Expanding the Compute-and-Forward Framework

Bobak Nazer
Boston University

Joint work with Viveck Cadambe, Vasilis Ntranos, and Giuseppe Caire.

ITA Workshop

February 5, 2015

Compute-and-Forward: Single Receiver

- Messages are finite field vectors, $\mathbf{w}_{\ell} \in \mathbb{Z}_{p}^{k}, p$ prime.
- Real-valued inputs and outputs, $\mathbf{x}_{\ell}, \mathbf{y} \in \mathbb{R}^{n}$.
- Equal power constraint, $\mathbb{E}\left\|\mathbf{x}_{\ell}\right\|^{2} \leq n P$.
- Gaussian noise, $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.
- Equal rates: $R=\frac{k}{n} \log _{2} p$

Compute-and-Forward: Single Receiver

- Messages are finite field vectors, $\mathbf{w}_{\ell} \in \mathbb{Z}_{p}^{k}, p$ prime.
- Real-valued inputs and outputs, $\mathbf{x}_{\ell}, \mathbf{y} \in \mathbb{R}^{n}$.
- Equal power constraint, $\mathbb{E}\left\|\mathbf{x}_{\ell}\right\|^{2} \leq n P$.
- Gaussian noise, $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.
- Equal rates: $R=\frac{k}{n} \log _{2} p$
- Decoder wants a linear combination of the messages with vanishing probability of error $\lim _{n \rightarrow \infty} \mathbb{P}(\hat{\mathbf{u}} \neq \mathbf{u})=0$.

Compute-and-Forward: Single Receiver

- Messages are finite field vectors, $\mathbf{w}_{\ell} \in \mathbb{Z}_{p}^{k}, p$ prime.
- Real-valued inputs and outputs, $\mathbf{x}_{\ell}, \mathbf{y} \in \mathbb{R}^{n}$.
- Equal power constraint, $\mathbb{E}\left\|\mathbf{x}_{\ell}\right\|^{2} \leq n P$.
- Gaussian noise, $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.
- Equal rates: $R=\frac{k}{n} \log _{2} p$
- Decoder wants a linear combination of the messages with vanishing probability of error $\lim _{n \rightarrow \infty} \mathbb{P}(\hat{\mathbf{u}} \neq \mathbf{u})=0$.
- What rates are achievable as a function of h_{ℓ} and q_{ℓ} ?

Computation Rate

- Want to characterize achievable rates as a function of $\mathbf{h}=\left[\begin{array}{lll}h_{1} & \cdots & h_{L}\end{array}\right]^{\top}$ and $\mathbf{q}=\left[\begin{array}{lll}q_{1} & \cdots & q_{L}\end{array}\right]^{\top}$.

Computation Rate

- Want to characterize achievable rates as a function of $\mathbf{h}=\left[\begin{array}{lll}h_{1} & \cdots & h_{L}\end{array}\right]^{\top}$ and $\mathbf{q}=\left[\begin{array}{lll}q_{1} & \cdots & q_{L}\end{array}\right]^{\top}$.
- Easier to think about integer rather than finite field coefficients.

Computation Rate

- Want to characterize achievable rates as a function of $\mathbf{h}=\left[\begin{array}{lll}h_{1} & \cdots & h_{L}\end{array}\right]^{\top}$ and $\mathbf{q}=\left[\begin{array}{lll}q_{1} & \cdots & q_{L}\end{array}\right]^{\top}$.
- Easier to think about integer rather than finite field coefficients.
- The linear combination with integer coefficient vector $\mathbf{a}=\left[\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{L}\end{array}\right]_{L}^{\top} \in \mathbb{Z}^{L}$ corresponds to

$$
\mathbf{u}=\bigoplus_{\ell=1} q_{\ell} \mathbf{w}_{\ell} \quad \text { where } q_{\ell}=\left[a_{\ell}\right] \bmod p
$$

Computation Rate

- Want to characterize achievable rates as a function of $\mathbf{h}=\left[\begin{array}{lll}h_{1} & \cdots & h_{L}\end{array}\right]^{\top}$ and $\mathbf{q}=\left[\begin{array}{lll}q_{1} & \cdots & q_{L}\end{array}\right]^{\top}$.
- Easier to think about integer rather than finite field coefficients.
- The linear combination with integer coefficient vector

$$
\begin{aligned}
& \mathbf{a}=\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{L}
\end{array}\right]_{L}^{\top} \in \mathbb{Z}^{L} \text { corresponds to } \\
& \qquad \mathbf{u}=\bigoplus_{\ell=1}^{L} q_{\ell} \mathbf{w}_{\ell} \quad \text { where } q_{\ell}=\left[a_{\ell}\right] \bmod p .
\end{aligned}
$$

- Key Definition: The computation rate region described by $R_{\text {comp }}(\mathbf{h}, \mathbf{a})$ is achievable if, for any $\epsilon>0$ and n, p large enough, the receiver can decode any linear combination with integer coefficient vector $\mathbf{a} \in \mathbb{Z}^{L}$ with probability of error at most ϵ so long as the message rate R satisfies

$$
R<R_{\text {comp }}(\mathbf{h}, \mathbf{a})
$$

Compute-and-Forward: Effective Noise

$$
\begin{aligned}
\mathbf{y} & =\sum_{\ell=1}^{L} h_{\ell} \mathbf{x}_{\ell}+\mathbf{z} \\
& =\sum_{\ell=1}^{L} a_{\ell} \mathbf{x}_{\ell}+\sum_{\ell=1}^{L}\left(h_{\ell}-a_{\ell}\right) \mathbf{x}_{\ell}+\mathbf{z}
\end{aligned}
$$

Desired Codebook:

- Closed under integer linear combinations \Longrightarrow lattice codebook.

