Ergodic Interference Alignment

Bobak Nazer*, Michael Gastpar*, Syed Ali Jafar ${ }^{\dagger}$, and Sriram Vishwanath ${ }^{\ddagger}$
*EECS Department
UC Berkeley
\dagger EECS Department
UC Irvine
\ddagger ECE Department
UT Austin

ISIT 2009

July 2, 2009

K-User Interference Channel

- K transmitter-receiver pairs share a common wireless channel.

K-User Interference Channel

- K transmitter-receiver pairs share a common wireless channel.
- Receivers observe noisy linear combinations of transmitted signals:

K-User Interference Channel

- K transmitter-receiver pairs share a common wireless channel.
- Receivers observe noisy linear combinations of transmitted signals:

$$
Y_{k}=\sum_{\ell=1}^{K} h_{k \ell} X_{\ell}+Z_{k}
$$

K-User Interference Channel

h_{11}	h_{12}	\cdots	$h_{1 K}$
h_{21}	h_{22}	\cdots	$h_{2 K}$
\vdots	\vdots	\ddots	\vdots
$h_{K 1}$	$h_{K 2}$	\cdots	$h_{K K}$

- K transmitter-receiver pairs share a common wireless channel.
- Receivers observe noisy linear combinations of transmitted signals:

$$
Y_{k}=\sum_{\ell=1}^{K} h_{k \ell} X_{\ell}+Z_{k}
$$

Strong Interference

Strong Interference

Strong Interference

- Strategy: decode and remove interfering signals.

Strong Interference

- Strategy: decode and remove interfering signals.
- Optimal if interference is very strong. (Carleial '75, Sato '81, Han-Kobayashi '81, Sankar-Erkip-Poor '08, Sridharan-Jafarian-Jafar-Vishwanath '08)

Weak Interference

$:$
\bullet

- Strategy: treat interference as noise.

Weak Interference

- Strategy: treat interference as noise.
- Optimal if interference is very weak. (Motahari-Khandani '07, Shang-Kramer-Chen '07, Annapureddy-Veeravalli '08)

Weak Interference

- Strategy: treat interference as noise.
- Optimal if interference is very weak. (Motahari-Khandani '07, Shang-Kramer-Chen '07, Annapureddy-Veeravalli '08)

Weak Interference

- Strategy: treat interference as noise.
- Optimal if interference is very weak. (Motahari-Khandani '07, Shang-Kramer-Chen '07, Annapureddy-Veeravalli '08)

K-User Fast Fading Interference Channel

- Channel coefficients have i.i.d. uniform phase.
- Transmitters and receivers know $\mathbf{H}(t)$ causally.
- Usual power constraint P_{k}.
- Noise i.i.d. $\mathcal{C N}(0,1)$.

K-User Fast Fading Interference Channel

$h_{11}(t)$	$h_{12}(t)$	\cdots	$h_{1 K}(t)$
$h_{21}(t)$	$h_{22}(t)$	\cdots	$h_{2 K}(t)$
\vdots	\vdots	\ddots	\vdots
$h_{K 1}(t)$	$h_{K 2}(t)$	\cdots	$h_{K K}(t)$

- Channel coefficients have i.i.d. uniform phase.
- Transmitters and receivers know $\mathbf{H}(t)$ causally.
- Usual power constraint P_{k}.
- Noise i.i.d. $\mathcal{C N}(0,1)$.

Interference-Free Capacity

- Interference-free capacity:

$$
R_{k}^{\text {FREE }}=E_{\mathbf{H}}\left[\log \left(1+\left|h_{k k}\right|^{2} P_{k}\right)\right]
$$

Interference-Free Capacity

- Interference-free capacity:

$$
R_{k}^{\text {FREE }}=E_{\mathbf{H}}\left[\log \left(1+\left|h_{k k}\right|^{2} P_{k}\right)\right]
$$

Time Division

- Eliminate interference through time division:

$$
R_{k}^{\mathrm{TDMA}}=\frac{1}{K} E_{\mathbf{H}}\left[\log \left(1+K\left|h_{k k}\right|^{2} P_{k}\right)\right]
$$

Time Division

- Eliminate interference through time division:

$$
R_{k}^{\mathrm{TDMA}}=\frac{1}{K} E_{\mathbf{H}}\left[\log \left(1+K\left|h_{k k}\right|^{2} P_{k}\right)\right]
$$

