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Abstract—In the Shannon-theoretic analysis of joint source-
channel coding problems, achievability is usually established via
a two-stage approach: The sources are compressed into bits,and
these bits are reliably communicated across the noisy channels.
Random coding arguments are the backbone of both stages
of the proof. This “separation” strategy not only establishes
the optimal performance for stationary ergodic point-to-point
problems, but also for a number of simple network situations,
such as independent sources that are communicated with respect
to separate fidelity criteria across a multiple-access channel.
Beyond such simple cases, for general networks, separation-based
coding is suboptimal. For instance, for a simple Gaussian sensor
network, uncoded transmission is exactly optimal and performs
exponentially better than a separation-based solution. Inthis
note, we generalize this sensor network strategy by employing
a lattice code. The underlying linear structure of our code is
crucial to its success.

I. I NTRODUCTION

Structured code constructions have been at the forefront
of interest in communication systems research for at least
fifty years, some of the most prominent examples including
the Reed-Solomon codes and the low-density parity-check
(LDPC) codes. The chief reason for this is implementability:
for a code to be efficiently encodable and decodable, it must
have some structure.

In parallel, researchers have investigated the fundamental
limits of communication systems. Some of these limits can
be established via structured codes, but not all. A much more
versatile tool was developed by Shannon, the so-calledrandom
coding argument.In its simplest incarnation, the letters of
each codeword of a codebook are drawn independently of each
other from a fixed scalar probability distribution. Clearly, the
resulting codebook will not have any particular (algebraic)
structure. It turns out that such codebooks can establish the
capacity of all (stationary, memoryless, ergodic) point-to-point
channels. It is now apparent that this fact must be considered
an isolated case of luck. More generally, i.e., for networks, no
similar theorem seems to hold.

To be more precise, it has become more and more clear
that these completely unstructured codes will be insufficient
to establish the best possible capacity results. In well-matched
cases, uncoded transmission can perform much better than
standard separation-based strategies. This is often due tousing
the additive operation of the channel to compute a sufficient
statistic: something a separation-based code cannot do. Aswe

will show, by employing a structured code, we can continue
to reap some of the benefits of uncoded transmission beyond
perfectly matched cases.

II. STRUCTUREDCODES

The apparent necessity of structured codes was first ob-
served by Körner and Marton [1]. In their problem, a decoder
wishes to reconstruct the parity of two correlated binary
sources seen by separate encoders. By employing the same
linear code at each encoder, the decoder can sum the received
codewords to recover the parity at the lowest possible rate.
A standard strategy, such as random binning, would require a
higher sum rate.

More recently, we have studied the problem of reliable
computation over multiple-access channels and have found
that here, too, structured codes are a very important part of
the puzzle [2]. By letting each encoder use the same linear
codebook, we can take advantage of the natural operation
of the channel while still protecting against channel noise.
This can result in huge gains over a separation-based strategy,
often proportionally to the number of users (even if the
underlying sources are independent). In previous work, we
applied this technique to a sensor network that required a
filtered, downsampled version of the sources [3].

There has also been a great deal of recent interest in using
structured codes for proving new network capacity theorems.
Due to space limitations, we refer the interested reader to our
recent survey paper for a more comprehensive treatment and
pointers to related work [4]. Of particular note is an analogue
of the Körner-Marton problem developed by Krithivasan and
Pradhan [5]. They show that for recovering the difference of
correlated Gaussian sources, a lattice code can reduce the sum
rate.

III. A S ENSORNETWORK EXAMPLE

In this section, we will illustrate the significance of struc-
tured codes in a sensor network scenario. For the purpose of
this note, the goal will not be generality but illustrative quality.

