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Classical Decoding Strategies:

e Joint Decoding
e Zero-Forcing

e Successive Interference Cancellation
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e Zero-Forcing: [1 _1]Y—[x2]+[ 1 _1]Z

o Effective noise variances: 07 =5 and 02 = 2.



Zero-Forcing: [ 1 -1 ]Y o [ X2 ] * [ 1

Effective noise variances: 07 =5 and 02 = 2.

Integer-Forcing: [ (1) ? ] Y = [ );1 4__’_2;2
1 2

Effective noise variances: 07 = 1 and 05 = 1.
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e Possible to decode linear functions of the transmitted messages.
(Nazer-Gastpar '11)

e Provided that the codebooks share a common algebraic structure.



Compute-and-Forward
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Compute-and-Forward: Fading Channels
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Finite field messages, wy € F’q“.

Gaussian channel model, ||x/||*> < nP and z,, ~ N(0,1).

k
Equal rates R = —logs gq.
n

M

Each receiver wants a linear combination, u,, = @amgw£

(=1

Vanishing probability of error, lim,,—,o0 P(Up{m # up}) = 0.
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Effective Noise

e How can we go between the integer combination of the real-valued
codewords and the linear combination of the finite field messages?

e How do we cope with the self-noise?

e Use (dithered) nested lattice codes from Erez-Zamir '04.



e Choose an n x k generator
matrix G € IFZX"“ for g-ary code.
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o Integers serve as coarse lattice, g—14 .
A — Zn . .
e Map elements {0,1,2,...,q— 1} 1 *
to equally spaced points between 9 3 * *
—1/2 and 1/2. 21 ‘
1 - . .
e Place codewords x = Gw into 0= o .
the fundamental Voronoi region (-1, -1 )bttt ' (3,—3)
V=[-1/2,1/2)" 012 3 dreand
Fy

e One more step needed for
shaping gain...



e Only need channel state information at the receivers.

e Effective noise due to mismatch between channel coefficients
h,, = [Am1 - har]” and equation coefficients
ay, = [aml ce amM]T-

Neprecm = 1+ Py, — ap,

1 P
R = min = log™
g los (1+P|]hm—am|\2)




e Only need channel state information at the receivers.

e Effective noise due to mismatch between channel coefficients
h,, = [Am1 - har]” and equation coefficients
ay, = [aml ce amM]T-

Neprecm = 1+ Py, — ap,

1 P
R = min = log™
g los (I—I—PHhm—amH2>

e Can do better with MMSE scaling.

Nerrecm = a2, + Pllamhy, — ap|?

R = min max L log ( P )
moam 2 a2, + Pllamh, —an?
— min = log* ( L+ Plhy | )
m 2 2?4 P ([ *[am[* = (hfam)?)



Problem Statement
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M transmit and N receive antennas (N > M).
Channel model: Y = HX + Z

Each antenna encodes an independent message wy (or data stream)
of rate R/M to a codeword x; € R” with power at most SNR.

i.i.d. Gaussian noise z,, ~ N (0,1).
Probability of error: P({W1 # w1} U ---U{Wy #wpn}) <e
V-BLAST setting.



Joint ML Decoder
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e Joint maximum likelihood decoder offers optimal performance,

M log det (Is + SNR HsHY)

H I
Ryont(H) = sc{1,2, ,M}2|S|

e Worst-case complexity is exponential in MT (where M =number of
antennas and T =blocklength).

e We would like to approach this performance as closely as possible
using single stream decoding.



Linear Receiver Architectures
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First project the received signal, Y = BY.

Each projected output stream y,, is fed into a decoder that
attempts to recover a single message w,.

Each decoder may face interference from other data streams,

M SNR||bZ h,,||?
Rinear(H) = mln log( [P b | ) .

