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Abstract—In the Shannon-theoretic analysis of joint source- will show, by employing a structured code, we can continue

channel coding problems, achievability is usually estabdhed via to reap some of the benefits of uncoded transmission beyond
a two-stage approach: The sources are compressed into bitsnd perfectly matched cases.

these bits are reliably communicated across the noisy chaeis.

Random coding _ar%uments_ ar”e the backbone of both stages Il. STRUCTURED CODES

of the proof. This “separation” strategy not only establishes

the optimal performance for stationary ergodic point-to-point The apparent necessity of structured codes was first ob-
problems, but also for a number of simple network situations  served by Korner and Marton [1]. In their problem, a decoder
such as independent sources that are communicated with respt \yishes to reconstruct the parity of two correlated binary
to separate fidelity criteria across a multiple-access charel. b ¢ d B loving th
Beyond such simple cases, for general networks, separatidrased spurces Seen by separale encoders. by employing the sgme
coding is suboptimal. For instance, for a simple Gaussian seor  linear code at each encoder, the decoder can sum the received
network, uncoded transmission is exactly optimal and perfans  codewords to recover the parity at the lowest possible rate.

exponentially better than a separation-based solution. Inthis A standard strategy, such as random binning, would require a
note, we generalize this sensor network strategy by emplayg higher sum rate

a lattice code. The underlying linear structure of our code $

crucial to its SUCCess. More recently, we have studied the problem of reliable

computation over multiple-access channels and have found
|. INTRODUCTION that here, too, structured codes are a very important part of
Structured code constructions have been at the forefrdhé puzzle [2]. By letting each encoder use the same linear
of interest in communication systems research for at leastdebook, we can take advantage of the natural operation
fifty years, some of the most prominent examples includimgf the channel while still protecting against channel noise
the Reed-Solomon codes and the low-density parity-che€kis can result in huge gains over a separation-basedgjrate
(LDPC) codes. The chief reason for this is implementabilitpften proportionally to the number of users (even if the
for a code to be efficiently encodable and decodable, it musiderlying sources are independent). In previous work, we
have some structure. applied this technique to a sensor network that required a
In parallel, researchers have investigated the fundarherfthered, downsampled version of the sources [3].
limits of communication systems. Some of these limits can There has also been a great deal of recent interest in using
be established via structured codes, but not all. A much matuctured codes for proving new network capacity theorems
versatile tool was developed by Shannon, the so-calledom Due to space limitations, we refer the interested readeuto o
coding argumentln its simplest incarnation, the letters ofrecent survey paper for a more comprehensive treatment and
each codeword of a codebook are drawn independently of egdinters to related work [4]. Of particular note is an anakeg
other from a fixed scalar probability distribution. Cleatlge of the Koérner-Marton problem developed by Krithivasan and
resulting codebook will not have any particular (algebrai®radhan [5]. They show that for recovering the difference of
structure. It turns out that such codebooks can establish torrelated Gaussian sources, a lattice code can reducarthe s
capacity of all (stationary, memoryless, ergodic) pogipbint rate.
channels. It is now apparent that this fact must be considere
an isolated case of luck. More generally, i.e., for netwprics
similar theorem seems to hold. In this section, we will illustrate the significance of struc
To be more precise, it has become more and more cleéared codes in a sensor network scenario. For the purpose of
that these completely unstructured codes will be insufiiciethis note, the goal will not be generality but illustrativeadjty.
to establish the best possible capacity results. In wettheal
cases, uncoded transmission can perform much better than!he Model
standard separation-based strategies. This is often dusdrtg Consider the “sensor” network illustrated in Figure 1. The
the additive operation of the channel to compute a sufficiembderlying source S[n]}}_, is a sequence oV independent
statistic: something a separation-based code cannot daeAsand identically distributed (i.i.d.) real-valued Gaussiandom

I1l. A SENSORNETWORK EXAMPLE



B. Separate Source and Channel Coding

W1
% U, X, 7 An obvious first candidate is to let each encoder first
ENCODERI compress its respective observation stream in the besibfmss
Wo fashion into a bit stream, and then communicate this bit
S Us Xo Y & stream reliably to the decoder. The source coding problem
SRC v ENCODER2 DEC == corresponding to our sensor network example has been well
studied, under the name &fEO problem This problem was
introduced in [6], [7] and the quadratic Gaussian version
described above was solved by Oohama [8], with some recent
W refinements [9], [10]. From this work, theumrate (i.e., the
Um Xm total rate over allM encoders) in order to achieve a certain
ENCODERM distortion D is determined as
2 2 M
Fig. 1. The decoderpEcC) needs to reconstrucf, i.e., the underlying R(D) = logér s ( 3 Dc;sj\f 3 ) ()]
source §RC). Each encoder is allowed to pool together an arbitrary rarmb D DUSM — 050y + DUW
of observations{Un, [n]}}_,, and encode them intéN' channel uses via an . L.
arbitrarily complex encoding procedure. For the purposehisf note,¢ is a  FOr the purpose of this note, we use Oohama’s simpler lower
positive integer. bound, which can be obtained easily from the above, noting