A. The Model

Consider the “sensor” network illustrated in Figure 1. The
underlying source{S[n]}N

n=1 is a sequence ofN independent
and identically distributed (i.i.d.) real-valued Gaussian random
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Fig. 1. The decoder (DEC) needs to reconstructS, i.e., the underlying
source (SRC). Each encoder is allowed to pool together an arbitrary number
of observations{Um[n]}N

n=1
, and encode them intoℓN channel uses via an

arbitrarily complex encoding procedure. For the purpose ofthis note,ℓ is a
positive integer.

variables of mean zero and varianceσ2
S . Sensorm observes a

sequence{Um[n]}N
n=1 defined as

Um[n] = S[n] + Wm[n], (1)

where {Wm[n]}N
n=1 is a sequence of i.i.d. Gaussian ran-

dom variables of mean zero and varianceσ2
W . Sensorm

can apply anarbitrary coding function to the observation
sequence such as to generate a sequence ofℓN channel inputs,
{Xm[k]}ℓN

k=1 = fm({Um[n]}N
n=1). For the purpose of this

note, we assume thatℓ is a positive integer. The only constraint
is that the functionfm(·) be chosen to ensure that

lim
N→∞

1

ℓN

ℓN
∑

k=1

E
[

(Xm[k])2
]

≤ P. (2)

The channel output is then given as

Y [k] = Z[k] +

M
∑

m=1

Xm[k], (3)

where {Z[k]}ℓN
k=1 is an i.i.d. sequence of Gaussian random

variables of mean zero and varianceσ2
Z . Upon observing the

channel output sequence{Y [k]}ℓN
k=1, the decoder (or fusion

center) must produce a sequence{Ŝ[n]}N
n=1 = g({Y [k]}ℓN

k=1),
and we consider the distortion

D = lim
N→∞

1

N

N
∑

n=1

E

[

(S[n] − Ŝ[n])2
]

. (4)

This note concerns the determination of the smallest at-
tainable distortionDℓ, for fixed power P (per terminal),
over all possible encoding and decoding functions,fm(·)
(m = 1, 2, . . . , M ) and g(·). A particular interest concerns
the dependence of the results onℓ, the average number of
channel uses per source symbol (i.e., the “bandwidth expan-
sion factor”).

B. Separate Source and Channel Coding

An obvious first candidate is to let each encoder first
compress its respective observation stream in the best possible
fashion into a bit stream, and then communicate this bit
stream reliably to the decoder. The source coding problem
corresponding to our sensor network example has been well
studied, under the name ofCEO problem. This problem was
introduced in [6], [7] and the quadratic Gaussian version
described above was solved by Oohama [8], with some recent
refinements [9], [10]. From this work, thesum rate (i.e., the
total rate over allM encoders) in order to achieve a certain
distortionD is determined as

R(D) = log+
2

(

σ2
S

D

(

Dσ2
SM

Dσ2
SM − σ2

Sσ2
W + Dσ2

W

)M
)

. (5)

For the purpose of this note, we use Oohama’s simpler lower
bound, which can be obtained easily from the above, noting
that σ2

S/D ≥ 1,

R(D) ≥ M log+
2

(

Dσ2
SM

Dσ2
SM − σ2

Sσ2
W + Dσ2

W

)

. (6)

Conversely, the smallest achievable distortion satisfies

D(R) ≥
σ2

Sσ2
W

σ2
SM

(

1 − 2−R/M
)

+ σ2
W

. (7)

By noting that1 − 2−R/M ≤ R/M , this implies the lower
bound

D(R) ≥
σ2

Sσ2
W

σ2
SR + σ2

W

. (8)

The total communication rate across the multiple-access chan-
nel in our system can be somewhat generously bounded by

Rtot ≤
ℓ

2
log2

(

1 +
M2P

σ2
Z

)

, (9)

where we recall thatℓ is the (average) number of channel uses
per source sample. This leads to the following result:

Theorem 1:For the Gaussian “sensor” network, usingsep-
arate source and channel code designincurs a distortion of at
most

D
(separation)
ℓ ≥

σ2
Sσ2

W

ℓ
σ2

S

2 log2 (1 + M2P/σ2
Z) + σ2

W

. (10)

C. Uncoded Transmission

For the special caseℓ = 1 (equal bandwidth), the simple
sensor network has been thoroughly investigated. Somewhat
surprisingly, it has been shown in [11], [12], [13] that an
optimal strategy is for each sensor to transmit

Xm[n] =

√

P

σ2
S + σ2

W

Um[n]. (11)

It is easily verified that this satisfies the power constraint
(Equation (2)). We refer to this communication strategy as
uncoded transmission.The performance of this simple scheme



can be evaluated by straightforward calculations. We summa-
rize the result in the following theorem.