Compute-and-Forward: Effective Noise

$$
\begin{aligned}
\mathbf{y} & =\sum_{\ell=1}^{L} h_{\ell} \mathbf{x}_{\ell}+\mathbf{z} \\
& =\sum_{\ell=1}^{L} a_{\ell} \mathbf{x}_{\ell}+\sum_{\ell=1}^{\sum_{\text {Effective Noise }}^{L}\left(h_{\ell}-a_{\ell}\right) \mathbf{x}_{\ell}+\mathbf{z}}
\end{aligned}
$$

Desired Codebook:

- Closed under integer linear combinations \Longrightarrow lattice codebook.
- Independent effective noise \Longrightarrow dithering.

Compute-and-Forward: Effective Noise

$$
\begin{aligned}
\mathbf{y} & =\sum_{\ell=1}^{L} h_{\ell} \mathbf{x}_{\ell}+\mathbf{z} \\
& =\sum_{\ell=1}^{L} a_{\ell} \mathbf{x}_{\ell}+\sum_{\ell=1}^{L}\left(h_{\ell}-a_{\ell}\right) \mathbf{x}_{\ell}+\mathbf{z} \xrightarrow{\text { Decode }} \bigoplus_{\ell=1}^{L} q_{\ell} \mathbf{w}_{\ell}
\end{aligned}
$$

Desired Codebook:

- Closed under integer linear combinations \Longrightarrow lattice codebook.
- Independent effective noise \Longrightarrow dithering.
- Isomorphic to $\mathbb{Z}_{p}^{k} \Longrightarrow$ nested lattice codebook.

Nested Lattices

- A lattice is a discrete subgroup of \mathbb{R}^{n}.

Nested Lattices

- A lattice is a discrete subgroup of \mathbb{R}^{n}.
- Nearest neighbor quantizer:

$$
Q_{\Lambda}(\mathbf{x})=\underset{\boldsymbol{\lambda} \in \Lambda}{\arg \min }\|\mathbf{x}-\boldsymbol{\lambda}\|_{2}
$$

Nested Lattices

- A lattice is a discrete subgroup of \mathbb{R}^{n}.
- Nearest neighbor quantizer:

$$
Q_{\Lambda}(\mathbf{x})=\underset{\boldsymbol{\lambda} \in \Lambda}{\arg \min }\|\mathbf{x}-\boldsymbol{\lambda}\|_{2}
$$

- Two lattices Λ_{C} and Λ_{F} are nested if $\Lambda \subset \Lambda_{\mathrm{F}}$

Nested Lattices

- A lattice is a discrete subgroup of \mathbb{R}^{n}.
- Nearest neighbor quantizer:

$$
Q_{\Lambda}(\mathbf{x})=\underset{\boldsymbol{\lambda} \in \Lambda}{\arg \min }\|\mathbf{x}-\boldsymbol{\lambda}\|_{2}
$$

- Two lattices Λ_{C} and Λ_{F} are nested if $\Lambda \subset \Lambda_{F}$

Nested Lattices

- A lattice is a discrete subgroup of \mathbb{R}^{n}.
- Nearest neighbor quantizer:

$$
Q_{\Lambda}(\mathbf{x})=\underset{\lambda \in \Lambda}{\arg \min }\|\mathbf{x}-\boldsymbol{\lambda}\|_{2}
$$

- Two lattices Λ_{C} and Λ_{F} are nested if $\Lambda \subset \Lambda_{F}$
- Quantization error serves as modulo operation:

$$
[\mathbf{x}] \bmod \Lambda=\mathbf{x}-Q_{\Lambda}(\mathbf{x}) .
$$

Distributive Law:

$$
\left[\mathbf{x}_{1}+a\left[\mathbf{x}_{2}\right] \bmod \Lambda\right] \bmod \Lambda=\left[\mathbf{x}_{1}+a \mathbf{x}_{2}\right] \bmod \Lambda \quad \text { for all } a \in \mathbb{Z}
$$

Nested Lattice Codes

- Nested Lattice Code: Formed by taking all elements of Λ_{F} that lie in the fundamental Voronoi region of Λ_{C}.

Nested Lattice Codes

- Nested Lattice Code: Formed by taking all elements of Λ_{F} that lie in the fundamental Voronoi region of Λ_{C}.
- Fine lattice Λ_{F} protects against noise.

Nested Lattice Codes

- Nested Lattice Code: Formed by taking all elements of Λ_{F} that lie in the fundamental Voronoi region of Λ_{C}.
- Fine lattice Λ_{F} protects against noise.
- Coarse lattice Λ_{C} enforces the power constraint.

Nested Lattice Codes

- Nested Lattice Code: Formed by taking all elements of Λ_{F} that lie in the fundamental Voronoi region of Λ_{C}.
- Fine lattice Λ_{F} protects against noise.
- Coarse lattice Λ_{C} enforces the power constraint.
- Existence of good nested lattice codes: Loeliger '97, Forney-Trott-Chung '00, Erez-Litsyn-Zamir '05, Ordentlich-Erez '12.

- Erez-Zamir '04: Nested lattice codes can achieve the Gaussian capacity.
- Zamir-Shamai-Erez '02: Excellent framework for multi-terminal binning.

Achievability

- Construction A induces an isomorphism between the finite field \mathbb{Z}_{p}^{k} and the nested lattice codebook $\left[\Lambda_{F} / \Lambda_{C}\right]$.

Achievability

- Construction A induces an isomorphism between the finite field \mathbb{Z}_{p}^{k} and the nested lattice codebook $\left[\Lambda_{F} / \Lambda_{C}\right]$.
- Each encoder maps its message \mathbf{w}_{ℓ} to a lattice codeword λ_{ℓ}.