thato?/D > 1,

(6)

variables of mean zero and varianeg. Sensorn observes a R(D) > Mlog} (

Do M )
sequencqU,,[n]})_; defined as

2 2 2 2
DoiM — ooy, + Doy,

Conversely, the smallest achievable distortion satisfies

Unln] = S[n|+ Wyn], (1) )
95%w
where {W,,[n]})_, is a sequence of ii.d. Gaussian ran- D(R) 2 oZM (1— 2 R/M) 4 g2, (7)

dom variables of mean zero and varianeg,. Sensorm
can apply anarbitrary coding function to the observationBy noting thatl — 2=%/M < R/M, this implies the lower
sequence such as to generate a sequend® ehannel inputs, bound

{Xn KN, = f({Un[n]}A_,). For the purpose of this 020,
note, we assume théis a positive integer. The only constraint D(R) = Py )

is that the functionf,,(-) be chosen to ensure that o _
The total communication rate across the multiple-acceas-ch

LN nel in our system can be somewhat generously bounded by
lim S E[(Xmlk)?] < P (2)
N—oo N £~ 14 M?*p
- R < zlogy (1+——], 9)
2 oy

The channel output is then given as
where we recall that is the (average) number of channel uses

M per source sample. This leads to the following result;
Y] = Z[K + Z XonlK], (3) Theorem 1:For the Gaussian “sensor” network, usisep-
m=1 arate source and channel code desigaurs a distortion of at

where {Z[k]}4Y | is an i.i.d. sequence of Gaussian randoffioSt

variables of mean zero and varianeg. Upon observing the (separation) - %oy, 10
channel output sequendé’[k] ’,gl, the decoder (or fusion ¢ =% (1+ M2P/02) + 02 : (10)
center) must produce a sequed&n]}Y_, = g({Y[k]},), 2 082 z w

and we consider the distortion C. Uncoded Transmission
1N For the special casé = 1 (equal bandwidth), the simple
D = lim — Z]E {(S[n] - S’[n])ﬂ , (4) sensor network has been thoroughly investigated. Somewhat
N=oo N 2= surprisingly, it has been shown in [11], [12], [13] that an

. L timal strat is for h sensor to transmit
This note concerns the determination of the smallest aclJtP al strategy Is for each sensor to trans

tainable distortionD,, for fixed power P (per terminal), [ p
over all possible encoding and decoding functioifs,(-) Xmln] = mUm[nl (11)
(m = 1,2,...,M) and g(-). A particular interest concerns S W

the dependence of the results énthe average number of It is easily verified that this satisfies the power constraint

channel uses per source symbol (i.e., the “bandwidth expgBquation (2)). We refer to this communication strategy as
sion factor”). uncoded transmissiohe performance of this simple scheme



can be evaluated by straightforward calculations. We sumnvehereZ represents the integers.

rize the result in the following theorem. Definition 2: A lattice quantizeris a map,Q : RV — A,
Theorem 2:For the Gaussian “sensor” network with= 1, that sends a poinik, to the nearest lattice point in Euclidean

uncoded transmissioattains the smallest possible distortiondistance:

iven b i
gen by xq = Q(x) = argmin |lx — 1| (16)
2 2 2 2 2
D, = Magaw > MfSQSUZ/UW) (12)  Definition 3: Let [x] modA = x — Q(x). The modA
05 T ow Tt MP + o2 operation satisfies:
For a proof, see [11], [12], [13]. [x] modA +y] modA =[x +y] modA Vx,y € RY
An interesting question is: What to do with further channel a7)

uses, i.e., iff > 1? This is indeed unclear. One candidate
may be repetition coding, which would lead to the followin%
distortion:

We now give our achievable scheme which is a multitermi-
al generalization of the scheme presented by Erez and Zamir

in [15].
(umcoded) o%a2, M(o%0%/0%) Theorem 4:For the Gaussian “sensor” network, the follow-
Dy = Mo2 + o2, Mo%+a?, 5 |- (13) ing distortion is achievable for an§/> 1:
S w WﬁMP"’ UZ 5 9
. . i . D(lattice) _ 050w
Before studying further code construction, we will provide ~¢ T A2 4.2
Mog + oy

converse bound.

l—1
2 2 2 2
D. A Converse Bound 1+ Mﬂf(UfUZ/UW) ( Moy 2)
. ) . WMP 402 MP +o073
We can slightly extend a bound first presented in [14] to oZ+aoZ, Z
obtain the following theorem: Proof: (Sketch.) We first use uncoded transmission to

Theorem 3:For the Gaussian “sensor” network, the ingommunicate our observation sequences across the channel t
curred distortion must satisfy get an MMSE estimate of their sum at distortiﬁ)ﬁU) where

Oc0
D2y o I
sTow , L (M20% + Mo},) + 0%

o} a% Denote this MMSE estimate of the sum of observations,
1+ MT o2 102 . (14) M (1)

oy WMP—FU% Yoy Unn], by VW n].

