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Motivation

Focus of this Talk:

• Scalar quantization with the goal of preserving mutual information.

• In particular, what are the fundamental limits of such
information-distilling quantizers?

• We focus on the regime where the mutual information to be
preserved is itself small.

Possible Applications:

• Quantization for low-capacity channels
(e.g., continuous to 1 bit output)

• Inference tasks
(e.g., clustering while preserving conditional distributions)

Connections:

• Log loss distortion measure

• Information bottleneck

• Polar coding



Sidebar: Distillation?

• Why call it “information-distilling”
quantization?

• Better yet, am I even allowed to use the
word “distillation”?

• Merriam-Webster defines distillation as

1. the process of purifying a liquid by
successive evaporation and condensation

✗

2. a process like distillation
✓



Problem Statement

• Let X and Y be random variables with joint distribution PXY .

• Usual notation: Alphabets X , Y and [M ] , {1, 2, . . . ,M}.

• Goal: Design an M -ary scalar quantizer f for Y under the objective
of maximizing the mutual information between X and f(Y ).

• Optimal Quantizer(s): arg sup
f :Y→[M ]

I(X; f(Y )).

• Our notation: I
(

X; [Y ]M
)

, sup
Ỹ ∈[Y ]M

I(X; Ỹ ) where [Y ]M is the set

of all (deterministic) M -ary quantizations of Y,
[Y ]M ,

{

f(Y ) : f : Y → [M ]
}

.

• We are mainly concerned with the value of the preserved mutual
information (instead of efficient quantizer design algorithms).

• Can show it suffices to consider only deterministic quantizers.



A First Guess

• Take X ∼ Bernoulli(p).

• At a first glance, it might seem that optimal binary quantization
suffices to preserve a constant fraction of the mutual information.

• Moreover, it might seem that the MAP quantizer suffices to this
end.

• Agrees with our intuition from the AWGN case: the MAP quantizer
retains at least 2/π ≈ 0.637 fraction of the mutual information.

• For general channels, these intuitions are correct in the
large I(X;Y ) regime, but not in the small I(X;Y ) regime.



Preview: The BEC

• Consider a standard Binary Erasure Channel (BEC).

• There are only two non-trivial quantizers:

fMAP(y) =











1 if Pr(X = 1|Y = y) > 1/2

2 if Pr(X = 1|Y = y) < 1/2

Bernoulli(1/2) if Pr(X = 1|Y = y) = 1/2

.

fZ(y) =

{

1 if y ∈ {1, ?},
2 if y = 0.



Preview: The BEC
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• Turns out that, in the small β regime,

I(X; fZ(Y )) =
β

2
h

(

1− β

2− β

)

+ 1− h

(

1− β

2− β

)

=
β

2
+ o(β)

I(X; fMAP(Y )) = 1− h

(

1− β

2

)

=
log e

2
β2 + o(β2)



Connection to Log Loss Distortion Measure

• Log loss distortion for quantizing X: EX

[

log

(

1

q(X)

)]

• Assume we would like to quantize Y in order to later make inferences
about X. Natural to consider the related distortion measure

EXY

[

log
PX|Y (X|Y )

qY (X)

]

= EY E

[

log
1

qY (X)

∣

∣

∣

∣

Y

]

−H(X|Y ),

• Quantizer f equivalent to selecting partition S1, . . . ,SM of Y.
Let T denote the cell occupied by Y .

• EY E

[

log
1

qY (X)

∣

∣

∣

∣

Y

]

= H(X|T ) +D(PX|T || aT |PT )

≥ H(X|T )
with equality if and only if at = PX|Y ∈St

for all t ∈ [M ].

• Minimizing H(X|Y ) is equivalent to maximizing I(X; f(Y )).



Connection to Information Bottleneck

• Recall the information bottleneck tradeoff
(Tishby - Pereira - Bialek ’99, Gilad-Bachrach - Navot - Tishby ’03)

IBR(PXY ) , max
PT |Y : I(Y ;T )≤R

I(X;T )

• Key difference from our formulation is that T can be random and is
restricted by I(Y ;T ) ≤ R rather than alphabet size M .

• Studied in machine learning literature.

• Connected to remote source coding.

• Can be interpreted in our context as a single-letter solution as
n → ∞ for PXnY n = Pn

X,Y

lim
n→∞

1

n
I(Xn; [Y n]Mn) = IBlogM (PXY ).

• n = 1 is of considerable interest since inference is seldom performed
in blocks of independent observations.



Worst-Case Information Preservation

• For given PXY , seems difficult to bound I
(

X; [Y ]M
)

in closed-form
(and this can be connected to the subset sum problem).

• However, for some special cases, there are polynomial-time
algorithms for finding the optimal quantizer. (Kurkoski - Yagi ’14)

• We focus on worst-case bounds in the following sense:
• Fix input distribution PX .
• Fix mutual information β between X and Y .
• Look for the worst-case channel PY |X .

• Upper and lower bound resulting I
(

X ; [Y ]M
)

.

• Formally, we want to characterize the “information-distillation”
function:

IDM (PX , β) , inf
PY |X : I(X;Y )≥β

I(X; [Y ]M ).



Additive Gaps and Connection to Polar Coding

• These quantization questions also appear when constructing
efficiently-implementable polar codes. (Pedarsani - Hassani - Tal -

Telatar ’11, Tal - Sharov - Vardy ’12, Kartowsky - Tal ’17)

• Usual focus is on bounding the additive gap.

• In our notation, Kartowsky - Tal ’17 showed that

IDM (PX , β) ≥ β − ν(|X |)M−2/(|X |−1)

for some function ν.

• In the small β regime, the Kartowsky - Tal ’17 quantization approach
requires M = O(β−1/2) to preserve a constant fraction of mutual
information.

