Information-Distilling Quantizers

Bobak Nazer BU
Or Ordentlich MIT/BU
Yury Polyanskiy MIT

Information Theory and Applications Workshop February 15, 2017

Motivation

Focus of this Talk:

- Scalar quantization with the goal of preserving mutual information.
- In particular, what are the fundamental limits of such information-distilling quantizers?
- We focus on the regime where the mutual information to be preserved is itself small.

Possible Applications:

- Quantization for low-capacity channels (e.g., continuous to 1 bit output)
- Inference tasks
(e.g., clustering while preserving conditional distributions)

Connections:

- Log loss distortion measure
- Information bottleneck
- Polar coding

Sidebar: Distillation?

- Why call it "information-distilling" quantization?
- Better yet, am I even allowed to use the word "distillation"?
- Merriam-Webster defines distillation as

1. the process of purifying a liquid by successive evaporation and condensation
x
2. a process like distillation

Problem Statement

- Let X and Y be random variables with joint distribution $P_{X Y}$.
- Usual notation: Alphabets \mathcal{X}, \mathcal{Y} and $[M] \triangleq\{1,2, \ldots, M\}$.
- Goal: Design an M-ary scalar quantizer f for Y under the objective of maximizing the mutual information between X and $f(Y)$.
- Optimal Quantizer(s): $\arg \sup I(X ; f(Y))$.

$$
f: \mathcal{Y} \rightarrow[\hat{M}]
$$

- Our notation: $I\left(X ;[Y]_{M}\right) \triangleq \sup _{\tilde{Y} \in[Y]_{M}} I(X ; \tilde{Y})$ where $[Y]_{M}$ is the set of all (deterministic) M-ary quantizations of \mathcal{Y},

$$
[Y]_{M} \triangleq\{f(Y): f: \mathcal{Y} \rightarrow[M]\} .
$$

- We are mainly concerned with the value of the preserved mutual information (instead of efficient quantizer design algorithms).
- Can show it suffices to consider only deterministic quantizers.
- Take $X \sim \operatorname{Bernoulli}(p)$.
- At a first glance, it might seem that optimal binary quantization suffices to preserve a constant fraction of the mutual information.
- Moreover, it might seem that the MAP quantizer suffices to this end.
- Agrees with our intuition from the AWGN case: the MAP quantizer retains at least $2 / \pi \approx 0.637$ fraction of the mutual information.
- For general channels, these intuitions are correct in the large $I(X ; Y)$ regime, but not in the small $I(X ; Y)$ regime.

Preview: The BEC

- Consider a standard Binary Erasure Channel (BEC).
- There are only two non-trivial quantizers:

$$
\begin{aligned}
f_{\mathrm{MAP}}(y) & = \begin{cases}1 & \text { if } \operatorname{Pr}(X=1 \mid Y=y)>1 / 2 \\
2 & \text { if } \operatorname{Pr}(X=1 \mid Y=y)<1 / 2 \\
\operatorname{Bernoulli}(1 / 2) & \text { if } \operatorname{Pr}(X=1 \mid Y=y)=1 / 2\end{cases} \\
f_{Z}(y) & = \begin{cases}1 & \text { if } y \in\{1, ?\}, \\
2 & \text { if } y=0 .\end{cases}
\end{aligned}
$$

Preview: The BEC

- Turns out that, in the small β regime,

$$
\begin{aligned}
& I\left(X ; f_{Z}(Y)\right)=\frac{\beta}{2} h\left(\frac{1-\beta}{2-\beta}\right)+1-h\left(\frac{1-\beta}{2-\beta}\right)=\frac{\beta}{2}+o(\beta) \\
& I\left(X ; f_{\mathrm{MAP}}(Y)\right)=1-h\left(\frac{1-\beta}{2}\right)=\frac{\log e}{2} \beta^{2}+o\left(\beta^{2}\right)
\end{aligned}
$$

