Bobak Nazer
Boston University

Joint work with Viveck Cadambe, Vasilis Ntranos, and Giuseppe Caire.

ITA Workshop
February 5, 2015



X1
wi— & hy .

X2 h y N
Wo— £ 2 (+H) D l—u

hr
L

N u=Paw

Wi, — (S’L L /=1

Messages are finite field vectors,
wy € ZF, p prime.

Real-valued inputs and outputs,
X0,y € R™.

Equal power constraint,
E|jx¢||? < nP.

Gaussian noise, z ~ N (0,1).
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Compute-and-Forward: Single Receiver
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e What rates are achievable as a function of hy and ¢,?
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Computation Rate
e Want to characterize achievable rates as a function of
h=h - hr]"and g =g -~ qz]"
e Easier to think about integer rather than finite field coefficients.

e The linear combination with integer coefficient vector
a=la; ay - adT € 7" corresponds to

L
u= @QKWE where ¢, = [a;] mod p .
=1

e Key Definition: The computation rate region described by
Rcomp(h, a) is achievable if, for any € > 0 and n, p large enough, the
receiver can decode any linear combination with integer coefficient
vector a € Z" with probability of error at most € so long as the
message rate R satisfies

R < Reomp(h, a)
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Desired Codebook:

o Closed under integer linear combinations = lattice codebook.



L
y = Zh@cg +z
/=1

L L
= axe+ Y (e — ag)x; +z
=1 =

T
Effective Noise

Desired Codebook:
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Effective Noise

Desired Codebook:
o Closed under integer linear combinations = lattice codebook.

o Independent effective noise = dithering.

e Isomorphic to Z’; = nested lattice codebook.
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Nested Lattices

e A lattice is a discrete subgroup of R".

o Nearest neighbor quantizer:

QA (x) = argmin ||x — A||2
AEA

e Two lattices Ac and A are nested if
A C Af

e Quantization error serves as modulo
operation:

[x] mod A = x — Qx(x) .

Distributive Law:
[x1 + a[x2] mod A] mod A = [x; + axp] mod A for all a € Z.



o Nested Lattice Code: Formed by
taking all elements of Af that lie in the
fundamental Voronoi region of Ac.




o Nested Lattice Code: Formed by
taking all elements of Af that lie in the
fundamental Voronoi region of Ac.

e Fine lattice Af protects against noise.




o Nested Lattice Code: Formed by
taking all elements of Af that lie in the
fundamental Voronoi region of Ac.

e Fine lattice Af protects against noise.

e Coarse lattice Ac enforces the power
constraint.




Nested Lattice Codes

o Nested Lattice Code: Formed by
taking all elements of Af that lie in the
fundamental Voronoi region of Ac.

e Fine lattice Af protects against noise.

e Coarse lattice Ac enforces the

e Existence of good nested lattice codes:
Loeliger '97, Forney-Trott-Chung '00,
Erez-Litsyn-Zamir '05,
Ordentlich-Erez ’12.

e Erez-Zamir '04: Nested lattice codes
can achieve the Gaussian capacity.

e Zamir-Shamai-Erez '02: Excellent
framework for multi-terminal binning.
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e Construction A induces an isomorphism between the finite field Z’If
and the nested lattice codebook [Ag/Ac].

Each encoder maps its message wy to a lattice codeword ;.
Decode integer-linear combination [Zz ag)\g] mod A, from
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Map | >, asA;] mod Ac back to Z, to get u = P, gowy.



e Construction A induces an isomorphism between the finite field Z’If
and the nested lattice codebook [Ag/Ac].

e Each encoder maps its message w, to a lattice codeword A\,.

e Decode integer-linear combination [Z[ ag)\g] mod A, from

L L
By = > apxe+ Y (Bhe —ag)x; + Bz .
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effective noise

e Succeeds w.h.p. if noise tolerance agff of the fine lattice satisfies
. _ —1/2_ 12
7é > min (5 + P[|ph — al) = [|(P~'T + hhT) Pal.

