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Classical Decoding Strategies:

• Joint Decoding

• Zero-Forcing

• Successive Interference Cancellation



A Simple Example

• Y =

[
1 2
1 1

] [
x1

x2

]
+ Z



A Simple Example

• Y =

[
1 2
1 1

] [
x1

x2

]
+ Z

• Zero-Forcing:

[
−1 2
1 −1

]
Y =

[
x1

x2

]
+

[
−1 2
1 −1

]
Z

• Effective noise variances: σ2
1 = 5 and σ2

2 = 2.



A Simple Example

• Y =

[
1 2
1 1

] [
x1

x2

]
+ Z

• Zero-Forcing:

[
−1 2
1 −1

]
Y =

[
x1

x2

]
+

[
−1 2
1 −1

]
Z

• Effective noise variances: σ2
1 = 5 and σ2

2 = 2.

• Integer-Forcing:

[
1 0
0 1

]
Y =

[
x1 + 2x2

x1 + x2

]
+

[
1 0
0 1

]
Z

• Effective noise variances: σ2
1 = 1 and σ2

2 = 1.



Compute-and-Forward

w1

w2

û

u = w1 ⊕w2

• Possible to decode linear functions of the transmitted messages.
(Nazer-Gastpar ’11)

• Provided that the codebooks share a common algebraic structure.
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Compute-and-Forward: Fading Channels
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• Finite field messages, wℓ ∈ F
k
q .

• Gaussian channel model, ‖xℓ‖
2 ≤ nP and zm ∼ N (0, I).

• Equal rates R =
k

n
log2 q.

• Each receiver wants a linear combination, um =

M⊕

ℓ=1

amℓwℓ

• Vanishing probability of error, limn→∞ P(∪m{ûm 6= um}) = 0.



Effective Noise

ym =

M∑

ℓ=1

hmℓxℓ + zm

=
M∑

ℓ=1

amℓxℓ +
M∑

ℓ=1

(hmℓ − amℓ)xℓ + zm

Effective Noise

• How can we go between the integer combination of the real-valued
codewords and the linear combination of the finite field messages?

• How do we cope with the self-noise?

• Use (dithered) nested lattice codes from Erez-Zamir ’04.



Nested Lattice Codes from q-ary Linear Codes

• Choose an n× k generator
matrix G ∈ F

n×k
q for q-ary code.

• Integers serve as coarse lattice,
Λ = Z

n.

• Map elements {0, 1, 2, . . . , q − 1}
to equally spaced points between
−1/2 and 1/2.

• Place codewords x = Gw into
the fundamental Voronoi region
V = [−1/2, 1/2)n

• One more step needed for
shaping gain...
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Effective Noise

• Only need channel state information at the receivers.

• Effective noise due to mismatch between channel coefficients
hm = [hm1 · · · hmM ]T and equation coefficients
am = [am1 · · · amM ]T .

NEFFEC,m = 1 + P‖hm − am‖2

R = min
m
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• Only need channel state information at the receivers.

• Effective noise due to mismatch between channel coefficients
hm = [hm1 · · · hmM ]T and equation coefficients
am = [am1 · · · amM ]T .

NEFFEC,m = 1 + P‖hm − am‖2

R = min
m

1

2
log+

(
P
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)

• Can do better with MMSE scaling.

NEFFEC,m = α2
m + P‖αmhm − am‖2

R = min
m

max
αm

1

2
log

(
P

α2
m + P‖αmhm − am‖2

)

= min
m

1

2
log+

(
1 + P‖hm‖2

‖am‖2 + P (‖hm‖2‖am‖2 − (hT
mam)2)

)



Problem Statement
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• M transmit and N receive antennas (N ≥ M).

• Channel model: Y = HX+ Z

• Each antenna encodes an independent message wℓ (or data stream)
of rate R/M to a codeword xℓ ∈ R

T with power at most SNR.

• i.i.d. Gaussian noise zm ∼ N (0, I).

• Probability of error: P({ŵ1 6= w1} ∪ · · · ∪ {ŵM 6= wM}) < ǫ

• V-BLAST setting.



