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• Equal power constraint,
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• Decoder wants a linear combination of the messages with vanishing
probability of error lim

n→∞
P(û 6= u) = 0.

• What rates are achievable as a function of hℓ and qℓ?
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Computation Rate

• Want to characterize achievable rates as a function of
h = [h1 · · · hL]

T and q = [q1 · · · qL]
T.

• Easier to think about integer rather than finite field coefficients.

• The linear combination with integer coefficient vector
a = [a1 a2 · · · aL]

T ∈ Z
L corresponds to

u =
L⊕

ℓ=1

qℓwℓ where qℓ = [aℓ] mod p .

• Key Definition: The computation rate region described by
Rcomp(h,a) is achievable if, for any ǫ > 0 and n, p large enough, the
receiver can decode any linear combination with integer coefficient
vector a ∈ Z

L with probability of error at most ǫ so long as the
message rate R satisfies

R < Rcomp(h,a)
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Effective Noise

Desired Codebook:

• Closed under integer linear combinations =⇒ lattice codebook.

• Independent effective noise =⇒ dithering.

• Isomorphic to Z
k
p =⇒ nested lattice codebook.
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Nested Lattices

• A lattice is a discrete subgroup of Rn.

• Nearest neighbor quantizer:

QΛ(x) = argmin
λ∈Λ

‖x− λ‖2

• Two lattices ΛC and ΛF are nested if
Λ ⊂ ΛF

• Quantization error serves as modulo
operation:

[x] mod Λ = x−QΛ(x) .

Distributive Law:
[
x1 + a[x2] mod Λ

]
mod Λ = [x1 + ax2] mod Λ for all a ∈ Z.
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Nested Lattice Codes

• Nested Lattice Code: Formed by
taking all elements of ΛF that lie in the
fundamental Voronoi region of ΛC.

• Fine lattice ΛF protects against noise.

• Coarse lattice ΛC enforces the power
constraint.

• Existence of good nested lattice codes:
Loeliger ’97, Forney-Trott-Chung ’00,
Erez-Litsyn-Zamir ’05,

Ordentlich-Erez ’12.

• Erez-Zamir ’04: Nested lattice codes
can achieve the Gaussian capacity.

• Zamir-Shamai-Erez ’02: Excellent
framework for multi-terminal binning.

B(0,
√
nP )
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)
=
∥
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• Map
[∑
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]
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ℓ qℓwℓ.
• Nazer-Gastpar IT ’11: The achievable computation rate is
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1

2
log+

(

P
∥
∥
(
P−1I+ hhT

)−1/2
a
∥
∥2

)

.



Compute-and-Forward: Multiple Receivers

w1 E1
x1

w2 E2
x2

wL EL
xL

...

...

...

...
...

h
[1]

z[1]

y[1]

D[1] û[1]
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• Equal power constraints and Gaussian noise as before.

• Since some receivers will see better channels than others, it will be
useful to allow for different rates R1, . . . , RL. How can we retain the
connection to Zp?
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• Basic Idea: Keep linear combinations over Zk
p and allow encoders to

zeropad in order to reduce their rates.

• Specifically, the message wℓ of the ℓth encoder consists of kℓ
information symbols over Zp followed by k − kℓ zeros where
k , maxℓ kℓ. The message rate is Rℓ =

kℓ
n log p.

• The computation rate region described by Rcomp(h,a) is achievable
if, for any ǫ > 0 and n, p large enough, each receiver can decode any
linear combination with integer coefficient vector a[1], . . . ,a[K] ∈ Z

L

with probability of error at most ǫ so long as

Rℓ < min
i:a

[i]
ℓ
6=0

Rcomp(h
[i],a[i])
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Achievability

• Using Construction A, generate L fine lattices ΛF,1, . . . ,ΛF,L and a
coarse lattice ΛC, all nested in some order.

• The ℓth encoder employs the nested lattice codebook
[
ΛF,ℓ/ΛC

]
.

• Let ΛF denote the densest fine lattice in the ensemble. Can show
there is an isomorphism between Z

k
p and [ΛF/ΛC].

• Furthermore, can show that if the last k − kℓ elements of a vector in
Z
k
p are zero, then it will be mapped to [ΛF,ℓ/ΛC].

• Nazer-Gastpar IT ’11: Overall, we can combine these codebooks
with the techniques for the single receiver case to get that the
following computation rate region is achievable:

Rcomp(h,a) =
1

2
log+

(

P
∥
∥
(
P−1I+ hhT

)−1/2
a
∥
∥2

)

.
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• Nam-Chung-Lee IT ’11: Proposed a natural way to incorporate
unequal powers for the special case of equal channel gains.