Connection to Log Loss Distortion Measure

- Log loss distortion for quantizing $X: \quad \mathbb{E}_{X}\left[\log \left(\frac{1}{q(X)}\right)\right]$
- Assume we would like to quantize Y in order to later make inferences about X. Natural to consider the related distortion measure

$$
\mathbb{E}_{X Y}\left[\log \frac{P_{X \mid Y}(X \mid Y)}{q_{Y}(X)}\right]=\mathbb{E}_{Y} \mathbb{E}\left[\left.\log \frac{1}{q_{Y}(X)} \right\rvert\, Y\right]-H(X \mid Y)
$$

- Quantizer f equivalent to selecting partition $\mathcal{S}_{1}, \ldots, \mathcal{S}_{M}$ of \mathcal{Y}. Let T denote the cell occupied by Y.
- $\mathbb{E}_{Y} \mathbb{E}\left[\left.\log \frac{1}{q_{Y}(X)} \right\rvert\, Y\right]=H(X \mid T)+D\left(P_{X \mid T} \| a_{T} \mid P_{T}\right)$

$$
\geq H(X \mid T)
$$

with equality if and only if $a_{t}=P_{X \mid Y \in \mathcal{S}_{t}}$ for all $t \in[M]$.

- Minimizing $H(X \mid Y)$ is equivalent to maximizing $I(X ; f(Y))$.

Connection to Information Bottleneck

- Recall the information bottleneck tradeoff
(Tishby - Pereira - Bialek '09, Gilad-Bachrach - Navot - Tishby '03)

$$
\mathrm{IB}_{R}\left(P_{X Y}\right) \triangleq \max _{P_{T \mid Y}: I(Y ; T) \leq R} I(X ; T)
$$

- Key difference from our formulation is that T can be random and is restricted by $I(Y ; T) \leq R$ rather than alphabet size M.
- Studied in machine learning literature.
- Connected to remote source coding.
- Can be interpreted in our context as a single-letter solution as $n \rightarrow \infty$ for $P_{X^{n} Y^{n}}=P_{X, Y}^{n}$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} I\left(X^{n} ;\left[Y^{n}\right]_{M^{n}}\right)=\operatorname{IB}_{\log M}\left(P_{X Y}\right)
$$

- $n=1$ is of considerable interest since inference is seldom performed in blocks of independent observations.

Worst-Case Information Preservation

- For given $P_{X Y}$, seems difficult to bound $I\left(X ;[Y]_{M}\right)$ in closed-form (and this can be connected to the subset sum problem).
- However, for some special cases, there are polynomial-time algorithms for finding the optimal quantizer. (Kurkoski - Yagi '14)
- We focus on worst-case bounds in the following sense:
- Fix input distribution P_{X}.
- Fix mutual information β between X and Y.
- Look for the worst-case channel $P_{Y \mid X}$.
- Upper and lower bound resulting $I\left(X ;[Y]_{M}\right)$.
- Formally, we want to characterize the "information-distillation" function:

$$
\operatorname{ID}_{M}\left(P_{X}, \beta\right) \triangleq \inf _{P_{Y \mid X}: I(X ; Y) \geq \beta} I\left(X ;[Y]_{M}\right)
$$

Additive Gaps and Connection to Polar Coding

- These quantization questions also appear when constructing efficiently-implementable polar codes. (Pedarsani - Hassani - Tal Telatar '11, Tal - Sharov - Vardy '12, Kartowsky - Tal '17)
- Usual focus is on bounding the additive gap.
- In our notation, Kartowsky - Tal '17 showed that

$$
\operatorname{ID}_{M}\left(P_{X}, \beta\right) \geq \beta-\nu(|\mathcal{X}|) M^{-2 /(|\mathcal{X}|-1)}
$$

for some function ν.

- In the small β regime, the Kartowsky - Tal '17 quantization approach requires $M=O\left(\beta^{-1 / 2}\right)$ to preserve a constant fraction of mutual information.
- In this talk, we show that $M=\Theta(\log (1 / \beta))$ to preserve a constant fraction of mutual information for binary-input channels.

Main Result

Theorem (Submitted to ISIT '17)

If $X \sim \operatorname{Bernoulli}(1 / 2)$, then

$$
I\left(X ;[Y]_{M}\right) \geq \text { constant } \times \frac{(M-1) \beta}{\log (1 / \beta)}
$$

Also, there is a sequence of channels for which this is tight (up to constants).