Time Division

- Eliminate interference through time division:

$$
R_{k}^{\mathrm{TDMA}}=\frac{1}{K} E_{\mathbf{H}}\left[\log \left(1+K\left|h_{k k}\right|^{2} P_{k}\right)\right]
$$

Time Division

- Eliminate interference through time division:

$$
R_{k}^{\mathrm{TDMA}}=\frac{1}{K} E_{\mathbf{H}}\left[\log \left(1+K\left|h_{k k}\right|^{2} P_{k}\right)\right]
$$

Interference Alignment

Cadambe-Jafar '08: With careful choice of precoding matrices, each user can get "half the cake" as the SNR $\rightarrow \infty$:

$$
\lim _{P_{k} \rightarrow \infty} \frac{R_{k}^{I A}}{E_{\mathbf{H}}\left[\log \left(1+\left|h_{k k}\right|^{2} P_{k}\right)\right]}=\frac{1}{2}
$$

Interference Alignment

Cadambe-Jafar '08: With careful choice of precoding matrices, each user can get "half the cake" as the SNR $\rightarrow \infty$:

$$
\lim _{P_{k} \rightarrow \infty} \frac{R_{k}^{I A}}{E_{\mathbf{H}}\left[\log \left(1+\left|h_{k k}\right|^{2} P_{k}\right)\right]}=\frac{1}{2}
$$

Interference Alignment

Cadambe-Jafar '08: With careful choice of precoding matrices, each user can get "half the cake" as the SNR $\rightarrow \infty$:

$$
\lim _{P_{k} \rightarrow \infty} \frac{R_{k}^{I A}}{E_{\mathbf{H}}\left[\log \left(1+\left|h_{k k}\right|^{2} P_{k}\right)\right]}=\frac{1}{2}
$$

Interference Alignment

Cadambe-Jafar '08: With careful choice of precoding matrices, each user can get "half the cake" as the SNR $\rightarrow \infty$:

$$
\lim _{P_{k} \rightarrow \infty} \frac{R_{k}^{I A}}{E_{\mathbf{H}}\left[\log \left(1+\left|h_{k k}\right|^{2} P_{k}\right)\right]}=\frac{1}{2}
$$

Interference Alignment

Cadambe-Jafar '08: With careful choice of precoding matrices, each user can get "half the cake" as the SNR $\rightarrow \infty$:

$$
\lim _{P_{k} \rightarrow \infty} \frac{R_{k}^{I A}}{E_{\mathbf{H}}\left[\log \left(1+\left|h_{k k}\right|^{2} P_{k}\right)\right]}=\frac{1}{2}
$$

Interference Alignment

Cadambe-Jafar '08: With careful choice of precoding matrices, each user can get "half the cake" as the SNR $\rightarrow \infty$:

$$
\lim _{P_{k} \rightarrow \infty} \frac{R_{k}^{I A}}{E_{\mathbf{H}}\left[\log \left(1+\left|h_{k k}\right|^{2} P_{k}\right)\right]}=\frac{1}{2}
$$

Interference Alignment

Cadambe-Jafar '08: With careful choice of precoding matrices, each user can get "half the cake" as the SNR $\rightarrow \infty$:

$$
\lim _{P_{k} \rightarrow \infty} \frac{R_{k}^{I A}}{E_{\mathbf{H}}\left[\log \left(1+\left|h_{k k}\right|^{2} P_{k}\right)\right]}=\frac{1}{2}
$$

Ergodic Interference Alignment

- New Scheme: gets (slightly more than) half the interference-free rate at any SNR!

$$
R_{k}^{\mathrm{EIA}}=\frac{1}{2} E_{\mathbf{H}}\left[\log \left(1+2\left|h_{k k}\right|^{2} P_{k}\right)\right]
$$

Ergodic Interference Alignment

- New Scheme: gets (slightly more than) half the interference-free rate at any SNR!

$$
R_{k}^{\mathrm{EIA}}=\frac{1}{2} E_{\mathbf{H}}\left[\log \left(1+2\left|h_{k k}\right|^{2} P_{k}\right)\right]
$$

Ergodic Interference Alignment

- New Scheme: gets (slightly more than) half the interference-free rate at any SNR!

$$
R_{k}^{\mathrm{EIA}}=\frac{1}{2} E_{\mathbf{H}}\left[\log \left(1+2\left|h_{k k}\right|^{2} P_{k}\right)\right]
$$

Key Idea

1. At time t with channel \mathbf{H}, user k transmits signal X_{k}.

$$
\mathbf{H}=\left[\begin{array}{cccc}
h_{11} & h_{12} & \cdots & h_{1 K} \\
h_{21} & h_{22} & \cdots & h_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
h_{K 1} & h_{K 2} & \cdots & h_{K K}
\end{array}\right]
$$