• In this talk, we show that M = Θ(log(1/β)) to preserve a constant
fraction of mutual information for binary-input channels.



Main Result

Theorem (Submitted to ISIT ’17)

If X ∼ Bernoulli(1/2), then

I
(

X; [Y ]M
)

≥ constant × (M − 1)β

log(1/β)
.

Also, there is a sequence of channels for which this is tight
(up to constants).

• A bit more formally: IDM

(

Bernoulli(1/2), β
)

= Θ

(

(M − 1)β

log(1/β)

)

.

• Similar behavior for Bernoulli(p).

• Explicit constants for upper and lower bounds.



Main Result

Theorem (Submitted to ISIT ’17)

If X ∼ Bernoulli(1/2) and I(X;Y ) = β > 0, we have

I(X; [Y ]2) ≥
1

3e

β

1 + ln
(

1
β

) .

Furthermore, for any η ∈ (0, 1) and any natural M <
12max

{

log
(

1

β

)

,1
}

(1−η)2

I(X; [Y ]M ) ≥ (M − 1)
β

max{log
(

1/β
)

, 1}
η(1− η)2

12
.

Finally, for any 0 < β ≤ 1, there exist distributions PXY with
X ∼ Bernoulli(1/2) and I(X;Y ) = β, for which

I(X; [Y ]M ) ≤ 2M
β

ln
(

e log(e)
2β

) ,



Simple Bounds

Lemma

For discrete output alphabets Y, I
(

X; [Y ]M
)

≥ M − 1

|Y| I(X;Y ).

Proof:

• Recall that I(X;Y ) =
∑

y∈Y PY (y)D(PX|Y =y‖PX).

• Assume PY (1)D(PX|Y =1‖PX ) ≥ · · · ≥ PY (|Y|)D(PX|Y =|Y|‖PX).

• Set f(y) =

{

y if y < M,

M otherwise.

• Worst case: all PY (y)D(PX|Y =y‖PX ) values are equal.

Corollary

For natural numbers K < M , I
(

X; [Y ]K) ≥ K − 1

M
I
(

X; [Y ]M
)

.



Proof of the Lower Bound

• Define αy = Pr(X = 1|Y = y) and ᾱ = E[αY ].

• Also, define Dy = D
(

PX|Y=y‖PX

)

= d(αy‖ᾱ).
• Consider the following M = 2L+ 1 level quantizer:

f(y) =











0 0 ≤ d(αy‖ᾱ) < γ1,

−ℓ γℓ ≤ d(αy‖ᾱ) < γℓ+1, αy ≤ ᾱ,

ℓ γℓ ≤ d(αy‖ᾱ) < γℓ+1, αy > ᾱ.

• Follows that I(X; f(Y )) =
L
∑

ℓ=−L

Pr(f(Y ) = ℓ)D(PX|f(Y )=ℓ‖PX )

≥
L
∑

ℓ=1

(

F̄ (γℓ)− F̄ (γℓ+1)
)

γℓ

=

L
∑

ℓ=1

F̄ (γℓ)(γℓ − γℓ−1),



Proof of the Lower Bound

• Now, set the quantization parameters to

γ1 =
I(X;Y )

L+ 1
θ = γ

−1/L
1 γℓ = γ1θ

ℓ−1.

and note that γℓ+1 − γℓ = θ(γℓ − γℓ−1).

• Let F̄ (γ) , Pr(DY ≥ γ)

• We have that

I(X;Y ) = E[DY ] =

∫ γL+1

0
F̄ (γ)dγ =

L
∑

ℓ=0

∫ γℓ+1

γℓ

F̄ (γ)dγ

≤
L
∑

ℓ=0

(γℓ+1 − γℓ)F̄ (γℓ)

= γ1 + θ
L
∑

ℓ=1

(γℓ − γℓ−1)F̄ (γℓ)

≤ γ1 + θI(X; f(Y ))



Proof of the Lower Bound

• Rearranging terms, we have shown that

I(X; f(Y )) ≥
(

I(X;Y )
)

L+1

L
L

(1 + L)
L+1

L

≥
(

I(X;Y )
)

L+1

L

(

1− 1√
L

)

• We can preserve a constant fraction of mutual information,
I(X; f(Y ) ≥ ηI(X;Y ) with

L =













4max

{

log

(

1

I(X;Y )

)

, 1

}

(1− η)2













• Recall that M = 2L+ 1, so M ≤













12max

{

log

(

1

I(X;Y )

)

, 1

}

(1− η)2















Counterexample for Upper Bound

• Our upper bound is based on bounding the performance for the
following symmetric channel:

fT (t) =

{

rδ(t) + 4r
(1−2t)3 0− < x ≤ 1−√

r
2

0 otherwise

• See our preprint for analysis.



A Few Properties

• Data Processing: If X − Y − V form a Markov chain is this order,
then I(X; [V ]M ) ≤ I(X; [Y ]M ).

• Convexity: For a fixed PX , the function PY |X 7→ I(X; [Y ]M ) is
convex.

• Lack of Concavity: For a fixed PY |X , I
(

X; [Y ]M
)

is generally not
concave in PX .

• Monotonicity: The function IDM (PX , β) is convex and
monotonically nondecreasing in β.

• No Diminishing Returns: The inequality
I(X; [Y ]M1·M2

) ≤ I(X; [Y ]M1
)+ I(X; [Y ]M2

) is not always satisfied.



Conclusions

• Considered the “information distillation” problem of scalar
quantization for preserving mutual information.

• Focused on the regime where the original mutual information β is
already quite small.

• For binary input channels, developed upper and lower bounds that
are match up to constants.

• Preprint on my website if you are interested.