Achievability

- Construction A induces an isomorphism between the finite field \mathbb{Z}_{p}^{k} and the nested lattice codebook $\left[\Lambda_{F} / \Lambda_{C}\right]$.
- Each encoder maps its message \mathbf{w}_{ℓ} to a lattice codeword λ_{ℓ}.
- Decode integer-linear combination $\left[\sum_{\ell} a_{\ell} \boldsymbol{\lambda}_{\ell}\right] \bmod \Lambda_{c}$ from

$$
\beta \mathbf{y}=\sum_{\ell=1}^{L} a_{\ell} \mathbf{x}_{\ell}+\underbrace{\sum_{\ell=1}^{L}\left(\beta h_{\ell}-a_{\ell}\right) \mathbf{x}_{\ell}+\beta \mathbf{z}}_{\text {effective noise }}
$$

Achievability

- Construction A induces an isomorphism between the finite field \mathbb{Z}_{p}^{k} and the nested lattice codebook $\left[\Lambda_{F} / \Lambda_{C}\right]$.
- Each encoder maps its message \mathbf{w}_{ℓ} to a lattice codeword λ_{ℓ}.
- Decode integer-linear combination $\left[\sum_{\ell} a_{\ell} \boldsymbol{\lambda}_{\ell}\right] \bmod \Lambda_{c}$ from

$$
\beta \mathbf{y}=\sum_{\ell=1}^{L} a_{\ell} \mathbf{x}_{\ell}+\underbrace{\sum_{\ell=1}^{L}\left(\beta h_{\ell}-a_{\ell}\right) \mathbf{x}_{\ell}+\beta \mathbf{z}}_{\text {effective noise }}
$$

- Succeeds w.h.p. if noise tolerance $\sigma_{\text {eff }}^{2}$ of the fine lattice satisfies

$$
\sigma_{\text {eff }}^{2}>\min _{\beta \in \mathbb{R}}\left(\beta^{2}+P\|\beta \mathbf{h}-\mathbf{a}\|^{2}\right)=\left\|\left(P^{-1} \mathbf{I}+\mathbf{h} \mathbf{h}^{\top}\right)^{-1 / 2} \mathbf{a}\right\|^{2}
$$

Achievability

- Construction A induces an isomorphism between the finite field \mathbb{Z}_{p}^{k} and the nested lattice codebook $\left[\Lambda_{F} / \Lambda_{C}\right]$.
- Each encoder maps its message \mathbf{w}_{ℓ} to a lattice codeword λ_{ℓ}.
- Decode integer-linear combination $\left[\sum_{\ell} a_{\ell} \boldsymbol{\lambda}_{\ell}\right] \bmod \Lambda_{c}$ from

$$
\beta \mathbf{y}=\sum_{\ell=1}^{L} a_{\ell} \mathbf{x}_{\ell}+\underbrace{\sum_{\ell=1}^{L}\left(\beta h_{\ell}-a_{\ell}\right) \mathbf{x}_{\ell}+\beta \mathbf{z}}_{\text {effective noise }}
$$

- Succeeds w.h.p. if noise tolerance $\sigma_{\text {eff }}^{2}$ of the fine lattice satisfies

$$
\sigma_{\text {eff }}^{2}>\min _{\beta \in \mathbb{R}}\left(\beta^{2}+P\|\beta \mathbf{h}-\mathbf{a}\|^{2}\right)=\left\|\left(P^{-1} \mathbf{I}+\mathbf{h} \mathbf{h}^{\top}\right)^{-1 / 2} \mathbf{a}\right\|^{2}
$$

- $\operatorname{Map}\left[\sum_{\ell} a_{\ell} \boldsymbol{\lambda}_{\ell}\right] \bmod \Lambda_{c}$ back to \mathbb{Z}_{p} to get $\mathbf{u}=\bigoplus_{\ell} q_{\ell} \mathbf{w}_{\ell}$.

Achievability

- Construction A induces an isomorphism between the finite field \mathbb{Z}_{p}^{k} and the nested lattice codebook $\left[\Lambda_{F} / \Lambda_{C}\right]$.
- Each encoder maps its message \mathbf{w}_{ℓ} to a lattice codeword λ_{ℓ}.
- Decode integer-linear combination $\left[\sum_{\ell} a_{\ell} \boldsymbol{\lambda}_{\ell}\right] \bmod \Lambda_{C}$ from

$$
\beta \mathbf{y}=\sum_{\ell=1}^{L} a_{\ell} \mathbf{x}_{\ell}+\underbrace{\sum_{\ell=1}^{L}\left(\beta h_{\ell}-a_{\ell}\right) \mathbf{x}_{\ell}+\beta \mathbf{z}}_{\text {effective noise }} .
$$

- Succeeds w.h.p. if noise tolerance $\sigma_{\text {eff }}^{2}$ of the fine lattice satisfies

$$
\sigma_{\mathrm{eff}}^{2}>\min _{\beta \in \mathbb{R}}\left(\beta^{2}+P\|\beta \mathbf{h}-\mathbf{a}\|^{2}\right)=\left\|\left(P^{-1} \mathbf{I}+\mathbf{h} \mathbf{h}^{\top}\right)^{-1 / 2} \mathbf{a}\right\|^{2}
$$

- Map $\left[\sum_{\ell} a_{\ell} \boldsymbol{\lambda}_{\ell}\right] \bmod \Lambda_{c}$ back to \mathbb{Z}_{p} to get $\mathbf{u}=\bigoplus_{\ell} q_{\ell} \mathbf{w}_{\ell}$.
- Nazer-Gastpar IT '11: The achievable computation rate is

$$
R_{\text {comp }}(\mathbf{h}, \mathbf{a})=\frac{1}{2} \log ^{+}\left(\frac{P}{\left\|\left(P^{-1} \mathbf{I}+\mathbf{h h}^{\top}\right)^{-1 / 2} \mathbf{a}\right\|^{2}}\right)
$$

- Equal power constraints and Gaussian noise as before.
- Since some receivers will see better channels than others, it will be useful to allow for different rates R_{1}, \ldots, R_{L}. How can we retain the connection to \mathbb{Z}_{p} ?