Key Idea

1. At time t with channel \mathbf{H}, user k transmits signal X_{k}.

$$
\mathbf{H}=\left[\begin{array}{cccc}
h_{11} & h_{12} & \cdots & h_{1 K} \\
h_{21} & h_{22} & \cdots & h_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
h_{K 1} & h_{K 2} & \cdots & h_{K K}
\end{array}\right]
$$

2. When complementary matrix \mathbf{H}_{C} occurs, retransmit signals X_{k}.

$$
\mathbf{H}_{C}=\left[\begin{array}{cccc}
h_{11} & -h_{12} & \cdots & -h_{1 K} \\
-h_{21} & h_{22} & \cdots & -h_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
-h_{K 1} & -h_{K 2} & \cdots & h_{K K}
\end{array}\right]
$$

Key Idea

1. At time t with channel \mathbf{H}, user k transmits signal X_{k}.

$$
\mathbf{H}=\left[\begin{array}{cccc}
h_{11} & h_{12} & \cdots & h_{1 K} \\
h_{21} & h_{22} & \cdots & h_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
h_{K 1} & h_{K 2} & \cdots & h_{K K}
\end{array}\right]
$$

2. When complementary matrix \mathbf{H}_{C} occurs, retransmit signals X_{k}.

$$
\mathbf{H}_{C}=\left[\begin{array}{cccc}
h_{11} & -h_{12} & \cdots & -h_{1 K} \\
-h_{21} & h_{22} & \cdots & -h_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
-h_{K 1} & -h_{K 2} & \cdots & h_{K K}
\end{array}\right] \pm \delta
$$

Key Idea

1. At time t with channel \mathbf{H}, user k transmits signal X_{k}.

$$
\mathbf{H}=\left[\begin{array}{cccc}
h_{11} & h_{12} & \cdots & h_{1 K} \\
h_{21} & h_{22} & \cdots & h_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
h_{K 1} & h_{K 2} & \cdots & h_{K K}
\end{array}\right]
$$

2. When complementary matrix \mathbf{H}_{C} occurs, retransmit signals X_{k}.

$$
\mathbf{H}_{C}=\left[\begin{array}{cccc}
h_{11} & -h_{12} & \cdots & -h_{1 K} \\
-h_{21} & h_{22} & \cdots & -h_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
-h_{K 1} & -h_{K 2} & \cdots & h_{K K}
\end{array}\right] \pm \delta
$$

3. Otherwise, transmit new signals and wait for their \mathbf{H}_{C}.

Ergodic Alignment at the Receivers

$$
\begin{aligned}
& {\left[\begin{array}{c}
Y_{1}(t) \\
Y_{2}(t) \\
\vdots \\
Y_{K}(t)
\end{array}\right]} \\
& {\left[\begin{array}{c}
Y_{1}\left(t_{C}\right) \\
Y_{2}\left(t_{C}\right) \\
\vdots \\
Y_{K}\left(t_{C}\right)
\end{array}\right]}
\end{aligned}
$$

Ergodic Alignment at the Receivers

$$
\begin{aligned}
& {\left[\begin{array}{c}
Y_{1}(t) \\
Y_{2}(t) \\
\vdots \\
Y_{K}(t)
\end{array}\right]} \\
& {\left[\begin{array}{c}
Y_{1}\left(t_{C}\right) \\
Y_{2}\left(t_{C}\right) \\
\vdots \\
Y_{K}\left(t_{C}\right)
\end{array}\right]}
\end{aligned}
$$

Ergodic Alignment at the Receivers

$$
\begin{aligned}
& {\left[\begin{array}{c}
Y_{1}(t) \\
Y_{2}(t) \\
\vdots \\
Y_{K}(t)
\end{array}\right]} \\
& {\left[\begin{array}{c}
Y_{1}\left(t_{C}\right) \\
Y_{2}\left(t_{C}\right) \\
\vdots \\
Y_{K}\left(t_{C}\right)
\end{array}\right]}
\end{aligned}
$$

$$
\left[\begin{array}{c}
Y_{1}(t)+Y_{1}\left(t_{C}\right) \\
Y_{2}(t)+Y_{2}\left(t_{C}\right) \\
\vdots \\
Y_{K}(t)+Y_{K}\left(t_{C}\right.
\end{array}\right]
$$

