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Motivation

Focus of this Talk:
e Scalar quantization with the goal of preserving mutual information.

e In particular, what are the fundamental limits of such
information-distilling quantizers?

e We focus on the regime where the mutual information to be
preserved is itself small.

Possible Applications:

e Quantization for low-capacity channels
(e.g., continuous to 1 bit output)

e Inference tasks
(e.g., clustering while preserving conditional distributions)

Connections:
e Log loss distortion measure
e Information bottleneck

e Polar coding



Sidebar: Distillation?

o Why call it “information-distilling”
quantization?

o Better yet, am | even allowed to use the
word “distillation”?

e Merriam-Webster defines distillation as

1. the process of purifying a liquid by
successive evaporation and condensation

X

2. a process like distillation )
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Problem Statement

e Let X and Y be random variables with joint distribution Pxy .
e Usual notation: Alphabets X, J and [M] £ {1,2,..., M}.

e Goal: Design an M-ary scalar quantizer f for Y under the objective
of maximizing the mutual information between X and f(Y).

e Optimal Quantizer(s): argsup I(X; f(Y)).
f:y—[M]

o Our notation: I(X;[Y]y) £ sup I(X;Y) where [Y]y is the set
YeY]m
of all (deterministic) M-ary quantizations of )/,
Yiu £{F(Y) : [:Y = [M]}.
e We are mainly concerned with the value of the preserved mutual
information (instead of efficient quantizer design algorithms).

e Can show it suffices to consider only deterministic quantizers.



A First Guess

e Take X ~ Bernoulli(p).

e At a first glance, it that optimal binary quantization
suffices to preserve a constant fraction of the mutual information.

e Moreover, it that the MAP quantizer suffices to this
end.

o Agrees with our intuition from the AWGN case: the MAP quantizer
retains at least 2/m ~ 0.637 fraction of the mutual information.

e For general channels, these intuitions are correct in the
large I(X;Y') regime, but not in the small I(X;Y") regime.



Preview: The BEC

¢ Consider a standard Binary Erasure Channel (BEC).
e There are only two non-trivial quantizers:
1 if Pr( X =11Y =y) > 1/2

fmar(y) = ¢ 2 if Pr( X =1Y =y)<1/2.
Bernoulli(1/2) if Pr(X =1]Y =y) =1/2

)1 ifye{1,7},
fz(y)—{2 £y = 0.



Preview: The BEC
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e Turns out that, in the small 3 regime,
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Connection to Log Loss Distortion Measure

1
Log loss distortion for quantizing X: Ex [log (—)]
q(X)

Assume we would like to quantize Y in order to later make inferences
about X. Natural to consider the related distortion measure

Exy [log w} — EyE [log #‘ Y} — H(X|Y)
ay (X) qy (X) ’
Quantizer f equivalent to selecting partition S1,...,Sy of V.

Let T denote the cell occupied by Y.

1
By [lg W' Y| = HXIT) 4 D(Pxir x| Pr)

> H(X|T)
with equality if and only if a; = Px|yes, for all t € [M].

Minimizing H(X1Y) is equivalent to maximizing I(X; f(Y)).



Connection to Information Bottleneck
e Recall the information bottleneck tradeoff
(Tishby - Pereira - Bialek '99, Gilad-Bachrach - Navot - Tishby '03)

IBg(P £ I(X:T
R( XY) PT\YZI?(%/}fT)SR ( ’ )

o Key difference from our formulation is that 7" can be random and is
restricted by I(Y';T') < R rather than alphabet size M.

e Studied in machine learning literature.
e Connected to remote source coding.
e Can be interpreted in our context as a single-letter solution as

n — oo for Pxnyn = P)’}y

lim —I(X™;[Y"™]pn) = IBlog mr(Pxy ).

n—oo N

e n = 1 is of considerable interest since inference is seldom performed
in blocks of independent observations.



Worst-Case Information Preservation

For given Pxy, seems difficult to bound I(X; [Y]M) in closed-form
(and this can be connected to the subset sum problem).

However, for some special cases, there are polynomial-time
algorithms for finding the optimal quantizer. (Kurkoski - Yagi '14)

We focus on worst-case bounds in the following sense:
e Fix input distribution Px.
e Fix mutual information 3 between X and Y.

Look for the worst-case channel Py |x.

e Upper and lower bound resulting I (X [Y]ar).