Different Message Rates

- Basic Idea: Keep linear combinations over \mathbb{Z}_{p}^{k} and allow encoders to zeropad in order to reduce their rates.

Different Message Rates

- Basic Idea: Keep linear combinations over \mathbb{Z}_{p}^{k} and allow encoders to zeropad in order to reduce their rates.
- Specifically, the message \mathbf{w}_{ℓ} of the $\ell^{\text {th }}$ encoder consists of k_{ℓ} information symbols over \mathbb{Z}_{p} followed by $k-k_{\ell}$ zeros where $k \triangleq \max _{\ell} k_{\ell}$. The message rate is $R_{\ell}=\frac{k_{\ell}}{n} \log p$.

Different Message Rates

- Basic Idea: Keep linear combinations over \mathbb{Z}_{p}^{k} and allow encoders to zeropad in order to reduce their rates.
- Specifically, the message \mathbf{w}_{ℓ} of the $\ell^{\text {th }}$ encoder consists of k_{ℓ} information symbols over \mathbb{Z}_{p} followed by $k-k_{\ell}$ zeros where $k \triangleq \max _{\ell} k_{\ell}$. The message rate is $R_{\ell}=\frac{k_{\ell}}{n} \log p$.
- The computation rate region described by $R_{\text {comp }}(\mathbf{h}, \mathbf{a})$ is achievable if, for any $\epsilon>0$ and n, p large enough, each receiver can decode any linear combination with integer coefficient vector $\mathbf{a}^{[1]}, \ldots, \mathbf{a}^{[K]} \in \mathbb{Z}^{L}$ with probability of error at most ϵ so long as

$$
R_{\ell}<\min _{i: a_{\ell}^{[i]} \neq 0} R_{\text {comp }}\left(\mathbf{h}^{[i]}, \mathbf{a}^{[i]}\right)
$$

Achievability

- Using Construction A, generate L fine lattices $\Lambda_{\mathrm{F}, 1}, \ldots, \Lambda_{\mathrm{F}, L}$ and a coarse lattice Λ_{C}, all nested in some order.

Achievability

- Using Construction A, generate L fine lattices $\Lambda_{\mathrm{F}, 1}, \ldots, \Lambda_{\mathrm{F}, L}$ and a coarse lattice Λ_{C}, all nested in some order.
- The $\ell^{\text {th }}$ encoder employs the nested lattice codebook $\left[\Lambda_{F, \ell} / \Lambda_{C}\right]$.

Achievability

- Using Construction A, generate L fine lattices $\Lambda_{\mathrm{F}, 1}, \ldots, \Lambda_{\mathrm{F}, L}$ and a coarse lattice Λ_{C}, all nested in some order.
- The $\ell^{\text {th }}$ encoder employs the nested lattice codebook $\left[\Lambda_{F, \ell} / \Lambda_{C}\right]$.
- Let Λ_{F} denote the densest fine lattice in the ensemble. Can show there is an isomorphism between \mathbb{Z}_{p}^{k} and $\left[\Lambda_{F} / \Lambda_{C}\right]$.

Achievability

- Using Construction A, generate L fine lattices $\Lambda_{\mathrm{F}, 1}, \ldots, \Lambda_{\mathrm{F}, L}$ and a coarse lattice Λ_{C}, all nested in some order.
- The $\ell^{\text {th }}$ encoder employs the nested lattice codebook $\left[\Lambda_{F, \ell} / \Lambda_{C}\right]$.
- Let Λ_{F} denote the densest fine lattice in the ensemble. Can show there is an isomorphism between \mathbb{Z}_{p}^{k} and $\left[\Lambda_{F} / \Lambda_{C}\right]$.
- Furthermore, can show that if the last $k-k_{\ell}$ elements of a vector in \mathbb{Z}_{p}^{k} are zero, then it will be mapped to $\left[\Lambda_{\mathrm{F}, \ell} / \Lambda_{\mathrm{C}}\right]$.

Achievability

- Using Construction A, generate L fine lattices $\Lambda_{\mathrm{F}, 1}, \ldots, \Lambda_{\mathrm{F}, L}$ and a coarse lattice Λ_{C}, all nested in some order.
- The $\ell^{\text {th }}$ encoder employs the nested lattice codebook $\left[\Lambda_{F, \ell} / \Lambda_{C}\right]$.
- Let Λ_{F} denote the densest fine lattice in the ensemble. Can show there is an isomorphism between \mathbb{Z}_{p}^{k} and $\left[\Lambda_{F} / \Lambda_{C}\right]$.
- Furthermore, can show that if the last $k-k_{\ell}$ elements of a vector in \mathbb{Z}_{p}^{k} are zero, then it will be mapped to $\left[\Lambda_{\mathrm{F}, \ell} / \Lambda_{\mathrm{C}}\right]$.
- Nazer-Gastpar IT '11: Overall, we can combine these codebooks with the techniques for the single receiver case to get that the following computation rate region is achievable:

$$
R_{\text {comp }}(\mathbf{h}, \mathbf{a})=\frac{1}{2} \log ^{+}\left(\frac{P}{\left\|\left(P^{-1} \mathbf{I}+\mathbf{h h}^{\top}\right)^{-1 / 2} \mathbf{a}\right\|^{2}}\right)
$$

What's missing?

- Unequal power
constraints:
$\mathbb{E}\left\|\mathbf{x}_{\ell}\right\|^{2} \leq n P_{\ell}$.

What's missing?

- Unequal power constraints: $\mathbb{E}\left\|\mathbf{x}_{\ell}\right\|^{2} \leq n P_{\ell}$.

What's missing?