Ergodic Alignment at the Receivers

$$
\begin{gathered}
\left.\left[\begin{array}{cccc}
h_{11} & h_{12} & \cdots & h_{1 K} \\
h_{21} & h_{22} & \cdots & h_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
h_{K 1} & h_{K 2} & \cdots & h_{K K}
\end{array}\right] \mathbf{X}+\begin{array}{l}
\mathbf{Z}(t) \\
\\
\left(\left[\begin{array}{cccc}
h_{11} & -h_{12} & \cdots & -h_{1 K} \\
-h_{21} & h_{22} & \cdots & -h_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
-h_{K 1} & -h_{K 2} & \cdots & h_{K K}
\end{array}\right] \pm \delta\right) \mathbf{X}
\end{array}\right)+\begin{array}{l}
\mathbf{Z}\left(t_{C}\right)
\end{array}
\end{gathered}
$$

$$
\left[\begin{array}{c}
Y_{1}(t)+Y_{1}\left(t_{C}\right) \\
Y_{2}(t)+Y_{2}\left(t_{C}\right) \\
\vdots \\
Y_{K}(t)+Y_{K}\left(t_{C}\right.
\end{array}\right]
$$

Ergodic Alignment at the Receivers

$$
\begin{gathered}
\left.\left[\begin{array}{cccc}
h_{11} & h_{12} & \cdots & h_{1 K} \\
h_{21} & h_{22} & \cdots & h_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
h_{K 1} & h_{K 2} & \cdots & h_{K K}
\end{array}\right] \quad \mathbf{X}+\begin{array}{l}
\mathbf{Z}(t) \\
\\
\left(\left[\begin{array}{cccc}
h_{11} & -h_{12} & \cdots & -h_{1 K} \\
-h_{21} & h_{22} & \cdots & -h_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
-h_{K 1} & -h_{K 2} & \cdots & h_{K K}
\end{array}\right] \pm \delta\right) \mathbf{X}
\end{array}\right)+\begin{array}{l}
\mathbf{Z}\left(t_{C}\right)
\end{array}
\end{gathered}
$$

$$
\left(\left[\begin{array}{cccc}
2 h_{11} & 0 & \cdots & 0 \\
0 & 2 h_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 2 h_{K K}
\end{array}\right] \pm \delta\right) \mathbf{X} \quad+\quad \mathbf{Z}(t)+\mathbf{Z}\left(t_{C}\right)
$$

Ergodic Interference Alignment

Sum of channel observations is (nearly) interference-free:

$$
\mathbf{H}+\mathbf{H}_{C}=\left[\begin{array}{ccc}
2 h_{11} & & 0 \\
& \ddots & \\
0 & & 2 h_{M M}
\end{array}\right] \pm \delta
$$

Worst case SINR:

$$
2 P_{k}\left(\frac{\left|h_{k k}\right|^{2}-2 \delta\left(\operatorname{Re}\left(h_{k k}\right)+\operatorname{Im}\left(h_{k k}\right)\right)+\delta^{2}}{1+4 \delta^{2} \sum_{\ell \neq k} P_{\ell}}\right)
$$

Ergodic Interference Alignment

Sum of channel observations is (nearly) interference-free:

$$
\mathbf{H}+\mathbf{H}_{C}=\left[\begin{array}{ccc}
2 h_{11} & & 0 \\
& \ddots & \\
0 & & 2 h_{M M}
\end{array}\right] \pm \delta
$$

Worst case SINR:

$$
\lim _{\delta \downarrow 0} 2 P_{k}\left(\frac{\left|h_{k k}\right|^{2}-2 \delta\left(\operatorname{Re}\left(h_{k k}\right)+\operatorname{Im}\left(h_{k k}\right)\right)+\delta^{2}}{1+4 \delta^{2} \sum_{\ell \neq k} P_{\ell}}\right)=2\left|h_{k k}\right|^{2} P_{k}
$$

Pairing Up Channels

- We need to match up almost every matrix with its complement.

Pairing Up Channels

- We need to match up almost every matrix with its complement.
- Want a finite set of possible matrices \mathcal{H} for analysis:

Pairing Up Channels

- We need to match up almost every matrix with its complement.
- Want a finite set of possible matrices \mathcal{H} for analysis:

1. Quantize each channel coefficient to precision δ (closest point in $\delta(\mathbb{Z}+j \mathbb{Z})$).

Pairing Up Channels

- We need to match up almost every matrix with its complement.
- Want a finite set of possible matrices \mathcal{H} for analysis:

1. Quantize each channel coefficient to precision δ (closest point in $\delta(\mathbb{Z}+j \mathbb{Z}))$.
2. Set threshold $h_{\text {MAX }}$. Throw out any matrix with $\left|h_{k \ell}\right|>h_{\text {MAX }}$.

