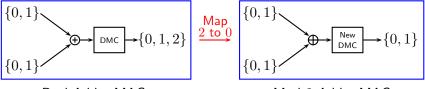
• Computation coding scheme:

H(S) < 1.40



Scheme: Transform Real-Adder to Mod-2 Adder

- Real-adder MAC is nearly a mod-2 adder
- Just map output symbol 2 to 0
- Uniform distribution is a good input distribution

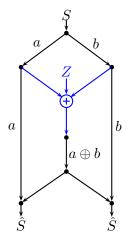


Real-Adder MAC

 $\mathsf{Mod}\text{-}2$ Adder MAC

What about Gaussian?

- Butterfly network with Gaussian MAC: $Y = X_1 + X_2 + Z, \qquad Z \sim \mathcal{N}(0, \frac{1}{3})$
- Usual power constraint on the inputs, ${\cal P}=1$
- Mapping to a mod-2 adder MAC does worse than separation
- Reason: bad input distribution
- Need a better strategy



Systematic Computation

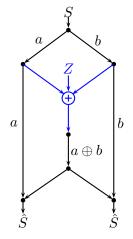
- Phase 1: Uncoded transmission. Receiver gets a noisy version of function.
- Phase 2: Separation-based scheme sends linear update bins
- Binning only needs a mapping to a linear function over some field
- Trades off between using channel function and optimal MAC input distribution

Systematic Computation for the Gaussian MAC

- Butterfly network with Gaussian MAC: $Y = X_1 + X_2 + Z, \quad Z \sim \mathcal{N}(0, \frac{1}{3})$
- Usual power constraint on the inputs, P=1
- Separation-based scheme requires:

H(S) < 1.70

• Systematic computation coding scheme:



Multicasting over Finite Field MAC Networks

- Usual network coding setup: Single source, *L* receivers, encoder/decoder nodes, and directed point-to-point channels
- Add any number of MACs of the form:
 - $Y = \alpha_1 X_1 + \alpha_2 X_2 + \dots + \alpha_M X_M + Z$
 - $\alpha_i \in \mathbb{F} \setminus \{0\}$
 - $X_i, Z \in \mathbb{F}$
 - Addition over ${\mathbb F}$
- All MACs operate over the same field
- No broadcast constraint

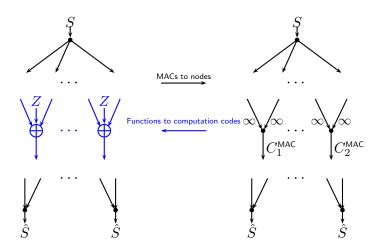
Theorem

If the field size of the MACs, $|\mathbb{F}|$, is larger than the number of receivers, L, then the multicast capacity is given by the max-flow min-cut bound.

Proof Outline

- Need result of Ho et al. (2003): Linear solution for a network of directed point-to-point links exists if the alphabet size is larger than the number of receivers
- Apply network transformation:
 - Replace each MAC with a node whose output has a capacity equal to the original sum-rate capacity
 - Each incoming link to the original MAC is replaced with an infinite capacity link to the new node
- Find a linear solution for this network
- Find a computation code for each MAC to duplicate the function of its replacement

Proof Outline



Conclusions

- New technique: computation coding
 - Sometimes optimal, often helps
 - Relies on low complexity, structured codes
- · Interference useful for wireless network coding
- Structural considerations may be necessary in large networks