• At each transmitter, use the same fine lattice and a different coarse
lattice, chosen to meet the power constraint.

• Can we use this for the general compute-and-forward problem?
While retaining the connection to the finite field?

• Zhu-Gastpar IZS ’14: Proposed a way to use this technique for
compute-and-forward without a connection to the finite field.
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• Decoding multiple linear combinations at a single receiver is a useful
technique for MIMO decoding (Zhan-Nazer-Erez-Gastpar IT ’14)
and interference alignment (Ordentlich-Erez-Nazer IT ’14,

Ntranos-Cadambe-Nazer-Caire ISIT ’13).

• After a receiver has decoded one or more linear combinations, it can
use these as side information to help decode the rest (Nazer IZS ’12,

Ordentlich-Erez-Nazer IT ’14, Ordentlich-Erez-Nazer Allerton ’13).
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w1 E1
xT
1 h1

w2 E2
xT
2 h2

wL EL
xT
L hL

...
...

Channel
Matrix H

Z

Y D
û1
...
ûL

um =
L⊕

ℓ=1

qm,ℓw̃ℓ

w̃ℓ ∈ JwℓK

• Include unequal power constraints E‖xℓ‖2 ≤ nPℓ and multiple
antennas at the receiver.

• Relax to linear combinations of cosets.

• WLOG receiver wants L linear combinations (since we can set
coefficients to 0).
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From Unequal Powers to Signal Levels

• Each user is assigned an effective noise
tolerance σ2

eff,ℓ and power level Pℓ.

• These can be handled by introducing two
parameters kC,ℓ ≤ kF,ℓ.

• Total number of symbols is k = kF − kC
where kF = maxℓ kF,ℓ and kC = minℓ kC,ℓ.

• Transmitter sets top kC,ℓ − kC symbols to
zero to meet its power constraint.

• Transmitter sets bottom kF − kF,ℓ symbols
to zero to meet its noise tolerance
constraint.

• Remaining kF,ℓ − kC,ℓ symbols carry

information. Rate is Rℓ =
kF,ℓ − kC,ℓ

n
log p.

Z
k
p

Noise
Tolerance

Power
Level

wℓ
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um =
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∗
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• As before, a linear combination with integer coefficient vector am is
one that satisfies [am,ℓ] mod p = qm,ℓ.



Computation Rate Region

• We will specify the computation rate
region via a set-valued function
Rcomp(H,A) that maps each channel
matrix H ∈ R

Nr×L and integer
coefficient matrix A ∈ Z

L×L to a subset
of RL

+.

R1

R2

Rcomp(H1,A1)

Rcomp(H2,A2)

Rcomp(H3,A3)
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• We will specify the computation rate
region via a set-valued function
Rcomp(H,A) that maps each channel
matrix H ∈ R

Nr×L and integer
coefficient matrix A ∈ Z

L×L to a subset
of RL

+.

R1

R2

Rcomp(H1,A1)

Rcomp(H2,A2)

Rcomp(H3,A3)

• The computation rate region described by Rcomp(H,A) is

achievable if, for every rate tuple (R1, R2, . . . , RL) ∈ R
L
+, ǫ > 0, and

n large enough, we can select encoders and a decoder such that,
• for all channel matrices H ∈ R

Nr×L and
• every coefficient matrix Q ∈ Z

L×L
p for which there exists an integer

matrix A satisfying (R1, R2, . . . , RL) ∈ Rcomp(H,A) and
[A] mod p = Q,

the probability of decoding error is at most ǫ.



Codebook Construction

• Ordentlich-Erez Eilat ’12: Start with nested linear code in
Construction A to get a “good” nested lattice code.



Codebook Construction

• Ordentlich-Erez Eilat ’12: Start with nested linear code in
Construction A to get a “good” nested lattice code.

• We use this idea to generate coarse lattices ΛC,1, . . . ,ΛC,L and fine
lattices ΛF,1, . . . ,ΛF,L, all nested in some order.



Codebook Construction

• Ordentlich-Erez Eilat ’12: Start with nested linear code in
Construction A to get a “good” nested lattice code.

• We use this idea to generate coarse lattices ΛC,1, . . . ,ΛC,L and fine
lattices ΛF,1, . . . ,ΛF,L, all nested in some order.

• Transmitter ℓ uses nested lattice code
[
ΛF,ℓ/ΛC,ℓ

]
.



Codebook Construction

• Ordentlich-Erez Eilat ’12: Start with nested linear code in
Construction A to get a “good” nested lattice code.

• We use this idea to generate coarse lattices ΛC,1, . . . ,ΛC,L and fine
lattices ΛF,1, . . . ,ΛF,L, all nested in some order.