e Map | >, asA/] mod Ac back to Z,, to get u = €D, qrwy.
e Nazer-Gastpar IT '11: The achievable computation rate is

1 P
R h,a) = - log™ .
comp(1:2) = 3 <|| (P11 + hhT)_l/ZaH2>




Compute-and-Forward: Multiple Receivers

wi—| &

hi! —@-2—{ pllf-al]

Wo—s| &y

hi& @2 —|plEl-alk]

L
ull = @ qE’]Wg ,
/=1

° and Gaussian noise as before.

e Since some receivers will see better channels than others, it will be
useful to allow for different rates Ry,..., R;. How can we retain the
connection to Z,?



e Basic Idea: Keep linear combinations over Z’; and allow encoders to
zeropad in order to reduce their rates.



e Basic Idea: Keep linear combinations over Z’; and allow encoders to
zeropad in order to reduce their rates.

e Specifically, the message wy of the /" encoder consists of
information symbols over Z,, followed by k — ky zeros where
k £ maxy k;. The message rate is R, = % log p.



Different Message Rates

e Basic Idea: Keep linear combinations over Z’; and allow encoders to
zeropad in order to reduce their rates.

e Specifically, the message wy of the /" encoder consists of
information symbols over Z,, followed by k — ky zeros where
k £ maxy k;. The message rate is Ry = % log p.

e The computation rate region described by Rcomp(h,a) is achievable
if, for any € > 0 and n, p large enough, each receiver can decode any
linear combination with integer coefficient vector alll .. alll ezl
with probability of error at most € so long as

Ry < min Rcomp(hm,am)
i:a;]io
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Achievability

e Using Construction A, generate L fine lattices Af1,...,Af and a
coarse lattice Ac, all nested in some order.

e The (™ encoder employs the nested lattice codebook [Ar ,/Ac].

e Let Af denote the densest fine lattice in the ensemble. Can show
there is an isomorphism between Zg and [Ap/Ac).

e Furthermore, can show that if the last k — k; elements of a vector in
7% are zero, then it will be mapped to [Ar;/Ac].

e Nazer-Gastpar IT '11: Overall, we can combine these codebooks
with the techniques for the single receiver case to get that the
following computation rate region is achievable:

1 P
Reomp(h,a) = —logJr .
P( ) 9 <H(P_II—|—hhT)_1/2aH2>
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lattice, chosen to meet the power constraint.



e Unequal power )\1_, & X1
constraints: z
Ellx|* < nP. PYSN PN R o WRAN Y B
: Do L
n= [ZA@] mod Ac
A€ X+ Acy

e Nam-Chung-Lee IT '11: Proposed a natural way to incorporate
unequal powers for the special case of equal channel gains.

e At each transmitter, use the same fine lattice and a different coarse
lattice, chosen to meet the power constraint.

e Can we use this for the general compute-and-forward problem?
While retaining the connection to the finite field?



What's missing?
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e Nam-Chung-Lee IT '11: Proposed a natural way to incorporate
for the special case of equal channel gains.

e At each transmitter, use the same fine lattice and a different coarse
lattice, chosen to meet the

e Can we use this for the general compute-and-forward problem?
While retaining the connection to the finite field?

e Zhu-Gastpar IZS ’14: Proposed a way to use this technique for
compute-and-forward without a connection to the finite field.
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e Decoding multiple linear combinations at a single receiver is a useful
technique for MIMO decoding (Zhan-Nazer-Erez-Gastpar IT '14)

and interference alignment (Ordentlich-Erez-Nazer IT '14,

Ntranos-Cadambe-Nazer-Caire ISIT '13).
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e Decoding multiple linear combinations at a single receiver is a useful
technique for MIMO decoding (Zhan-Nazer-Erez-Gastpar IT '14)

and interference alignment (Ordentlich-Erez-Nazer IT '14,

Ntranos-Cadambe-Nazer-Caire ISIT '13).

e After a receiver has decoded one or more linear combinations, it can
use these as side information to help decode the rest (Nazer 1ZS '12,
Ordentlich-Erez-Nazer IT '14, Ordentlich-Erez-Nazer Allerton '13).
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e Include unequal power constraints E||x,||*> < nP, and multiple
antennas at the receiver.

e Relax to linear combinations of cosets.

e WLOG receiver wants L linear combinations (since we can set
coefficients to 0).



e Each user is assigned an effective noise
tolerance szff and power level Py.