- A bit more formally: $\operatorname{ID}_{M}(\operatorname{Bernoulli}(1 / 2), \beta)=\Theta\left(\frac{(M-1) \beta}{\log (1 / \beta)}\right)$.
- Similar behavior for Bernoulli (p).
- Explicit constants for upper and lower bounds.

Main Result

Theorem (Submitted to ISIT '17)

If $X \sim \operatorname{Bernoulli}(1 / 2)$ and $I(X ; Y)=\beta>0$, we have

$$
I\left(X ;[Y]_{2}\right) \geq \frac{1}{3 e} \frac{\beta}{1+\ln \left(\frac{1}{\beta}\right)} .
$$

Furthermore, for any $\eta \in(0,1)$ and any natural $M<\frac{12 \max \left\{\log \left(\frac{1}{\beta}\right), 1\right\}}{(1-\eta)^{2}}$

$$
I\left(X ;[Y]_{M}\right) \geq(M-1) \frac{\beta}{\max \{\log (1 / \beta), 1\}} \frac{\eta(1-\eta)^{2}}{12} .
$$

Finally, for any $0<\beta \leq 1$, there exist distributions $P_{X Y}$ with $X \sim \operatorname{Bernoulli}(1 / 2)$ and $I(X ; Y)=\beta$, for which

$$
I\left(X ;[Y]_{M}\right) \leq 2 M \frac{\beta}{\ln \left(\frac{e \log (e)}{2 \beta}\right)}
$$

Simple Bounds

Lemma

For discrete output alphabets $\mathcal{Y}, \quad I\left(X ;[Y]_{M}\right) \geq \frac{M-1}{|\mathcal{Y}|} I(X ; Y)$.

Proof:

- Recall that $I(X ; Y)=\sum_{y \in \mathcal{Y}} P_{Y}(y) D\left(P_{X \mid Y=y} \| P_{X}\right)$.
- Assume $P_{Y}(1) D\left(P_{X \mid Y=1} \| P_{X}\right) \geq \cdots \geq P_{Y}(|\mathcal{Y}|) D\left(P_{X|Y=|\mathcal{Y}|} \| P_{X}\right)$.
- Set $f(y)= \begin{cases}y & \text { if } y<M, \\ M & \text { otherwise. }\end{cases}$
- Worst case: all $P_{Y}(y) D\left(P_{X \mid Y=y} \| P_{X}\right)$ values are equal.

Corollary

For natural numbers $K<M, \quad I\left(X ;[Y]_{K}\right) \geq \frac{K-1}{M} I\left(X ;[Y]_{M}\right)$.

Proof of the Lower Bound

- Define $\alpha_{y}=\operatorname{Pr}(X=1 \mid Y=y)$ and $\bar{\alpha}=\mathbb{E}\left[\alpha_{Y}\right]$.
- Also, define $D_{y}=D\left(P_{X \mid Y=y} \| P_{X}\right)=d\left(\alpha_{y} \| \bar{\alpha}\right)$.
- Consider the following $M=2 L+1$ level quantizer:

$$
f(y)= \begin{cases}0 & 0 \leq d\left(\alpha_{y} \| \bar{\alpha}\right)<\gamma_{1} \\ -\ell & \gamma_{\ell} \leq d\left(\alpha_{y} \| \bar{\alpha}\right)<\gamma_{\ell+1}, \quad \alpha_{y} \leq \bar{\alpha} \\ \ell & \gamma_{\ell} \leq d\left(\alpha_{y} \| \bar{\alpha}\right)<\gamma_{\ell+1}, \quad \alpha_{y}>\bar{\alpha}\end{cases}
$$

- Follows that $I(X ; f(Y))=\sum_{\ell=-L}^{L} \operatorname{Pr}(f(Y)=\ell) D\left(P_{X \mid f(Y)=\ell} \| P_{X}\right)$

$$
\begin{aligned}
& \geq \sum_{\ell=1}^{L}\left(\bar{F}\left(\gamma_{\ell}\right)-\bar{F}\left(\gamma_{\ell+1}\right)\right) \gamma_{\ell} \\
& =\sum_{\ell=1}^{L} \bar{F}\left(\gamma_{\ell}\right)\left(\gamma_{\ell}-\gamma_{\ell-1}\right),
\end{aligned}
$$