- Unequal power constraints:

$$
\mathbb{E}\left\|\mathbf{x}_{\ell}\right\|^{2} \leq n P_{\ell}
$$

- Nam-Chung-Lee IT '11: Proposed a natural way to incorporate unequal powers for the special case of equal channel gains.

What's missing?

- Unequal power constraints:

$$
\mathbb{E}\left\|\mathbf{x}_{\ell}\right\|^{2} \leq n P_{\ell}
$$

- Nam-Chung-Lee IT '11: Proposed a natural way to incorporate unequal powers for the special case of equal channel gains.
- At each transmitter, use the same fine lattice and a different coarse lattice, chosen to meet the power constraint.

What's missing?

- Unequal power constraints:

$$
\mathbb{E}\left\|\mathbf{x}_{\ell}\right\|^{2} \leq n P_{\ell}
$$

- Nam-Chung-Lee IT '11: Proposed a natural way to incorporate unequal powers for the special case of equal channel gains.
- At each transmitter, use the same fine lattice and a different coarse lattice, chosen to meet the power constraint.
- Can we use this for the general compute-and-forward problem? While retaining the connection to the finite field?

What's missing?

- Unequal power constraints:

$$
\mathbb{E}\left\|\mathbf{x}_{\ell}\right\|^{2} \leq n P_{\ell}
$$

- Nam-Chung-Lee IT '11: Proposed a natural way to incorporate unequal powers for the special case of equal channel gains.
- At each transmitter, use the same fine lattice and a different coarse lattice, chosen to meet the power constraint.
- Can we use this for the general compute-and-forward problem? While retaining the connection to the finite field?
- Zhu-Gastpar IZS '14: Proposed a way to use this technique for compute-and-forward without a connection to the finite field.

What's missing?

- Decoding multiple linear combinations at a single receiver is a useful technique for MIMO decoding (Zhan-Nazer-Erez-Gastpar IT '14) and interference alignment (Ordentlich-Erez-Nazer IT '14, Ntranos-Cadambe-Nazer-Caire ISIT '13).

What's missing?

- Decoding multiple linear combinations at a single receiver is a useful technique for MIMO decoding (Zhan-Nazer-Erez-Gastpar IT '14) and interference alignment (Ordentlich-Erez-Nazer IT '14, Ntranos-Cadambe-Nazer-Caire ISIT '13).
- After a receiver has decoded one or more linear combinations, it can use these as side information to help decode the rest (Nazer IZS '12, Ordentlich-Erez-Nazer IT '14, Ordentlich-Erez-Nazer Allerton '13).

Expanding Compute-and-Forward: Single Receiver

- Include unequal power constraints $\mathbb{E}\left\|\mathbf{x}_{\ell}\right\|^{2} \leq n P_{\ell}$ and multiple antennas at the receiver.
- Relax to linear combinations of cosets.
- WLOG receiver wants L linear combinations (since we can set coefficients to 0).

From Unequal Powers to Signal Levels

- Each user is assigned an effective noise tolerance $\sigma_{\text {eff }, \ell}^{2}$ and power level P_{ℓ}.

From Unequal Powers to Signal Levels

- Each user is assigned an effective noise tolerance $\sigma_{\text {eff }, \ell}^{2}$ and power level P_{ℓ}.
- These can be handled by introducing two parameters $k_{\mathrm{C}, \ell} \leq k_{\mathrm{F}, \ell}$.

From Unequal Powers to Signal Levels

- Each user is assigned an effective noise tolerance $\sigma_{\text {eff }, \ell}^{2}$ and power level P_{ℓ}.
- These can be handled by introducing two parameters $k_{\mathrm{C}, \ell} \leq k_{\mathrm{F}, \ell}$.
- Total number of symbols is $k=k_{\mathrm{F}}-k_{\mathrm{C}}$ where $k_{\mathrm{F}}=\max _{\ell} k_{\mathrm{F}, \ell}$ and $k_{\mathrm{C}}=\min _{\ell} k_{\mathrm{C}, \ell}$.

From Unequal Powers to Signal Levels

- Each user is assigned an effective noise tolerance $\sigma_{\text {eff }, \ell}^{2}$ and power level P_{ℓ}.
- These can be handled by introducing two parameters $k_{\mathrm{C}, \ell} \leq k_{\mathrm{F}, \ell}$.
- Total number of symbols is $k=k_{\mathrm{F}}-k_{\mathrm{C}}$ where $k_{\mathrm{F}}=\max _{\ell} k_{\mathrm{F}, \ell}$ and $k_{\mathrm{C}}=\min _{\ell} k_{\mathrm{C}, \ell}$.
- Transmitter sets top $k_{\mathrm{C}, \ell}-k_{\mathrm{C}}$ symbols to zero to meet its power constraint.

From Unequal Powers to Signal Levels

- Each user is assigned an effective noise tolerance $\sigma_{\text {eff }, \ell}^{2}$ and power level P_{ℓ}.
- These can be handled by introducing two parameters $k_{\mathrm{C}, \ell} \leq k_{\mathrm{F}, \ell}$.
- Total number of symbols is $k=k_{\mathrm{F}}-k_{\mathrm{C}}$ where $k_{\mathrm{F}}=\max _{\ell} k_{\mathrm{F}, \ell}$ and $k_{\mathrm{C}}=\min _{\ell} k_{\mathrm{C}, \ell}$.
- Transmitter sets top $k_{\mathrm{C}, \ell}-k_{\mathrm{C}}$ symbols to zero to meet its power constraint.
- Transmitter sets bottom $k_{\mathrm{F}}-k_{\mathrm{F}, \ell}$ symbols to zero to meet its noise tolerance constraint.