Zk

0]0]0]0]0]0]e]e)




e Each user is assigned an effective noise
tolerance szrz and power level Py.

e These can be handled by introducing two Zk
parameters kc ¢ < kf .

0]0]0]0]0]0]e]e)




e Each user is assigned an effective noise
tolerance szrz and power level Py.

e These can be handled by introducing two Zk
parameters kc ¢ < kf .

e Total number of symbols is k = kg — k¢
where krp = maxy kr ¢ and kc = ming kc 4.

0]0]0]0]0]0]e]e)




e Each user is assigned an effective noise
tolerance szrz and power level Py.

e These can be handled by introducing two Zk
parameters kc ¢ < kf . p

e Total number of symbols is k = kg — k¢ L Power
where krp = maxy kr ¢ and kc = ming kc 4. Level

e Transmitter sets top kc ¢ — kc symbols to
zero to meet its power constraint.
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From Unequal Powers to Signal Levels

e Each user is assigned an effective noise

tolerance agfw and By
e These can be handled by introducing two Zk
parameters kc ¢ < kF . ® p
e Total number of symbols is k = kr — k¢ ®
where kg = maxy kg and kc = miny kc ¢. O
e Transmitter sets top kc ¢ — kc symbols to O
zero to meet its 8
Noise
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to zero to meet its noise tolerance ®
constraint.



From Unequal Powers to Signal Levels

e Each user is assigned an effective noise
tolerance agfw and By

e These can be handled by introducing two
parameters kc ¢ < kF .

e Total number of symbols is k = kr — k¢
where kg = maxy kr ¢ and kc = ming kc 4.

e Transmitter sets top kc ¢ — kc symbols to
zero to meet its

e Transmitter sets bottom kr — kg o symbols
to zero to meet its noise tolerance
constraint.

e Remaining kf ; — kc ¢ symbols carry

. . . ke —k
information. Rate is Ry = TRE T RCE

log p.

Wy

Noise

Tolerance



o Receiver attempts to recover linear combinations of cosets:

L
W = D .o W
=1
r
~ A k kce—kc
wiEw ] =dwWeZ,:w= Wy for some r € Z,
OkF_kF,Z

D dm2 ® - D  dmeL




o Receiver attempts to recover linear combinations of cosets:

L
W = D .o W

=1

r
~ A k kce—kc
wiEw ] =dwWeZ,:w= Wy for some r € Z,
OkF_kF,Z
D adm2 © - D dme

o As before, a linear combination with integer coefficient vector a,, is
one that satisfies [a,, ¢] mod p = Gy .
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o We will specify the computation rate Reomp (Hg, Ag)
region via a set-valued function
Reomp(H, A) that maps each channel Rcomp (Hz, A2)
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coefficient matrix A € ZE*L to a subset °
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Computation Rate Region
Ry

o We will specify the computation rate
region via a set-valued function
Rcomp(H, A) that maps each channel Reomp (H2, A2)
matrix H € RV and integer
coefficient matrix A € Z*L to a subset
of RL.

Reomp(Hz, A3z)

Reomp(H1, A1)

e The computation rate region described by Rcomp(H, A) is &
achievable if, for every rate tuple (Ry, Ra,...,Ry) € ]Ri, e >0, and
n large enough, we can select encoders and a decoder such that,

e for all channel matrices H € RN"*L and

e every coefficient matrix Q € ZL*% for which there exists an integer
matrix A satisfying (R1, Rz, ..., Rr) € Reomp(H, A) and
[A] mod p = Q,

the probability of decoding error is at most e.
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Ordentlich-Erez Eilat '12: Start with nested linear code in
Construction A to get a “good” nested lattice code.