- We need to match up almost every matrix with its complement.
- Want a finite set of possible matrices \mathcal{H} for analysis:

1. Quantize each channel coefficient to precision δ (closest point in $\delta(\mathbb{Z}+j \mathbb{Z})$).
2. Set threshold $h_{\text {MAX }}$. Throw out any matrix with $\left|h_{k \ell}\right|>h_{\text {MAX }}$.

- Choose $\delta, h_{\text {MAX }}$ to get desired rate gap.
- We need to match up almost every matrix with its complement.
- Want a finite set of possible matrices \mathcal{H} for analysis:

1. Quantize each channel coefficient to precision δ (closest point in $\delta(\mathbb{Z}+j \mathbb{Z})$).
2. Set threshold $h_{\text {MAX }}$. Throw out any matrix with $\left|h_{k \ell}\right|>h_{\text {MAX }}$.

- Choose $\delta, h_{\text {MAX }}$ to get desired rate gap.
- Since phase is i.i.d. uniform, $P(\mathbf{H})=P\left(\mathbf{H}_{C}\right)$.

Convergence in Type

Sequence of channel matrices \mathbf{H}^{n} is ϵ-typical if:

$$
\left|\frac{1}{n} N\left(\mathrm{H} \mid \mathbf{H}^{n}\right)-P(\mathrm{H})\right| \leq \epsilon \quad \forall \mathrm{H} \in \mathcal{H}
$$

Lemma (Csiszar-Körner 2.12)

For any i.i.d. sequence, \mathbf{H}^{n}, the probability of the set of all ϵ-typical sequences, A_{ϵ}^{n}, is lower bounded by:

$$
P\left(A_{\epsilon}^{n}\right) \geq 1-\frac{|\mathcal{H}|}{4 n \epsilon^{2}}
$$

Convergence in Type

Convergence in Type

Convergence in Type

$$
\begin{aligned}
& \# \# \#=|=|=|=|=|\equiv| \\
& \begin{array}{llllllll}
\mathbf{H}_{1} & \mathbf{H}_{2} & \mathbf{H}_{3} & \mathbf{H}_{4} & \mathbf{H}_{4 C} & \mathbf{H}_{3 C} & \mathbf{H}_{2 C} & \mathbf{H}_{1 C}
\end{array} \\
& \text { Channel Thresholding }
\end{aligned}
$$

Convergence in Type

Convergence in Type

Achievable Rate

Theorem

Each user can achieve at least half its interference-free capacity at any signal-to-noise ratio:

$$
R_{k}=\frac{1}{2} E\left[\log \left(1+2\left|h_{k k}\right|^{2} P_{k}\right)\right]>\frac{1}{2} R_{k}^{\text {FREE }}
$$

Network Transformation

Network Transformation

- Jafar '09: Whenever the channel is in a bottleneck state, ergodic alignment achieves the capacity.
- Example: K transmitter-receiver pairs randomly placed in a square. Signal strength governed by distance. As $K \rightarrow \infty$, ergodic alignment achieves capacity.

- For Rayleigh fading, we get a very weak interference channel with some constant probability $\rho>0$.
- For Rayleigh fading, we get a very weak interference channel with some constant probability $\rho>0$.
- Ignore all interference in weak interference case. Get $R_{k}^{\text {weAK }}$.
- For Rayleigh fading, we get a very weak interference channel with some constant probability $\rho>0$.
- Ignore all interference in weak interference case. Get $R_{k}^{\text {WEAK }}$.
- Otherwise, use ergodic alignment to get R_{k}^{EA}.
- For Rayleigh fading, we get a very weak interference channel with some constant probability $\rho>0$.
- Ignore all interference in weak interference case. Get $R_{k}^{\text {WEAK }}$.
- Otherwise, use ergodic alignment to get R_{k}^{EA}.
- Each user gets $R_{k}=\rho R_{k}^{\text {WEAK }}+(1-\rho) R_{k}^{\text {EA }}>R_{k}^{\text {EA }}$
- Channel coefficients i.i.d. Rayleigh.
- Equal transmit power per user.