Formally, we want to characterize the “information-distillation”
function:

Dy (P £ inf I(X:[Yu).
m(Px, ) PY‘X:}?X;YW (X5[Ym)



Additive Gaps and Connection to Polar Coding

e These quantization questions also appear when constructing
efficiently-implementable polar codes. (Pedarsani - Hassani - Tal -
Telatar ’11, Tal - Sharov - Vardy '12, Kartowsky - Tal ’17)

e Usual focus is on bounding the
e |n our notation, Kartowsky - Tal 17 showed that
IDyr(Px, B) = B — v(|X[) M~/ (¥~
for some function v.

o In the small 3 regime, the Kartowsky - Tal '17 quantization approach
requires M = O(5~/2) to preserve a constant fraction of mutual
information.

e In this talk, we show that M = O(log(1/53)) to preserve a constant
fraction of mutual information for binary-input channels.



Main Result

Theorem (Submitted to ISIT '17)

If X ~ Bernoulli(1/2), then

(M-1)B
log(1/8)

Also, there is a sequence of channels for which this is tight
(up to constants).

I(X;[Y]m) > constant x

e A bit more formally: IDy;(Bernoulli(1/2), 8) = @<M>

log(1/8)

e Similar behavior for Bernoulli(p).

e Explicit constants for upper and lower bounds.



Main Result

Theorem (Submitted to ISIT '17)
If X ~ Bernoulli(1/2) and I(X;Y) = > 0, we have

12 log (L)1
Furthermore, for any n € (0,1) and any natural M < maxi_oj)l,(ﬁ) )

| B n(1 —n)?
16 2 M =) e WA 12

Finally, for any 0 < 8 < 1, there exist distributions Pxy with
X ~ Bernoulli(1/2) and I(X;Y) = 3, for which

B
In (<1350)

I(X;[Y]m) <2M




Simple Bounds

Lemma

For discrete output alphabets Y, I(X;[Y]n) >

#I(X; Y).

Y|
Proof:

e Recall that I(X;Y) = 3y, Py (y) D(Pxjy =y Px)-
o Assume Py (1) D(Pxjy—1l|Px) > --- > Py (|Y]) D(Pxjy=y|[| Px)-

y ify <M,
e Set =
1) {M otherwise.

e Worst case: all Py (y) D(Px|y—y||Px) values are equal.

Corollary

K-1
For natural numbers K < M, I(X;[Y]k) >

M

I(X;[Y]nm).



Proof of the Lower Bound

e Define oy = Pr(X =1]Y =y) and a = E[ay].
e Also, define D, = D(Px|y—,|Px) = d(ayl|@).
e Consider the following M = 2L + 1 level quantizer:
0 0 < d(ay|a) <,
fly) =90 < dleylla) <y, ay < a,
0y < dayll@) < yeq1, oy > a

L

o Follows that T(X; f(Y)) = Y Pr(f(Y) = £)D(Px|sx )=l Px)
{=—L

L
> (F(ve) = Fyesr)) ve

Vv
P

I
M=

F(ye) (ve = ve-1),

~
I
—



Proof of the Lower Bound

e Now, set the quantization parameters to

I (X ;Y ) -1/L 0—1
= 0= = 10",
a! I +1 T V=M

and note that vg1 — ¢ = 0(ve — Y1)
e Let F(y) = Pr(Dy >7)

e We have that

1) =By = [ F " ey

I
M=

/W+1 _
Ve

o~
Il

0

M=

<Y (ver1 =) F(ve)
=0
L —
=N +60> (v —v-1)F(7)
/=1

<y +0I(X; f(Y))



Proof of the Lower Bound

e Rearranging terms, we have shown that

1(X; () > (v ) T —

> (I(X;Y))% (1 — %)

e We can preserve a constant fraction of mutual information,
I(X; f(Y)>nI(X;Y) with

[l i) )

a (1-mn)?

1
12max{log <7>71}
e Recall that M =2L +1,s0 M < i I()é(,Y)
-0




Counterexample for Upper Bound

e Qur upper bound is based on bounding the performance for the
following symmetric channel:

o) + (1_4#)3 0" <zx< 1—2ﬁ
frt) = _
0 otherwise

e See our preprint for analysis.



A Few Properties

Data Processing: If X —Y — V form a Markov chain is this order,
then I(X; [V]n) < I(X;[Y]m).

e Convexity: For a fixed Py, the function Py x — I(X;[Y]n) is
convex.

e Lack of Concavity: For a fixed Py |x, I(X;[Y]m) is generally not
concave in Px.

e Monotonicity: The function ID;(Px, 3) is convex and
monotonically nondecreasing in S.

e No Diminishing Returns: The inequality
I(X; Y mn) < I(X5[Y]a) +1(X; [Y]w,) is not always satisfied.



Conclusions

o Considered the “information distillation” problem of scalar
quantization for preserving mutual information.

e Focused on the regime where the original mutual information 5 is
already quite small.

e For binary input channels, developed upper and lower bounds that
are match up to constants.

e Preprint on my website if you are interested.