We use this idea to generate coarse lattices Ac 1,...,Ac,z and fine
lattices Af1,...,AF 1, all nested in some order.

Transmitter £ uses nested lattice code [Ar //Ac/].

Linear labeling idea from Chen-Silva-Kschischang IT '13 allows us to
build mapping between cosets and nested lattice codes.
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o Separately decode each linear combination from the output Y.
e Equalization step:
Ym=bnY
=a) X+ (bpH-al)X+bZ.
o Effective noise:

Tpara(H, an) = min [y |2 + || (b, H — al)P2|?

para

e



“Parallel” Computation

Theorem (Nazer-Cadambe-Ntranos-Caire '15)

For an AWGN network with L transmitters, a receiver, and power

constraints Py, P», ..., Pr, the following computation rate region is
achievable,
R(cg%fn) (H> A) = U 7—‘)fpara(H> A)

AGZLXL

rowspan(A)Crowspan(A)

RPQYQ(H7A) = {(R17 XD 7RL) € Ri :

1 Py .
< —logt [ — 2t 'ty
R, < 2log < > (H,éim)> Y(m,l) s.t. a 7(5#0}

O para



e Can rebuild real sum a X from u,, and Y.



e Can rebuild real sum a] X from u,, and Y.
e This allows us to build a better effective channel output:

i =b'Y +cl A, X
=a' X+ (b H+c An1—a))X+blZ.



e Can rebuild real sum a] X from u,, and Y.
e This allows us to build a better effective channel output:
=b)Y +ch A, X
—a X + (bTH+c A,_1—a )X—l—bT
o Effective noise:

(H, a,,|A,,— 1)=bm1n [bynl? + || (b H + ] Ayt — a ) P2

SUCC

= [N (P )

where N,,,_1 is the nullspace projection corresponding to A,,_1.



o Algebraic Successive Cancellation: We can use uy, ..., U1 to
eliminate certain codewords from our observation, and thus remove
the constraints on them.



o Algebraic Successive Cancellation: We can use uy, ..., U1 to
eliminate certain codewords from our observation, and thus remove
the constraints on them.

e letZC{l,...,L} x{1,...,L} denote a set of index pairs. We say
that Z is an admissible mapping for A if there exists a real-valued,
lower unitriangular matrix L € RE*Z such that the (m, £)th entry of
LA is equal to zero for all (m,¥) ¢ Z.



“Successive” Computation

Theorem (Nazer-Cadambe-Ntranos-Caire '15)

For an AWGN network with L transmitters, a receiver, and power

constraints Py, P, ..., P, the following computation rate region is
225 g p g
achievable,
RS:ZL:‘g[C)) (H> A) = U RSUCC(Ha A,I)
AGZLXL
rowspan(A)Crowspan(A)
Z admissible

Rsucc(Hasz) = {(Rla s >RL) S Ri :

P,

R log™ <
= 2 ¢ succ(H am|Am 1

)) V(m, 0) eI}
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e Under this framework, rate regions naturally generalize to multiple
receivers:

N

R (|, HIT AL AR =\ RER) (B, Al)
i=1

K
Rl w9 AL AR = (YRGS El, Al)
i=1



Applications and Future Directions

e He-Nazer-Shamai ISIT '14: Using this framework, we have found an
uplink-downlink duality relationship for compute-and-forward. Allows
us to build a connection to the work of Hong-Caire IT '13.

¢ Ntranos-Cadambe-Nazer-Caire ISIT '13: Used these ideas for
integer-forcing interference alignment.

o Nazer-Gastpar ITW '14: Used the problem statement to bring
compute-and-forward to the discrete memoryless setting.

e Can the algebraic perspective of Chen-Silva-Kschischang IT 13 be
applied to the expanded problem?

e Currently trying to bring in more sophisticated multi-user techniques.