Finite Field Interference Channels

- Finite field channels: $Y_{k}(t)=\sum_{\ell=1}^{K} h_{k \ell}(t) X_{\ell}(t)+Z_{k}(t)$

Finite Field Interference Channels

- Finite field channels: $Y_{k}(t)=\sum_{\ell=1}^{K} h_{k \ell}(t) X_{\ell}(t)+Z_{k}(t)$
- We need to decode a function to eliminate noise.

Finite Field Interference Channels

- Finite field channels: $Y_{k}(t)=\sum_{\ell=1}^{K} h_{k \ell}(t) X_{\ell}(t)+Z_{k}(t)$
- We need to decode a function to eliminate noise.

Finite Field Interference Channels

$\mathbf{w}_{K} \mathrm{~K}$
$1 \quad a_{1} \mathbf{w}_{1}+a_{2} \mathbf{w}_{2}+\cdots+a_{K} \mathbf{w}_{K}$ $a_{1}^{*} \mathbf{w}_{1}-a_{2} \mathbf{w}_{2}-\cdots-a_{K} \mathbf{w}_{K}$

\bullet
\square

$$
\begin{gathered}
c_{1} \mathbf{w}_{1}+c_{2} \mathbf{w}_{2}+\cdots+c_{K} \mathbf{w}_{K} \\
-c_{1} \mathbf{w}_{1}-c_{2} \mathbf{w}_{2}-\cdots+c_{K}^{*} \mathbf{w}_{K}
\end{gathered}
$$

- Finite field channels: $Y_{k}(t)=\sum_{\ell=1}^{K} h_{k \ell}(t) X_{\ell}(t)+Z_{k}(t)$
- We need to decode a function to eliminate noise.

Finite Field Interference Channels

- Finite field channels: $Y_{k}(t)=\sum_{\ell=1}^{K} h_{k \ell}(t) X_{\ell}(t)+Z_{k}(t)$
- We need to decode a function to eliminate noise.

Finite Field Interference Channels

- Finite field channels: $Y_{k}(t)=\sum_{\ell=1}^{K} h_{k \ell}(t) X_{\ell}(t)+Z_{k}(t)$
- We need to decode a function to eliminate noise.

Finite Field IC: Ergodic Capacity Region

2

:

- Use computation codes from Nazer-Gastpar '07.
- Ergodic capacity region for K-user finite field interference channel:

$$
R_{\ell}+R_{k} \leq \log _{2} q-H(Z), \quad \forall k \neq \ell .
$$

Finite Field IC: Ergodic Capacity Region

- Use computation codes from Nazer-Gastpar '07.
- Ergodic capacity region for K-user finite field interference channel:

$$
R_{\ell}+R_{k} \leq \log _{2} q-H(Z), \quad \forall k \neq \ell .
$$

Finite Field IC: Ergodic Capacity Region

- Use computation codes from Nazer-Gastpar '07.
- Ergodic capacity region for K-user finite field interference channel:

$$
R_{\ell}+R_{k} \leq \log _{2} q-H(Z), \quad \forall k \neq \ell .
$$

Finite Field IC: Ergodic Capacity Region

- Use computation codes from Nazer-Gastpar '07.
- Ergodic capacity region for K-user finite field interference channel:

$$
R_{\ell}+R_{k} \leq \log _{2} q-H(Z), \quad \forall k \neq \ell .
$$

Finite Field IC: Ergodic Capacity Region

- Use computation codes from Nazer-Gastpar '07.
- Ergodic capacity region for K-user finite field interference channel:

$$
R_{\ell}+R_{k} \leq \log _{2} q-H(Z), \quad \forall k \neq \ell
$$

Finite Field IC: Ergodic Capacity Region

- Use computation codes from Nazer-Gastpar '07.
- Ergodic capacity region for K-user finite field interference channel:

$$
R_{\ell}+R_{k} \leq \log _{2} q-H(Z), \quad \forall k \neq \ell
$$

Related Work

Alignment over Finite Field Multi-Hop Relay Networks (Jeon-Chung '09)

Interference Alignment for MIMO X Channels (Maddah-Ali - Motahari - Khandani '08)

Inseparability of Parallel Interference Channels (Cadambe-Jafar '08, Sankar-Shang-Erkip-Poor '08)

Structured Codes for Interference Channels (Bresler-Parekh-Tse '07, Sridharan-Jafarian-Vishwanath-Jafar-Shamai '08)

Conclusions

- Developed a new interference alignment scheme that allows each user to attain half its interference-free capacity at any SNR.
- For certain channel models, showed that ergodic interference alignment achieves the capacity.