Theorem 2:For the Gaussian “sensor” network withℓ = 1,
uncoded transmissionattains the smallest possible distortion,
given by

D1 =
σ2

Sσ2
W

Mσ2
S + σ2

W



1 +
M(σ2

Sσ2
Z/σ2

W )
Mσ2

S
+σ2

W

σ2

S
+σ2

W

MP + σ2
Z



 . (12)

For a proof, see [11], [12], [13].
An interesting question is: What to do with further channel

uses, i.e., ifℓ > 1? This is indeed unclear. One candidate
may be repetition coding, which would lead to the following
distortion:

D
(uncoded)
ℓ =

σ2
Sσ2

W

Mσ2
S + σ2

W



1 +
M(σ2

Sσ2
Z/σ2

W )
Mσ2

S
+σ2

W

σ2

S
+σ2

W

ℓMP + σ2
Z



 . (13)

Before studying further code construction, we will providea
converse bound.

D. A Converse Bound

We can slightly extend a bound first presented in [14] to
obtain the following theorem:

Theorem 3:For the Gaussian “sensor” network, the in-
curred distortion must satisfy

Dℓ ≥
σ2

Sσ2
W

Mσ2
S + σ2

W

·

·






1 + M

σ2
S

σ2
W





σ2
Z

Mσ2

S
+σ2

W

σ2

S
+σ2

W

MP + σ2
Z





ℓ





. (14)

E. Structured Codes

As the converse bound in Theorem 3 shows, we would
ideally like the distortion to fallexponentiallywith increas-
ing channel bandwidth (or increasingℓ). However, repetition
coding only provides a linear descent so we must turn to more
clever strategies forℓ > 1.

Just like the uncoded strategy, we would like to use the ad-
ditive operation of the channel to our advantage. Furthermore,
we would like our transmissions to be uncorrelated with the
current estimate of the source at the decoder. By using a lattice
code for distributed Wyner-Ziv coding, we can simultaneously
satisfy both requirements. The lattice will allow us to only
decode the sum of codewords and the Wyner-Ziv strategy will
ensure uncorrelatedness with the previous estimate.

We have developed just such a lattice code in [2]. First,
we will need some basic facts about lattices. Note that in
this section a bold-faced variable is often used to denote the
appropriateN -length vector (i.e.um = {Um[n]}N

n=1)
Definition 1: An N -dimensionallattice, Λ, is a set of points

in R
N such that ifx,y ∈ Λ, thenx + y ∈ Λ, and if x ∈ Λ,

then−x ∈ Λ. A lattice can always be written in terms of a
generator matrixG ∈ R

N×N :

Λ = {x = zG : z ∈ Z
N} (15)

whereZ represents the integers.
Definition 2: A lattice quantizeris a map,Q : R

N → Λ,
that sends a point,x, to the nearest lattice point in Euclidean
distance:

xq = Q(x) = argmin
l∈Λ

||x − l||2 (16)

Definition 3: Let [x] mod Λ = x − Q(x). The modΛ
operation satisfies:

[[x] mod Λ + y] mod Λ = [x + y] mod Λ ∀x,y ∈ R
N

(17)

We now give our achievable scheme which is a multitermi-
nal generalization of the scheme presented by Erez and Zamir
in [15].

Theorem 4:For the Gaussian “sensor” network, the follow-
ing distortion is achievable for anyℓ > 1:

D
(lattice)
ℓ =

σ2
Sσ2

W

Mσ2
S + σ2

W

·

·



1 +





M(σ2
Sσ2

Z/σ2
W )

Mσ2

S
+σ2

W

σ2

S
+σ2

W

MP + σ2
Z





(

Mσ2
Z

MP + σ2
Z

)ℓ − 1


 .

Proof: (Sketch.) We first use uncoded transmission to
communicate our observation sequences across the channel to
get an MMSE estimate of their sum at distortionD

(U)
1 where

D
(U)
1 =

(M2σ2
S + Mσ2

W )σ2
Z

P
σ2

S
+σ2

W

(M2σ2
S + Mσ2

W ) + σ2
Z

(18)

Denote this MMSE estimate of the sum of observations,
∑M

m=1 Um[n], by V (1)[n].
Now we employ our lattice-based scheme from Theorem 3

in [2] to refine this estimate of our sum with the remaining
(ℓ− 1)N channel uses. We can reduce our distortion down to
D