From Unequal Powers to Signal Levels

- Each user is assigned an effective noise tolerance $\sigma_{\text {eff }, \ell}^{2}$ and power level P_{ℓ}.
- These can be handled by introducing two parameters $k_{\mathrm{C}, \ell} \leq k_{\mathrm{F}, \ell}$.
- Total number of symbols is $k=k_{\mathrm{F}}-k_{\mathrm{C}}$ where $k_{\mathrm{F}}=\max _{\ell} k_{\mathrm{F}, \ell}$ and $k_{\mathrm{C}}=\min _{\ell} k_{\mathrm{C}, \ell}$.
- Transmitter sets top $k_{\mathrm{C}, \ell}-k_{\mathrm{C}}$ symbols to zero to meet its power constraint.
- Transmitter sets bottom $k_{\mathrm{F}}-k_{\mathrm{F}, \ell}$ symbols to zero to meet its noise tolerance constraint.

- Remaining $k_{\mathrm{F}, \ell}-k_{\mathrm{C}, \ell}$ symbols carry information. Rate is $R_{\ell}=\frac{k_{\mathrm{F}, \ell}-k_{\mathrm{C}, \ell}}{n} \log p$.

Linear Combinations of Cosets

- Receiver attempts to recover linear combinations of cosets:

$$
\begin{aligned}
& \mathbf{u}_{m}=\bigoplus_{\ell=1}^{L} q_{m, \ell} \tilde{\mathbf{w}}_{\ell} \\
& \tilde{\mathbf{w}}_{\ell} \in \llbracket \mathbf{w}_{\ell} \rrbracket \triangleq\left\{\mathbf{w} \in \mathbb{Z}_{p}^{k}: \mathbf{w}=\left[\begin{array}{c}
\mathbf{r} \\
\mathbf{w}_{\ell} \\
\mathbf{0}_{k_{\mathrm{F}}-k_{\mathrm{F}, \ell}}
\end{array}\right] \text { for some } \mathbf{r} \in \mathbb{Z}_{p}^{k_{\mathrm{C}, \ell}-k_{\mathrm{C}}}\right\}
\end{aligned}
$$

Linear Combinations of Cosets

- Receiver attempts to recover linear combinations of cosets:

$$
\begin{aligned}
& \mathbf{u}_{m}=\bigoplus_{\ell=1}^{L} q_{m, \ell} \tilde{\mathbf{w}}_{\ell} \\
& \tilde{\mathbf{w}}_{\ell} \in \llbracket \mathbf{w}_{\ell} \rrbracket \triangleq\left\{\mathbf{w} \in \mathbb{Z}_{p}^{k}: \mathbf{w}=\left[\begin{array}{c}
\mathbf{r} \\
\mathbf{w}_{\ell} \\
\mathbf{0}_{k_{\mathrm{F}}-k_{\mathrm{F}, \ell}}
\end{array}\right] \text { for some } \mathbf{r} \in \mathbb{Z}_{p}^{k_{\mathrm{c}, \ell}-k_{\mathrm{C}}}\right\} .
\end{aligned}
$$

- As before, a linear combination with integer coefficient vector \mathbf{a}_{m} is one that satisfies $\left[a_{m, \ell}\right] \bmod p=q_{m, \ell}$.

Computation Rate Region

- We will specify the computation rate region via a set-valued function $\mathcal{R}_{\text {comp }}(\mathbf{H}, \mathbf{A})$ that maps each channel matrix $\mathbf{H} \in \mathbb{R}^{N_{r} \times L}$ and integer

- We will specify the computation rate region via a set-valued function $\mathcal{R}_{\text {comp }}(\mathbf{H}, \mathbf{A})$ that maps each channel matrix $\mathbf{H} \in \mathbb{R}^{N_{r} \times L}$ and integer coefficient matrix $\mathbf{A} \in \mathbb{Z}^{L \times L}$ to a subset of \mathbb{R}_{+}^{L}.

- The computation rate region described by $\mathcal{R}_{\text {comp }}(\mathbf{H}, \mathbf{A})$ is achievable if, for every rate tuple $\left(R_{1}, R_{2}, \ldots, R_{L}\right) \in \mathbb{R}_{+}^{L}, \epsilon>0$, and n large enough, we can select encoders and a decoder such that,
- for all channel matrices $\mathbf{H} \in \mathbb{R}^{N_{r} \times L}$ and
- every coefficient matrix $\mathbf{Q} \in \mathbb{Z}_{p}^{L \times L}$ for which there exists an integer matrix A satisfying $\left(R_{1}, R_{2}, \ldots, R_{L}\right) \in \mathcal{R}_{\text {comp }}(\mathbf{H}, \mathbf{A})$ and $[\mathbf{A}] \bmod p=\mathbf{Q}$,
the probability of decoding error is at most ϵ.

Codebook Construction

- Ordentlich-Erez Eilat '12: Start with nested linear code in Construction A to get a "good" nested lattice code.

Codebook Construction

- Ordentlich-Erez Eilat '12: Start with nested linear code in Construction A to get a "good" nested lattice code.
- We use this idea to generate coarse lattices $\Lambda_{\mathrm{C}, 1}, \ldots, \Lambda_{\mathrm{C}, L}$ and fine lattices $\Lambda_{\mathrm{F}, 1}, \ldots, \Lambda_{\mathrm{F}, L}$, all nested in some order.
- Ordentlich-Erez Eilat '12: Start with nested linear code in Construction A to get a "good" nested lattice code.
- We use this idea to generate coarse lattices $\Lambda_{\mathrm{C}, 1}, \ldots, \Lambda_{\mathrm{C}, L}$ and fine lattices $\Lambda_{\mathrm{F}, 1}, \ldots, \Lambda_{\mathrm{F}, L}$, all nested in some order.
- Transmitter ℓ uses nested lattice code $\left[\Lambda_{F, \ell} / \Lambda_{C, \ell}\right]$.
- Ordentlich-Erez Eilat '12: Start with nested linear code in Construction A to get a "good" nested lattice code.
- We use this idea to generate coarse lattices $\Lambda_{\mathrm{C}, 1}, \ldots, \Lambda_{\mathrm{C}, L}$ and fine lattices $\Lambda_{\mathrm{F}, 1}, \ldots, \Lambda_{\mathrm{F}, L}$, all nested in some order.
- Transmitter ℓ uses nested lattice code $\left[\Lambda_{F, \ell} / \Lambda_{C, \ell}\right]$.
- Linear labeling idea from Chen-Silva-Kschischang IT '13 allows us to build mapping between cosets and nested lattice codes.