Proof of the Lower Bound

- Now, set the quantization parameters to

$$
\gamma_{1}=\frac{I(X ; Y)}{L+1} \quad \theta=\gamma_{1}^{-1 / L} \quad \gamma_{\ell}=\gamma_{1} \theta^{\ell-1}
$$

and note that $\gamma_{\ell+1}-\gamma_{\ell}=\theta\left(\gamma_{\ell}-\gamma_{\ell-1}\right)$.

- Let $\bar{F}(\gamma) \triangleq \operatorname{Pr}\left(D_{Y} \geq \gamma\right)$
- We have that

$$
\begin{aligned}
I(X ; Y)=\mathbb{E}\left[D_{Y}\right]=\int_{0}^{\gamma_{L+1}} \bar{F}(\gamma) d \gamma & =\sum_{\ell=0}^{L} \int_{\gamma_{\ell}}^{\gamma_{\ell+1}} \bar{F}(\gamma) d \gamma \\
& \leq \sum_{\ell=0}^{L}\left(\gamma_{\ell+1}-\gamma_{\ell}\right) \bar{F}\left(\gamma_{\ell}\right) \\
& =\gamma_{1}+\theta \sum_{\ell=1}^{L}\left(\gamma_{\ell}-\gamma_{\ell-1}\right) \bar{F}\left(\gamma_{\ell}\right) \\
& \leq \gamma_{1}+\theta I(X ; f(Y))
\end{aligned}
$$

Proof of the Lower Bound

- Rearranging terms, we have shown that

$$
\begin{aligned}
I(X ; f(Y)) & \geq(I(X ; Y))^{\frac{L+1}{L}} \frac{L}{(1+L)^{\frac{L+1}{L}}} \\
& \geq(I(X ; Y))^{\frac{L+1}{L}}\left(1-\frac{1}{\sqrt{L}}\right)
\end{aligned}
$$

- We can preserve a constant fraction of mutual information, $I(X ; f(Y) \geq \eta I(X ; Y)$ with

$$
L=\left[\frac{4 \max \left\{\log \left(\frac{1}{I(X ; Y)}\right), 1\right\}}{(1-\eta)^{2}}\right]
$$

- Recall that $M=2 L+1$, so $M \leq$

$$
\left\lceil\frac{12 \max \left\{\log \left(\frac{1}{I(X ; Y)}\right), 1\right\}}{(1-\eta)^{2}}\right\rceil
$$

Counterexample for Upper Bound

- Our upper bound is based on bounding the performance for the following symmetric channel:

$$
f_{T}(t)= \begin{cases}r \delta(t)+\frac{4 r}{(1-2 t)^{3}} & 0^{-}<x \leq \frac{1-\sqrt{r}}{2} \\ 0 & \text { otherwise }\end{cases}
$$

- See our preprint for analysis.
- Data Processing: If $X-Y-V$ form a Markov chain is this order, then $I\left(X ;[V]_{M}\right) \leq I\left(X ;[Y]_{M}\right)$.
- Convexity: For a fixed P_{X}, the function $P_{Y \mid X} \mapsto I\left(X ;[Y]_{M}\right)$ is convex.
- Lack of Concavity: For a fixed $P_{Y \mid X}, I\left(X ;[Y]_{M}\right)$ is generally not concave in P_{X}.
- Monotonicity: The function $\mathrm{ID}_{M}\left(P_{X}, \beta\right)$ is convex and monotonically nondecreasing in β.
- No Diminishing Returns: The inequality $I\left(X ;[Y]_{M_{1} \cdot M_{2}}\right) \leq I\left(X ;[Y]_{M_{1}}\right)+I\left(X ;[Y]_{M_{2}}\right)$ is not always satisfied.

Conclusions

- Considered the "information distillation" problem of scalar quantization for preserving mutual information.
- Focused on the regime where the original mutual information β is already quite small.
- For binary input channels, developed upper and lower bounds that are match up to constants.
- Preprint on my website if you are interested.