• Transmitter ℓ uses nested lattice code
[
ΛF,ℓ/ΛC,ℓ

]
.

• Linear labeling idea from Chen-Silva-Kschischang IT ’13 allows us to
build mapping between cosets and nested lattice codes.
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“Parallel” Computation

• Separately decode each linear combination from the output Y.

• Equalization step:

ỹT
m = bT

mY

= aTmX+
(
bT
mH− aTm

)
X+ bT

mZ .

• Effective noise:

σ2
para(H,am) = min

bm

‖bm‖2 +
∥
∥
(
bT
mH− aTm

)
P1/2

∥
∥2

=
∥
∥
∥

(
P−1 +HTH

)−1/2
am

∥
∥
∥

2



“Parallel” Computation

Theorem (Nazer-Cadambe-Ntranos-Caire ’15)

For an AWGN network with L transmitters, a receiver, and power

constraints P1, P2, . . . , PL, the following computation rate region is

achievable,

R(para)
comp (H,A) =

⋃

Ã∈ZL×L

rowspan(A)⊆rowspan(Ã)

Rpara(H, Ã)

Rpara(H, Ã) =

{

(R1, . . . , RL) ∈ R
L
+ :

Rℓ ≤
1

2
log+

(
Pℓ

σ2
para(H, ãm)

)

∀(m, ℓ) s.t. ãm,ℓ 6= 0

}
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• This allows us to build a better effective channel output:

ỹT
m = bT

mY + cTmAm−1X

= aTmX+
(
bT
mH+ cTmAm−1 − aTm

)
X+ bT

mZ .

• Effective noise:

σ2
succ(H,am|Am−1) = min

bm,cm
‖bm‖2 +

∥
∥
(
bT
mH+ cTmAm−1 − aTm

)
P1/2

∥
∥2

=
∥
∥
∥Nm−1

(
P−1 +HTH

)−1/2
am

∥
∥
∥

2

where Nm−1 is the nullspace projection corresponding to Am−1.
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“Successive” Computation

• Algebraic Successive Cancellation: We can use u1, . . . ,um−1 to
eliminate certain codewords from our observation, and thus remove
the constraints on them.

• Let I ⊂ {1, . . . , L} × {1, . . . , L} denote a set of index pairs. We say
that I is an admissible mapping for A if there exists a real-valued,
lower unitriangular matrix L ∈ R

L×L such that the (m, ℓ)th entry of
LA is equal to zero for all (m, ℓ) /∈ I.



“Successive” Computation

Theorem (Nazer-Cadambe-Ntranos-Caire ’15)

For an AWGN network with L transmitters, a receiver, and power

constraints P1, P2, . . . , PL, the following computation rate region is

achievable,

R(succ)
comp (H,A) =

⋃

Ã∈ZL×L

rowspan(A)⊆rowspan(Ã)
I admissible

Rsucc(H, Ã,I)

Rsucc(H, Ã,I) =
{

(R1, . . . , RL) ∈ R
L
+ :

Rℓ ≤
1

2
log+

(
Pℓ

σ2
succ(H, ãm|Ãm−1)

)

∀(m, ℓ) ∈ I
}
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ŵ2

R2

R1

• Successive cancellation (without time-sharing or rate-splitting)
achieves corner points.



Multiple-Access via Computation

w1 E1
x1

h1

w2 E2
x2

h2

z

y
D

ŵ1
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• Successive cancellation (without time-sharing or rate-splitting)
achieves corner points.

• Parallel computation can achieve additional rate tuples near the sum
rate boundary.

• Successive computation can move these to the exact sum rate.



Multiple Receivers

• Under this framework, rate regions naturally generalize to multiple
receivers:

R(para)
comp (H

[1], . . . ,H[K],A[1], . . . ,A[K]) =

K⋂

i=1

R(para)
comp (H

[i],A[i])

R(succ)
comp (H

[1], . . . ,H[K],A[1], . . . ,A[K]) =
K⋂

i=1

R(succ)
comp (H

[i],A[i])



Applications and Future Directions

• He-Nazer-Shamai ISIT ’14: Using this framework, we have found an
uplink-downlink duality relationship for compute-and-forward. Allows
us to build a connection to the work of Hong-Caire IT ’13.

• Ntranos-Cadambe-Nazer-Caire ISIT ’13: Used these ideas for
integer-forcing interference alignment.

• Nazer-Gastpar ITW ’14: Used the problem statement to bring
compute-and-forward to the discrete memoryless setting.

• Can the algebraic perspective of Chen-Silva-Kschischang IT ’13 be
applied to the expanded problem?

• Currently trying to bring in more sophisticated multi-user techniques.