"Parallel" Computation

- Separately decode each linear combination from the output Y.

"Parallel" Computation

- Separately decode each linear combination from the output Y.
- Equalization step:

$$
\begin{aligned}
\tilde{\mathbf{y}}_{m}^{\top} & =\mathbf{b}_{m}^{\top} \mathbf{Y} \\
& =\mathbf{a}_{m}^{\top} \mathbf{X}+\left(\mathbf{b}_{m}^{\top} \mathbf{H}-\mathbf{a}_{m}^{\top}\right) \mathbf{X}+\mathbf{b}_{m}^{\top} \mathbf{Z} .
\end{aligned}
$$

"Parallel" Computation

- Separately decode each linear combination from the output Y.
- Equalization step:

$$
\begin{aligned}
\tilde{\mathbf{y}}_{m}^{\top} & =\mathbf{b}_{m}^{\top} \mathbf{Y} \\
& =\mathbf{a}_{m}^{\top} \mathbf{X}+\left(\mathbf{b}_{m}^{\top} \mathbf{H}-\mathbf{a}_{m}^{\top}\right) \mathbf{X}+\mathbf{b}_{m}^{\top} \mathbf{Z} .
\end{aligned}
$$

- Effective noise:

$$
\begin{aligned}
\sigma_{\text {para }}^{2}\left(\mathbf{H}, \mathbf{a}_{m}\right) & =\min _{\mathbf{b}_{m}}\left\|\mathbf{b}_{m}\right\|^{2}+\left\|\left(\mathbf{b}_{m}^{\top} \mathbf{H}-\mathbf{a}_{m}^{\top}\right) \mathbf{P}^{1 / 2}\right\|^{2} \\
& =\left\|\left(\mathbf{P}^{-1}+\mathbf{H}^{\top} \mathbf{H}\right)^{-1 / 2} \mathbf{a}_{m}\right\|^{2}
\end{aligned}
$$

"Parallel" Computation

Theorem (Nazer-Cadambe-Ntranos-Caire '15)

For an AWGN network with L transmitters, a receiver, and power constraints $P_{1}, P_{2}, \ldots, P_{L}$, the following computation rate region is achievable,

$$
\mathcal{R}_{\text {comp }}^{(\text {para })}(\mathbf{H}, \mathbf{A})=\underset{\substack{\tilde{\mathbf{A}} \in \mathbb{Z}^{L \times L} \\ \operatorname{rowspan}(\mathbf{A}) \subseteq \operatorname{rowspan}(\tilde{\mathbf{A}})}}{ } \mathcal{R}_{\text {para }}(\mathbf{H}, \tilde{\mathbf{A}})
$$

$$
\mathcal{R}_{\text {para }}(\mathbf{H}, \tilde{\mathbf{A}})=\left\{\left(R_{1}, \ldots, R_{L}\right) \in \mathbb{R}_{+}^{L}:\right.
$$

$$
\left.R_{\ell} \leq \frac{1}{2} \log ^{+}\left(\frac{P_{\ell}}{\sigma_{\text {para }}^{2}\left(\mathbf{H}, \tilde{\mathbf{a}}_{m}\right)}\right) \forall(m, \ell) \text { s.t. } \tilde{a}_{m, \ell} \neq 0\right\}
$$

"Successive" Computation

- Can rebuild real sum $\mathbf{a}_{m}^{\top} \mathbf{X}$ from \mathbf{u}_{m} and \mathbf{Y}.

"Successive" Computation

- Can rebuild real sum $\mathbf{a}_{m}^{\top} \mathbf{X}$ from \mathbf{u}_{m} and \mathbf{Y}.
- This allows us to build a better effective channel output:

$$
\begin{aligned}
\tilde{\mathbf{y}}_{m}^{\top} & =\mathbf{b}_{m}^{\top} \mathbf{Y}+\mathbf{c}_{m}^{\top} \mathbf{A}_{m-1} \mathbf{X} \\
& =\mathbf{a}_{m}^{\top} \mathbf{X}+\left(\mathbf{b}_{m}^{\top} \mathbf{H}+\mathbf{c}_{m}^{\top} \mathbf{A}_{m-1}-\mathbf{a}_{m}^{\top}\right) \mathbf{X}+\mathbf{b}_{m}^{\top} \mathbf{Z} .
\end{aligned}
$$

"Successive" Computation

- Can rebuild real sum $\mathbf{a}_{m}^{\top} \mathbf{X}$ from \mathbf{u}_{m} and \mathbf{Y}.
- This allows us to build a better effective channel output:

$$
\begin{aligned}
\tilde{\mathbf{y}}_{m}^{\top} & =\mathbf{b}_{m}^{\top} \mathbf{Y}+\mathbf{c}_{m}^{\top} \mathbf{A}_{m-1} \mathbf{X} \\
& =\mathbf{a}_{m}^{\top} \mathbf{X}+\left(\mathbf{b}_{m}^{\top} \mathbf{H}+\mathbf{c}_{m}^{\top} \mathbf{A}_{m-1}-\mathbf{a}_{m}^{\top}\right) \mathbf{X}+\mathbf{b}_{m}^{\top} \mathbf{Z} .
\end{aligned}
$$

- Effective noise:

$$
\begin{aligned}
\sigma_{\text {succ }}^{2}\left(\mathbf{H}, \mathbf{a}_{m} \mid \mathbf{A}_{m-1}\right) & =\min _{\mathbf{b}_{m}, \mathbf{c}_{m}}\left\|\mathbf{b}_{m}\right\|^{2}+\left\|\left(\mathbf{b}_{m}^{\top} \mathbf{H}+\mathbf{c}_{m}^{\top} \mathbf{A}_{m-1}-\mathbf{a}_{m}^{\top}\right) \mathbf{P}^{1 / 2}\right\|^{2} \\
& =\left\|\mathbf{N}_{m-1}\left(\mathbf{P}^{-1}+\mathbf{H}^{\top} \mathbf{H}\right)^{-1 / 2} \mathbf{a}_{m}\right\|^{2}
\end{aligned}
$$

where \mathbf{N}_{m-1} is the nullspace projection corresponding to \mathbf{A}_{m-1}.