Joint ML Decoder
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• Joint maximum likelihood decoder offers optimal performance,

RJOINT(H) = min
S⊆{1,2,...,M}

M

2|S|
log det

(
IS + SNR HSH

T
S

)

• Worst-case complexity is exponential in MT (where M =number of
antennas and T =blocklength).

• We would like to approach this performance as closely as possible
using single stream decoding.



Linear Receiver Architectures
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• First project the received signal, Ỹ = BY.

• Each projected output stream ỹm is fed into a decoder that
attempts to recover a single message wm.

• Each decoder may face interference from other data streams,

RLINEAR(H) = min
m

M

2
log

(
1 +

SNR‖bT
mhm‖2

‖bm‖2 + SNR
∑

i 6=m ‖bT
mhi‖2

)
.

• Worst-case complexity is exponential in T and linear in M .



Linear Receiver Architectures

• Zero-Forcing Receiver: Eliminate interference between data streams
by setting projection matrix to

B = H† .

• Also known as a decorrelator.

• Effective channel: Ỹ = X+H−1Z (if H is full rank). Performs
poorly if H is ill-conditioned.



Linear Receiver Architectures

• Zero-Forcing Receiver: Eliminate interference between data streams
by setting projection matrix to

B = H† .

• Also known as a decorrelator.

• Effective channel: Ỹ = X+H−1Z (if H is full rank). Performs
poorly if H is ill-conditioned.

• MMSE Receiver: Can do slightly better with a regularized projection
matrix

B = HT

(
HHT +

1

SNR
I

)−1

.



Integer-Forcing Receiver Architectures
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• Each stream ỹm is fed into a decoder that attempts to recover an
equation um.

• Equations can then be solved digitally for the original messages.

• Choose equation coefficients A to minimize effective noise.

• Worst-case complexity is exponential in T and exponential in M .
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equation um.
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Integer-Forcing Receiver Architectures

• Zhan-Nazer-Erez-Gastpar, submitted to IT <arXiv:1003.5966>

The achievable rate of integer-forcing is

RINTEGER(H) = max
A∈ZM×M

rank(A)=M

max
B∈RM×N

min
m
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)



Integer-Forcing Receiver Architectures

• Zhan-Nazer-Erez-Gastpar, submitted to IT <arXiv:1003.5966>

The achievable rate of integer-forcing is

RINTEGER(H) = max
A∈ZM×M

rank(A)=M

max
B∈RM×N

min
m

R(H,am,bm)

R(H,am,bm) =
M

2
log+

(
SNR

‖bm‖2 + SNR‖HTbm − am‖2

)

• Only need to search over integer vectors am satisfying

‖am‖2 ≤ 1 + λ2
MAXSNR

where λMAX is the maximum singular value of H.



Integer-Forcing Projection Matrices

• Exact Integer-Forcing: Eliminate interference between data streams
by setting projection matrix to

B = AH†

REXACT(H) = max
A∈ZM×M

rank(A)=M

min
m
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log+
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.



Integer-Forcing Projection Matrices

• Exact Integer-Forcing: Eliminate interference between data streams
by setting projection matrix to

B = AH†

REXACT(H) = max
A∈ZM×M

rank(A)=M

min
m

M

2
log+

(
SNR

‖(HT )†am‖2

)
.

• MMSE Integer-Forcing: Can do slightly better with a regularized
projection matrix

B = AHT

(
1

SNR
I+HHT

)−1

.



Outage Formulation

• Channel matrix H is i.i.d. Gaussian, only known at the receiver.

• Assume there exists an architecture that encodes each data stream
at the same rate and achieves sum rate R(H). For a target rate R,
then the outage probability is defined as

pOUT(R) = Pr(R(H) < R).

• For a fixed probability p ∈ (0, 1], the outage rate is defined to be

ROUT(p) = sup{R : pOUT(R) ≤ p}.



Successive Interference Cancellation

• Linear receiver architectures are often augmented using successive
interference cancellation (SIC).

• Basic idea: After decoding codeword xℓ, remove its effect from
channel output to reduce the interference between data streams.
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to maximize the effective SNR for the data stream that sees the
worst channel.



Successive Interference Cancellation

• Linear receiver architectures are often augmented using successive
interference cancellation (SIC).

• Basic idea: After decoding codeword xℓ, remove its effect from
channel output to reduce the interference between data streams.

