Integer-Forcing for Cloud Radios

Islam El Bakoury and Bobak Nazer

Boston University

ITA 2020

 $\longrightarrow \text{Downlink} \\ \longrightarrow \text{Uplink}$

→ Downlink → Uplink ←---> Fronthaul

Compression-Based Architectures

Compression-Based Architectures

- Channel Model: $\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{Z}$.
- Joint Typicality: Search for codewords $ilde{\mathbf{X}}$ with $(ilde{\mathbf{X}}, \mathbf{Y})$ jointly typical.
- Successive Cancellation: $\tilde{\mathbf{y}}_k = \mathbf{Y} \sum_{i=1}^{k-1} \mathbf{h}_i \mathbf{x}_i^\mathsf{T} = \sum_{i=k}^K \mathbf{h}_i \mathbf{x}_i^\mathsf{T} + \mathbf{Z}$
- Integer-Forcing: $\mathbf{BY} = \mathbf{BHX} + \mathbf{BZ} = \mathbf{AX} + (\mathbf{BH} \mathbf{A})\mathbf{X} + \mathbf{BZ}$

 $\mathbf{A} \in \mathbb{Z}^{K \times K} \text{ is full rank and } \mathbf{B} \text{ is MMSE matrix}.$

- Channel Model: $\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{Z}$.
- Joint Typicality Decoding: Achieves capacity region.
- Successive Cancellation: Achieves corner points of capacity region.
- Integer-Forcing: For "bad" H, can be quite far from capacity.

- Channel Model: $\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{Z}$.
- Joint Typicality Decoding: Achieves capacity region.
- Successive Cancellation: Achieves corner points of capacity region.
- Integer-Forcing: For "bad" **H**, can be quite far from capacity. However, the measure of "bad" choices of **H** is small.

- Channel Model: $\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{Z}$.
- Joint Typicality Decoding: Achieves capacity region.
- Successive Cancellation: Achieves corner points of capacity region.
- Integer-Forcing: For "bad" H, can be quite far from capacity. However, the measure of "bad" choices of H is small.
 Domanovitz-Erez '18: Can operate within a constant gap of the outage capacity if h_{i,j} ~ N(0, 1) (and many other interesting cases!)

- Channel Model: $\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{Z}$.
- Joint Typicality Decoding: Achieves capacity region.
- Successive Cancellation: Achieves corner points of capacity region. Far from outage capacity (lack of CSIT prevents rate allocation).
- Integer-Forcing: For "bad" H, can be quite far from capacity. However, the measure of "bad" choices of H is small.
 Domanovitz-Erez '18: Can operate within a constant gap of the outage capacity if h_{i,j} ~ N(0,1) (and many other interesting cases!)

- Channel Model: $\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{Z}$.
- Dirty Paper Encoding: Encode \mathbf{x}_i treating $(\mathbf{x}_1, \dots, \mathbf{x}_{i-1})$ as dirty paper interference.
- Integer-Forcing Beamforming: Same procedure as in uplink, but first pre-invert messages $\tilde{\mathbf{M}} = \mathbf{A}_p^{-1}\mathbf{M}$, then generate \mathbf{X} from $\tilde{\mathbf{M}}$. Now, decoding $\mathbf{a}_k^\mathsf{T}\mathbf{X}$ will yield \mathbf{m}_k . (Hong-Caire '13).

- Channel Model: $\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{Z}$.
- Dirty Paper Encoding: Achieves capacity region. (Caire-Shamai '03, Vishwanath-Jindal-Goldsmith '04, Viswanath-Tse '03, Yu-Cioffi '04, Weingarten-Steinberg-Shamai '06.)
- Integer-Forcing Beamforming: Constant gap to sum capacity. (He-Shamai-Nazer '18).

- Channel Model: $\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{Z}$.
- Dirty Paper Encoding: Achieves capacity region. (Caire-Shamai '03, Vishwanath-Jindal-Goldsmith '04, Viswanath-Tse '03, Yu-Cioffi '04, Weingarten-Steinberg-Shamai '06.) Uplink-downlink duality with MIMO MAC.
- Integer-Forcing Beamforming: Constant gap to sum capacity. (He-Shamai-Nazer '18).
 Uplink-downlink duality with integer-forcing equalization.