_|_
D12+ SNR Dy, (b7 i 2

Worst-case complexity is exponential in T" and linear in M.



e Zero-Forcing Receiver: Eliminate interference between data streams
by setting projection matrix to

B=H'.
e Also known as a decorrelator.

o Effective channel: Y = X + H~'Z (if H is full rank). Performs
poorly if H is ill-conditioned.



e Zero-Forcing Receiver: Eliminate interference between data streams
by setting projection matrix to

B=H'.
e Also known as a decorrelator.

o Effective channel: Y = X + H~'Z (if H is full rank). Performs
poorly if H is ill-conditioned.

o MMSE Receiver: Can do slightly better with a regularized projection
matrix

1 —1
B=H" (HH? + —1 )
( *SNR )



Integer-Forcing Receiver Architectures
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Integer-Forcing Receiver: Uy, = @amewe
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e First project the received signal, Y = BY.

e Each stream ¥, is fed into a decoder that attempts to recover an
equation u,,.

Equations can then be solved digitally for the original messages.

Choose equation coefficients A to minimize effective noise.

Worst-case complexity is exponential in 7" and exponential in M.



Integer-Forcing Receiver Architectures
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Integer-Forcing Receiver: U, = @amewe
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e First project the received signal, Y = BY.

e Each stream ¥, is fed into a decoder that attempts to recover an
equation u,,.

Equations can then be solved digitally for the original messages.

Choose equation coefficients A to minimize effective noise.

Worst-case complexity is exponential in 7" and exponential in M.



Integer-Forcing Receiver Architectures
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Integer-Forcing Receiver: U, = @amewe
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e First project the received signal, Y = BY.

e Each stream ¥, is fed into a decoder that attempts to recover an
equation u,,.

Equations can then be solved digitally for the original messages.

Choose equation coefficients A to minimize effective noise.

Worst-case complexity is exponential in 7" and exponential in M.



e Zhan-Nazer-Erez-Gastpar, submitted to IT <arXiv:1003.5966>
The achievable rate of integer-forcing is

R H)= max max minR(H,a,,, b
INTEGER (H) Alhax, pluax i (H,a,,,b;,)
rank(A)=M

M SNR
R(H, &, bm) = 5-log (Hbm|\2+SNRHHTbm_amuz)



Integer-Forcing Receiver Architectures

e Zhan-Nazer-Erez-Gastpar, submitted to IT <arXiv:1003.5966>
The achievable rate of integer-forcing is

Rintecer(H) = Jax B£%£N%HR(H,am,bm)
rank(A)=M
M SNR

R(H.a,, by,) = = log*

(s m:bm) =5 los (ubmH?+SNRHHTbm—am||2>

e Only need to search over integer vectors a,, satisfying
2 2

where Apax is the maximum singular value of H.



e Exact Integer-Forcing: Eliminate interference between data streams
by setting projection matrix to

B = AH'

M SNR
H) — in — 1 + (" .
Rexact (H) Almax i - log (||(HT)Tam||2)
rank(A)=M



e Exact Integer-Forcing: Eliminate interference between data streams
by setting projection matrix to

B = AH'

M SNR
R H) = max min — log™ 7) :
exacT (H) Aepiiir Tt Ty 08 (||(HT)Tam||2

rank(A)=M
o MMSE Integer-Forcing: Can do slightly better with a regularized

projection matrix

1 -1
_ v 1 T
B =AH (SNRI+HH ) .



e Channel matrix H is i.i.d. Gaussian, only known at the receiver.

e Assume there exists an architecture that encodes each data stream
at the same rate and achieves sum rate R(H). For a target rate R,
then the outage probability is defined as

pout(R) = Pr(R(H) < R).

e For a fixed probability p € (0,1], the outage rate is defined to be

Rout(p) = sup{R : pout(R) < p}.



o Linear receiver architectures are often augmented using successive
interference cancellation (SIC).

o Basic idea: After decoding codeword x4, remove its effect from
channel output to reduce the interference between data streams.



o Linear receiver architectures are often augmented using successive
interference cancellation (SIC).

o Basic idea: After decoding codeword x4, remove its effect from
channel output to reduce the interference between data streams.

e V-BLAST I: Decodes and cancel the data streams in a
predetermined order, irrespective of the channel realization.