• V-BLAST I: Decodes and cancel the data streams in a
predetermined order, irrespective of the channel realization.

• V-BLAST II: Select the decoding order for each channel realization
to maximize the effective SNR for the data stream that sees the
worst channel.

• V-BLAST III: Decodes and cancel the data streams in a
predetermined order. The rate of each data stream is selected to
maximize the sum rate. (Outside problem statement.)



Simulation: Outage Rates
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Figure: 1 percent outage rates for the 2× 2 complex-valued MIMO channel
with Rayleigh fading.



Simulation: Outage Probability
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Figure: Outage probability for the 2× 2 complex-valued MIMO channel with
Rayleigh fading for a target sum rate of R = 6
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Integer-Forcing Geometry

Noise variance in received stream m:
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Diversity-Multiplexing Tradeoff

• Zheng-Tse ’03: A family of codes is said to achieve spatial
multiplexing gain r and diversity gain d if the total data rate and the
average probability of error satisfy

lim
SNR→∞

R(SNR)

log SNR
≥ r

lim
SNR→∞

log Pe(SNR)

log SNR
≤ −d.

• For our problem, the optimal diversity-multiplexing tradeoff (DMT)
under Rayleigh fading is

dJOINT(r) = N
(
1−

r

M

)

where r ∈ [0,M ] and can be achieved by joint ML decoding.



Diversity-Multiplexing Tradeoff

• Zheng-Tse ’03: The DMTs achieved by the decorrelator and SIC
architectures are
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dV-BLAST II(r) ≤ (N − 1)
(
1−

r

M

)

dV-BLAST III(r) = piecewise linear curve connecting points (rk, n− k)
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1 ≤ k ≤ n



Diversity-Multiplexing Tradeoff

• Zheng-Tse ’03: The DMTs achieved by the decorrelator and SIC
architectures are

dDECORR(r) =
(
1−

r

M

)

dV-BLAST I(r) =
(
1−

r

M

)

dV-BLAST II(r) ≤ (N − 1)
(
1−

r

M

)

dV-BLAST III(r) = piecewise linear curve connecting points (rk, n− k)

where r0 = 0, rk =

k−1∑

i=0

k − i

n− i
1 ≤ k ≤ n

• Integer-forcing recovers the optimal DMT:

dINTEGER(r) = N
(
1−

r

M

)



Diversity-Multiplexing Tradeoff
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Figure: Diversity-multiplexing tradeoff for the 4× 4 MIMO channel with
Rayleigh fading.



MIMO with Interference



Integer-Forcing Geometry

Choose integer vectors orthogonal to the interference space.

a1 a1

a2

a2

J̃ J̃

Decorrelator Integer-Forcing

Y = HX+ JS+ Z



Integer-Forcing Advantage

! "! #! $! %! &! '!
!

#

%

'

(

"!

"#

)*+,-./0

#
,1
,2
3
45
6
7
,+
5
47

,

,

89:;4,-*,<,#0

=;4767>,-*,<,#0

??)@!)=A,-*,<,#0

??)@,-*,<,#0

??)@,-*,<,"0

2 by 2 MIMO, 1 dimensional interference, INR = SNR0.2



Some Connections

• Lattice Reduction: Yao-Wornell ’02,
Taherzadeh-Mobasher-Khandani ’07, Jalden-Elia ’09

• Lattices for AWGN Capacity: Erez-Zamir ’04

• Lattices for DMT: El Gamal-Caire-Damen ’04

• Practical compute-and-forward: Feng-Silva-Kschischang ’10, Hern

and Narayanan ’11, Ordentlich and Erez ’10, Osmane and Belfiore

’11



Concluding Remarks

• Algebraic structure enables us to do something in between treating
interference as noise and decoding interference.

• See ISIT ’11 Tutorial: Algebraic Structure in Network Information
Theory for more information.

• Near-optimal receiver architecture with decoupled optimization
problems.

• Question: Can this be generalized to include encoding across
transmit antennas?



Even more V-BLAST...

• V-BLAST I-V: Decodes and cancel the data streams in the best
order, given the channel realization. The rate of each data stream is
selected to maximize the sum rate. (Outside problem statement.)
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