Uplink Source Coding

Uplink Compression \equiv Distributed Source Coding

- Source Model: $\mathbf{Y} \sim \mathcal{N}(\mathbf{0}, \mathbf{I} + P \mathbf{H} \mathbf{H}^{\mathsf{T}}).$
- Joint Typicality Decoding (Berger-Tung): Search for jointly typical reconstructions $\hat{\mathbf{Y}}.$
- Successive Cancellation (Wyner-Ziv): Use $\hat{\mathbf{y}}_1, \dots, \hat{\mathbf{y}}_{k-1}$ as side information for reconstructing \mathbf{y}_k .
- Integer-Forcing: First, reconstruct integer linear combinations of the sources $A\hat{Y}$, then solve for original sources. (Ordentlich-Erez '17)

• Want to quantize Gaussian source $\mathbf{s} \sim \mathcal{N}(\mathbf{0}, \sigma_S^2 \mathbf{I})$ to distortion d.

- Want to quantize Gaussian source $\mathbf{s} \sim \mathcal{N}(\mathbf{0}, \sigma_S^2 \mathbf{I})$ to distortion d.
- Choose a nested lattice pair $\Lambda_C \subseteq \Lambda_F$.

- Want to quantize Gaussian source $\mathbf{s} \sim \mathcal{N}(\mathbf{0}, \sigma_S^2 \mathbf{I})$ to distortion d.
- Choose a nested lattice pair $\Lambda_C \subseteq \Lambda_F$.
- Add dither $\mathbf{u} \sim \mathsf{Unif}(\mathcal{V}_F)$ and quantize $\boldsymbol{\lambda} = \left[Q_{\Lambda_F}(\mathbf{s} + \mathbf{u})\right] \mod \Lambda_C$.

- Want to quantize Gaussian source $\mathbf{s} \sim \mathcal{N}(\mathbf{0}, \sigma_S^2 \mathbf{I})$ to distortion d.
- Choose a nested lattice pair $\Lambda_C \subseteq \Lambda_F$.
- Add dither $\mathbf{u} \sim \mathsf{Unif}(\mathcal{V}_F)$ and quantize $\boldsymbol{\lambda} = \left[Q_{\Lambda_F}(\mathbf{s} + \mathbf{u})\right] \mod \Lambda_C$.
- Reconstruct:

$$\hat{\mathbf{s}} = [\boldsymbol{\lambda} - \mathbf{u}] \mod \Lambda_C = [\mathbf{s} + \mathbf{q}] \mod \Lambda_C \stackrel{\text{w.h.p.}}{=} \mathbf{s} + \mathbf{q}$$

where $\mathbf{q} = -[\mathbf{s} + \mathbf{u}] \mod \Lambda_F \sim \mathsf{Unif}(\mathcal{V}_F)$.

- Want to quantize Gaussian source $\mathbf{s} \sim \mathcal{N}(\mathbf{0}, \sigma_S^2 \mathbf{I})$ to distortion d.
- Choose a nested lattice pair $\Lambda_C \subseteq \Lambda_F$.
- Add dither $\mathbf{u} \sim \mathsf{Unif}(\mathcal{V}_F)$ and quantize $\boldsymbol{\lambda} = \left[Q_{\Lambda_F}(\mathbf{s} + \mathbf{u})\right] \mod \Lambda_C$.
- Reconstruct:

$$\hat{\mathbf{s}} = [\boldsymbol{\lambda} - \mathbf{u}] \mod \Lambda_C = [\mathbf{s} + \mathbf{q}] \mod \Lambda_C \stackrel{\text{w.h.p.}}{=} \mathbf{s} + \mathbf{q}$$

where $\mathbf{q} = -[\mathbf{s} + \mathbf{u}] \mod \Lambda_F \sim \mathsf{Unif}(\mathcal{V}_F).$

• Λ_F determines the distortion level d (i.e., $\sigma^2(\Lambda_F) = d$).

- Want to quantize Gaussian source $\mathbf{s} \sim \mathcal{N}(\mathbf{0}, \sigma_S^2 \mathbf{I})$ to distortion d.
- Choose a nested lattice pair $\Lambda_C \subseteq \Lambda_F$.
- Add dither $\mathbf{u} \sim \mathsf{Unif}(\mathcal{V}_F)$ and quantize $\boldsymbol{\lambda} = \left[Q_{\Lambda_F}(\mathbf{s} + \mathbf{u})\right] \mod \Lambda_C$.
- Reconstruct:

$$\hat{\mathbf{s}} = [\boldsymbol{\lambda} - \mathbf{u}] \mod \Lambda_C = [\mathbf{s} + \mathbf{q}] \mod \Lambda_C \stackrel{\text{w.h.p.}}{=} \mathbf{s} + \mathbf{q}$$

where $\mathbf{q} = -[\mathbf{s} + \mathbf{u}] \mod \Lambda_F \sim \mathsf{Unif}(\mathcal{V}_F).$

- Λ_F determines the distortion level d (i.e., $\sigma^2(\Lambda_F) = d$).
- Λ_C must contain $\hat{\mathbf{s}} + \mathbf{q}$ w.h.p. (i.e., $\sigma^2(\Lambda_C) = \sigma_S^2 + d$).