"Successive" Computation

- Algebraic Successive Cancellation: We can use $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m-1}$ to eliminate certain codewords from our observation, and thus remove the constraints on them.
- Algebraic Successive Cancellation: We can use $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m-1}$ to eliminate certain codewords from our observation, and thus remove the constraints on them.
- Let $\mathcal{I} \subset\{1, \ldots, L\} \times\{1, \ldots, L\}$ denote a set of index pairs. We say that \mathcal{I} is an admissible mapping for \mathbf{A} if there exists a real-valued, lower unitriangular matrix $\mathbf{L} \in \mathbb{R}^{L \times L}$ such that the (m, ℓ) th entry of $\mathbf{L} \mathbf{A}$ is equal to zero for all $(m, \ell) \notin \mathcal{I}$.

"Successive" Computation

Theorem (Nazer-Cadambe-Ntranos-Caire '15)

For an AWGN network with L transmitters, a receiver, and power constraints $P_{1}, P_{2}, \ldots, P_{L}$, the following computation rate region is achievable,

$$
\begin{aligned}
\mathcal{R}_{\text {comp }}^{(\text {succ) }}(\mathbf{H}, \mathbf{A})= & \bigcup_{\substack{\tilde{\mathbf{A}} \in \mathbb{Z}^{L \times L} \\
\text { rowspan(A) } \\
\text { I admissible }}} \mathcal{R}_{\text {succ }}(\mathbf{H}, \tilde{\mathbf{A}}, \mathcal{I}) \\
\mathcal{R}_{\text {succ }}(\mathbf{H}, \tilde{\mathbf{A}}, \mathcal{I})= & \left\{\left(R_{1}, \ldots, R_{L}\right) \in \mathbb{R}_{+}^{L}:\right. \\
& \left.R_{\ell} \leq \frac{1}{2} \log ^{+}\left(\frac{P_{\ell}}{\sigma_{\text {succ }}^{2}\left(\mathbf{H}, \tilde{\mathbf{a}}_{m} \mid \tilde{\mathbf{A}}_{m-1}\right)}\right) \forall(m, \ell) \in \mathcal{I}\right\}
\end{aligned}
$$

Multiple-Access via Computation

Multiple-Access via Computation

- Successive cancellation (without time-sharing or rate-splitting) achieves corner points.

Multiple-Access via Computation

- Successive cancellation (without time-sharing or rate-splitting) achieves corner points.

Multiple-Access via Computation

- Successive cancellation (without time-sharing or rate-splitting) achieves corner points.

Multiple-Access via Computation

- Successive cancellation (without time-sharing or rate-splitting) achieves corner points.
- Parallel computation can achieve additional rate tuples near the sum rate boundary.

Multiple-Access via Computation

- Successive cancellation (without time-sharing or rate-splitting) achieves corner points.
- Parallel computation can achieve additional rate tuples near the sum rate boundary.

Multiple-Access via Computation

- Successive cancellation (without time-sharing or rate-splitting) achieves corner points.
- Parallel computation can achieve additional rate tuples near the sum rate boundary.
- Successive computation can move these to the exact sum rate.

Multiple-Access via Computation

- Successive cancellation (without time-sharing or rate-splitting) achieves corner points.
- Parallel computation can achieve additional rate tuples near the sum rate boundary.
- Successive computation can move these to the exact sum rate.

Multiple Receivers

- Under this framework, rate regions naturally generalize to multiple receivers:

$$
\begin{aligned}
& \mathcal{R}_{\text {comp }}^{(\text {para })}\left(\mathbf{H}^{[1]}, \ldots, \mathbf{H}^{[K]}, \mathbf{A}^{[1]}, \ldots, \mathbf{A}^{[K]}\right)=\bigcap_{i=1}^{K} \mathcal{R}_{\text {comp }}^{(\text {para })}\left(\mathbf{H}^{[i]}, \mathbf{A}^{[i]}\right) \\
& \mathcal{R}_{\text {comp }}^{(\text {succ) }}\left(\mathbf{H}^{[1]}, \ldots, \mathbf{H}^{[K]}, \mathbf{A}^{[1]}, \ldots, \mathbf{A}^{[K]}\right)=\bigcap_{i=1}^{K} \mathcal{R}_{\text {comp }}^{(\text {succ })}\left(\mathbf{H}^{[i]}, \mathbf{A}^{[i]}\right)
\end{aligned}
$$

- He-Nazer-Shamai ISIT '14: Using this framework, we have found an uplink-downlink duality relationship for compute-and-forward. Allows us to build a connection to the work of Hong-Caire IT '13.
- Ntranos-Cadambe-Nazer-Caire ISIT '13: Used these ideas for integer-forcing interference alignment.
- Nazer-Gastpar ITW '14: Used the problem statement to bring compute-and-forward to the discrete memoryless setting.
- Can the algebraic perspective of Chen-Silva-Kschischang IT '13 be applied to the expanded problem?
- Currently trying to bring in more sophisticated multi-user techniques.

