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Source-Channel Separation Theorems (or lack thereof)
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• Shannon (1948): separation optimal for point-to-point links
• Reliable communication possible if H(S) < maxp(x) I(X;Y )

• Cover-El Gamal-Salehi (1980): no separation theorem for
multiple-access channels (MACs) with correlated sources.

• Is there a separation theorem for sending functions over MACs?
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Problem Statement: Reliable Computation over MACs
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U = f(S1, S2, . . . , SM )

• M users each observe a source

• Only want a function of the sources, U = f(S1, S2, . . . , SM )

• Reliable computation: limk→∞ P (Ûk 6= Uk) = 0

• Computation rate, κ = k

n
, functions sent per channel use

• No separation theorem even if the sources are independent
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Separation-Based Scheme
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• RU : distributed compression rate region, only known in special
cases (Slepian-Wolf, Körner-Marton)

• RMAC: MAC capacity region
• 2-user MAC: convex closure of all (R1, R2) satisfying:

R1 < I(X1;Y |X2) R2 < I(X2;Y |X1) R1 + R2 < I(X1,X2;Y )

• Separation-based computation possible if RU ∩RMAC 6= ∅
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Routing Is Suboptimal
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• Butterfly example

• One source, two sinks, and noiseless rate 1 links

• Max-flow min-cut bound = 2 bits per network use

• Routing suboptimal, only transmits 1.5 bits

• Mixing optimal, send a ⊕ b down center path
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Network Coding
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• Ahlswede-Cai-Li-Yeung (2000): for any network of
bit pipes, network coding achieves the max-flow
min-cut bound

• Later works have generalized the setup and
simplified the coding scheme:

• Li-Yeung-Cai (2003): linear network coding
• Ho et al., Jaggi et al., Sanders et al. (2003):

distributed construction, bounds on field size

• Channel-network separation is optimal for
multicasting over a network of point-to-point
channels

UC Berkeley Wireless Foundations Nazer and Gastpar



ISIT ’06: Computing over MACS > Source-Channel Separation Theorems 8 / 20

A Simple Network with a MAC

• Add a MAC into the usual butterfly network

• Separation can send a and b iff RMAC
1

≥ 1 and
RMAC

2
≥ 1

• What if the MAC just takes the mod-2 sum:
Y = X1 ⊕ X2

• Uncoded transmission optimal

• Separation-based coding suboptimal
• Must transmit a and b individually
• RMAC

1 + RMAC
2 ≤ 1

• What if there is noise?
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A New Coding Technique: Computation Coding

• Many MACs compute a function of the sources then add noise
(ex: Gaussian MAC)

• Uncoded transmission achieves rate gains but incurs a noise
penalty

• Trick: Use structured codes

• Example: Mod-2 Noisy Adder MAC (M2MAC)
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Computation Coding for the M2MAC: Proof Sketch

• Only want U = S1 ⊕ S2 at the decoder

• Key idea: Use the same linear codebook at each encoder

• Pick good source and channel coding matrices H and G

x1 = s1HG

x2 = s2HG

y = s1HG ⊕ s2HG ⊕ z = uHG ⊕ z

• After the channel, looks as if U was jointly encoded

• Relies on low complexity codes
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Example 1: Butterfly Network with an M2MAC

• Add the M2MAC into a butterfly network

• Separation-based scheme requires:

H(S) < 1 +

(

1 − hB(p)
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)

• Computation coding is optimal and meets the
max-flow min-cut bound:

H(S) < 1 + (1 − hB(p))
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Example 2: Not Just MACs over Fields

• Butterfly network with real-adder MAC

• Channel output is X1 + X2 passed through a
symmetric DMC

• Example: Crossover probability 0.2

• Separation-based scheme requires:

H(S) < 1.33

• Computation coding scheme:

H(S) < 1.40

Ŝ
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Scheme: Transform Real-Adder to Mod-2 Adder

• Real-adder MAC is nearly a mod-2 adder

• Just map output symbol 2 to 0

• Uniform distribution is a good input distribution
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What about Gaussian?

• Butterfly network with Gaussian MAC:
Y = X1 + X2 + Z, Z ∼ N (0, 1

3
)

• Usual power constraint on the inputs, P = 1

• Mapping to a mod-2 adder MAC does worse than
separation

• Reason: bad input distribution

• Need a better strategy

Ŝ
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Systematic Computation

User 1 S1[1] S1[2] S1[3] · · · S1[k] MAC coded s1H

Channel computes noisy U = f(S1, S2) Decoder refines with uH = s1H ⊕ s2H

User 2 S2[1] S2[2] S2[3] · · · S2[k] MAC coded s2H

• Phase 1: Uncoded transmission. Receiver gets a noisy version of
function.

• Phase 2: Separation-based scheme sends linear update bins

• Binning only needs a mapping to a linear function over some field

• Trades off between using channel function and optimal MAC
input distribution
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Systematic Computation for the Gaussian MAC

• Butterfly network with Gaussian MAC:
Y = X1 + X2 + Z, Z ∼ N (0, 1

3
)

• Usual power constraint on the inputs, P = 1

• Separation-based scheme requires:

H(S) < 1.70

• Systematic computation coding scheme:

H(S) < 1.76

Ŝ
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Multicasting over Finite Field MAC Networks

• Usual network coding setup: Single source, L receivers,
encoder/decoder nodes, and directed point-to-point channels

• Add any number of MACs of the form:
• Y = α1X1 + α2X2 + · · · + αMXM + Z

• αi ∈ F \ {0}
• Xi, Z ∈ F

• Addition over F

• All MACs operate over the same field

• No broadcast constraint

Theorem

If the field size of the MACs, |F|, is larger than the number of receivers,

L, then the multicast capacity is given by the max-flow min-cut bound.
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Proof Outline

• Need result of Ho et al. (2003): Linear solution for a network of
directed point-to-point links exists if the alphabet size is larger
than the number of receivers

• Apply network transformation:
• Replace each MAC with a node whose output has a capacity equal

to the original sum-rate capacity
• Each incoming link to the original MAC is replaced with an infinite

capacity link to the new node

• Find a linear solution for this network

• Find a computation code for each MAC to duplicate the function
of its replacement
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Proof Outline
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Conclusions

• New technique: computation coding
• Sometimes optimal, often helps
• Relies on low complexity, structured codes

• Interference useful for wireless network coding

• Structural considerations may be necessary in large networks
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