Successive Interference Cancellation

e Linear receiver architectures are often augmented using successive
interference cancellation (SIC).

o Basic idea: After decoding codeword x;, remove its effect from
channel output to reduce the interference between data streams.

e V-BLAST I: Decodes and cancel the data streams in a
predetermined order, irrespective of the channel realization.

e V-BLAST II: Select the decoding order for each channel realization
to maximize the effective SNR for the data stream that sees the
worst channel.



Successive Interference Cancellation

e Linear receiver architectures are often augmented using successive
interference cancellation (SIC).

o Basic idea: After decoding codeword x;, remove its effect from
channel output to reduce the interference between data streams.

e V-BLAST I: Decodes and cancel the data streams in a
predetermined order, irrespective of the channel realization.

e V-BLAST II: Select the decoding order for each channel realization
to maximize the effective SNR for the data stream that sees the
worst channel.

e V-BLAST Ill: Decodes and cancel the data streams in a
predetermined order. The rate of each data stream is selected to
maximize the sum rate. (Outside problem statement.)



Simulation: Outage Rates
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Figure: 1 percent outage rates for the 2 x 2 complex-valued MIMO channel
with Rayleigh fading.
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Figure: Outage probability for the 2 x 2 complex-valued MIMO channel with
Rayleigh fading for a target sum rate of R =6



Noise variance in received stream m:
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Noise variance in received stream m:
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Noise variance in received stream m:
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Noise variance in received stream m:
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Diversity-Multiplexing Tradeoff

e Zheng-Tse '03: A family of codes is said to achieve spatial
multiplexing gain 7 and diversity gain d if the total data rate and the
average probability of error satisfy

_ R(SNR) _
SNRo0 log SNR =
log P.(SNR)

< —d.
SNRooo  logSNR =

e For our problem, the optimal diversity-multiplexing tradeoff (DMT)
under Rayleigh fading is

dJomT(T) =N (1 - %)

where r € [0, M] and can be achieved by joint ML decoding.



e Zheng-Tse '03: The DMTs achieved by the decorrelator and SIC
architectures are

r
dDECORR(T) = (1 - M)

r

dy.giast |(7') = (1 - M)
r
dy.giast ||(7') < (N 1) (1 - M)
dy.giast () = piecewise linear curve connecting points (rg,n — k)
Bl
h =0, = 1<k<
where 1 , Tk Zn—i SRS™N

1=0



e Zheng-Tse '03: The DMTs achieved by the decorrelator and SIC
architectures are
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o Integer-forcing recovers the optimal DMT:

dINTEGER(T) =N (1 - %)
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Figure: Diversity-multiplexing tradeoff for the 4 x 4 MIMO channel with
Rayleigh fading.






Choose integer vectors orthogonal to the interference space.

Decorrelator Integer-Forcing

Y=HX+JS+7Z



Integer-Forcing Advantage
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2 by 2 MIMO, 1 dimensional interference, INR = SNR?2



Some Connections

e Lattice Reduction: Yao-Wornell '02,
Taherzadeh-Mobasher-Khandani '07, Jalden-Elia '09

o Lattices for AWGN Capacity: Erez-Zamir 04

e Lattices for DMT: ElI Gamal-Caire-Damen '04

e Practical compute-and-forward: Feng-Silva-Kschischang '10, Hern
and Narayanan ’11, Ordentlich and Erez '10, Osmane and Belfiore
11



e Algebraic structure enables us to do something in between treating
interference as noise and decoding interference.

o See ISIT '11 Tutorial: Algebraic Structure in Network Information
Theory for more information.

e Near-optimal receiver architecture with decoupled optimization
problems.

e Question: Can this be generalized to include encoding across
transmit antennas?



e V-BLAST I-V: Decodes and cancel the data streams in the best
order, given the channel realization. The rate of each data stream is

selected to maximize the sum rate. (Outside problem statement.)
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