(U)
ℓ where

D
(U)
ℓ = D

(U)
1

(

MσZ

MP + σ2
Z

)ℓ − 1
(19)

The lattice scheme essentially works as follows. We choose
a lattice Λ in R

N that is good for both source coding and
channel coding using the results of [16]. For a block ofN
channel uses, each encoder transmits:

xm = [γum + dm] mod Λ (20)

wheredm is a random vector available as common random-
ness which is used as a dither andγ is a constant inRN . For
details, see [2]. The decoder combines the received signaly

with the previous estimatev(1) to get a new estimatev(2):

v(2) = β

[

αy −

(

M
∑

m=1

dm + γv(1)

)]

mod Λ + v(1) (21)

where α and β are appropriately chosen constants inR
N .

This process is iterated until we have expended allℓN

channel uses to give us the estimate at distortionD
(U)
ℓ . We

then use this estimate of the sum of observations to make



an MMSE estimateE[s|v(1)] of the original sourceS. Let
uSUM =

∑M
m=1 um. The distortion for this estimate is given

by:

Dℓ =
1

N
E
[

‖s− E[s|v(ℓ)]‖2
2

]

(22)

=
1

N
E
[

‖s− E[s|uSUM] + E[s|uSUM] − E[s|v(ℓ)]‖2
2

]

(a)
=

1

N
E
[

‖s + E[s|uSUM]‖
2
2

]

· · · (23)

+
1

N
E
[

‖E[s|uSUM] − E[s|v(ℓ)]‖2
2

]

(b)
=

σ2
Sσ2

W

Mσ2
S + σ2

W

· · · (24)

+

(

σ2
S

Mσ2
S + σ2

W

)2
1

N
E
[

‖uSUM − E[uSUM|v
(ℓ)]‖2

2

]

=
σ2

Sσ2
W

Mσ2
S + σ2

W

+

(

σ2
S

Mσ2
S + σ2

W

)2

D
(U)
ℓ (25)

where‖ · ‖2
2 denotes the square of theℓ2 norm, (a) follows

by the orthogonality principle, and (b) is due to the fact that
MMSE estimation for Gaussian sources is just a rescaling.

As desired, we now have a scheme for which distortion falls
exponentially with increasingℓ. Unfortunately, its performance
does not match that of our lower bound from Theorem 3. It
is unclear whether our scheme can be significantly improved
upon or that there is a fundamental penalty for distributed
encoding beyond theℓ = 1. It seems likely that any scheme
that employs quantization at the encoders will face a penalty
that keeps it away from the lower bound.

It is interesting to note that the performance attained by our
lattice code is not accessible to an i.i.d. random code even if
we do not enforce the notion of separation. This is due to the
fact that the sum of any two codewords is a valid codeword
in a lattice code (and hence potentially decodable) but almost
surely not in an i.i.d. random code.

IV. GENERALIZATIONS AND EXTENSIONS

One shortcoming of our scheme is that it only results in
a reduction in distortion forℓ > 1 if an SNR requirement is
satisfied (P

σ2

Z

> 1− 1
M ). This can be overcome by combining

repetition coding with the lattice scheme in Theorem 4. For
instance, if each transmission is repeatedθ ∈ Z+ times then
we can run ℓ−1

θ refinements to get the following distortion
(assumeℓ−1

θ ∈ Z+):

Dℓ =
σ2

Sσ2
W

Mσ2
S + σ2

W

·

·






1 +





M(σ2
Sσ2

Z/σ2
W )

Mσ2

S
+σ2

W

σ2

S
+σ2

W

MP + σ2
Z





(

Mσ2
Z

θMP + σ2
Z

)

ℓ−1
θ






.

An interesting open problem would be to improve the
performance of the lattice scheme so that it is not SNR limited.
Another open problem is to allow the underlying correlations

of the sources to help in the transmission of the lattice points.
In the current scheme, correlations provide a large boost inthe
uncoded step but are not involved in the lattice refinements.

In a more general setting, the channel may be a noisy scaled
sum of its inputs and the sufficient statistic will be a different
linear function of the sources. Just like uncoded transmission
[13], structured coding will be useful in the general case,
although there may be some penalties for mismatch between
the desired function and that performed by the channel. Further
investigations will focus on characterizing its performance in
these scenarios.
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