75t Now we employ our lattice-based scheme from Theorem 3
E. Structured Codes in [2] to refine this estimate of our sum with the remaining

As the converse bound in Theorem 3 shows, we would — 1)V channel uses. We can reduce our distortion down to
ideally like the distortion to fallexponentiallywith increas- D, ° Where
ing channel bandwidth (or increasiyy However, repetition (-1
coding only provides a linear descent so we must turn to more p _ p (ﬂ) (19)

14 1 2

clever strategies fof > 1. MP + oy

Just like the uncoded strategy, we would like to use the atlhe lattice scheme essentially works as follows. We choose
ditive operation of the channel to our advantage. Furtheemoa lattice A in R that is good for both source coding and
we would like our transmissions to be uncorrelated with thehannel coding using the results of [16]. For a block of
current estimate of the source at the decoder. By usingiedattchannel uses, each encoder transmits:
code for distributed Wyner-Ziv coding, we can simultandpus
satisfy both requirements. The lattice will allow us to only Xm = [yt +dp] modA (20)

decode the sum of codewords and the Wyner-Ziv strategy Withered,,, is a random vector available as common random-
ensure uncorrelatedness with the preViOUS estimate. ness which is used as a dither amas a constant ”RN For

We have developed just such a lattice code in [2]. Firgjetails, see [2]. The decoder combines the received signal
we will need some basic facts about lattices. Note that {ith the previous estimate(!) to get a new estimate(2):

this section a bold-faced variable is often used to denate th "

appropriateN-length vector (i.en,, = {U,.[n]}2_;) 2) _ _ (1) )
Definition 1: An N-dimensionalattice, A, is a set of points  © R Z dm v mod A+ v (21)

in RN such that ifx,y € A, thenx +y € A, and ifx € A,

then—x € A. A lattice can always be written in terms of avherea and 3 are appropriately chosen constantsRr'.
generator matrixG € RN*N: This process is iterated until we have expended /aV

N channel uses to give us the estimate at distorﬁléH). We
A={x=2G:z€Z"} (15) then use this estimate of the sum of observations to make

m=1



an MMSE estimateE[s|v(!)] of the original sourceS. Let of the sources to help in the transmission of the lattice tgoin
Usw = > _, u,,. The distortion for this estimate is givenin the current scheme, correlations provide a large boatan

by:
1
— _ 01112
Dy =~ [Is = Elsv] 3] (22)
1
= < E |lls — Els[usw] + E[s[uso] — E[S|V(€)]H§
N
1
D B [|ls + Elslus][3] - (23)
1
+ B [ Blstusa] - ElsivO]|3]
2 2
® %... (24)
Mog + oy,
o2 2 1
s 071112
+ (m) NE [HUSUM — Elueou[v\9]|13
2 2 2 2
050w 9s v)
= D 25
Mo?% + o3, (MO'%«—FO’%V) ¢ (25)

where || - |3 denotes the square of thg norm, (a) follows

by the orthogonality principle, and (b) is due to the factttha

MMSE estimation for Gaussian sources is just a rescaling. [y
[ |

As desired, we now have a scheme for which distortion fall§®!
exponentially with increasing Unfortunately, its performance
does not match that of our lower bound from Theorem 3. If4]
is unclear whether our scheme can be significantly improve
upon or that there is a fundamental penalty for distribute ]
encoding beyond thé = 1. It seems likely that any scheme
that employs quantization at the encoders will face a pyenalt[e]
that keeps it away from the lower bound.

It is interesting to note that the performance attained iy oy7]
lattice code is not accessible to an i.i.d. random code dven i
we do not enforce the notion of separation. This is due to th
fact that the sum of any two codewords is a valid codeword
in a lattice code (and hence potentially decodable) but siﬂmo[g]
surely not in an i.i.d. random code.

(1]

IV. GENERALIZATIONS AND EXTENSIONS [10]

One shortcoming of our scheme is that it only results in
a reduction in distortion fo¥ > 1 if an SNR requirement is
satisfied g >1- %). This can be overcome by combining11]
repetition czzoding with the lattice scheme in Theorem 4. For
instance, if each transmission is repeafied Z, times then [12]
we can run“T1 refinements to get the following distortion

(assumeL € Z,):

[13]
D, = ﬂ.
"~ Moi+o¥, [14]
-1
14 M(U?S'U%/UI%V) MU% 9 [15]
MZ?S+Z\2/VMP+U% GMP—FU%
USJrUW

16

An interesting open problem would be to improve th[e ]
performance of the lattice scheme so that it is not SNR lidhite
Another open problem is to allow the underlying correlasion

uncoded step but are not involved in the lattice refinements.

In a more general setting, the channel may be a noisy scaled
sum of its inputs and the sufficient statistic will be a diffiet
linear function of the sources. Just like uncoded trandoniss
[13], structured coding will be useful in the general case,
although there may be some penalties for mismatch between
the desired function and that performed by the channelhEurt
investigations will focus on characterizing its perforroarnn
these scenarios.
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