- Want to quantize Gaussian source $\mathbf{s} \sim \mathcal{N}(\mathbf{0}, \sigma_S^2 \mathbf{I})$ to distortion d.
- Choose a nested lattice pair $\Lambda_C \subseteq \Lambda_F$.
- Add dither $\mathbf{u} \sim \mathsf{Unif}(\mathcal{V}_F)$ and quantize $\boldsymbol{\lambda} = \left[Q_{\Lambda_F}(\mathbf{s} + \mathbf{u})\right] \mod \Lambda_C$.
- Reconstruct:

$$\hat{\mathbf{s}} = [\boldsymbol{\lambda} - \mathbf{u}] \mod \Lambda_C = [\mathbf{s} + \mathbf{q}] \mod \Lambda_C \stackrel{\text{w.h.p.}}{=} \mathbf{s} + \mathbf{q}$$

where $\mathbf{q} = -[\mathbf{s} + \mathbf{u}] \mod \Lambda_F \sim \mathsf{Unif}(\mathcal{V}_F).$

- Λ_F determines the distortion level d (i.e., $\sigma^2(\Lambda_F) = d$).
- Λ_C must contain $\hat{\mathbf{s}} + \mathbf{q}$ w.h.p. (i.e., $\sigma^2(\Lambda_C) = \sigma_S^2 + d$).
- The codebook $\mathcal{C} \triangleq \mathcal{V}(\Lambda_C) \cap \Lambda_F$ has rate $= \frac{1}{2} \log \left(\frac{\sigma^2(\Lambda_C)}{\sigma^2(\Lambda_F)} \right)$.

- Want to quantize Gaussian source $\mathbf{s} \sim \mathcal{N}(\mathbf{0}, \sigma_S^2 \mathbf{I})$ to distortion d.
- Choose a nested lattice pair $\Lambda_C \subseteq \Lambda_F$.
- Add dither $\mathbf{u} \sim \mathsf{Unif}(\mathcal{V}_F)$ and quantize $\boldsymbol{\lambda} = \left[Q_{\Lambda_F}(\mathbf{s} + \mathbf{u})\right] \mod \Lambda_C$.
- Reconstruct:

$$\hat{\mathbf{s}} = [\boldsymbol{\lambda} - \mathbf{u}] \mod \Lambda_C = [\mathbf{s} + \mathbf{q}] \mod \Lambda_C \stackrel{\text{w.h.p.}}{=} \mathbf{s} + \mathbf{q}$$

where $\mathbf{q} = -[\mathbf{s} + \mathbf{u}] \mod \Lambda_F \sim \mathsf{Unif}(\mathcal{V}_F).$

- Λ_F determines the distortion level d (i.e., $\sigma^2(\Lambda_F) = d$).
- Λ_C must contain $\hat{\mathbf{s}} + \mathbf{q}$ w.h.p. (i.e., $\sigma^2(\Lambda_C) = \sigma_S^2 + d$).
- The codebook $\mathcal{C} \triangleq \mathcal{V}(\Lambda_{C}) \cap \Lambda_{F}$ has rate $= \frac{1}{2} \log \left(\frac{\sigma_{S}^{2} + d}{d} \right)$.

Ordentlich-Erez '17:

• Gaussian sources $\mathbf{s}_1, \ldots, \mathbf{s}_K$ with covariance matrix \mathbf{K} .

Ordentlich-Erez '17:

- Gaussian sources $\mathbf{s}_1, \ldots, \mathbf{s}_K$ with covariance matrix \mathbf{K} .
- Quantize $\lambda_k = [Q_{\Lambda_F}(\mathbf{s}_k + \mathbf{u}_k)] \mod \Lambda_C$.

Ordentlich-Erez '17:

- Gaussian sources $\mathbf{s}_1, \ldots, \mathbf{s}_K$ with covariance matrix \mathbf{K} .
- Quantize $\lambda_k = \left[Q_{\Lambda_F}(\mathbf{s}_k + \mathbf{u}_k)\right] \mod \Lambda_C.$
- Recover linear combinations

$$\hat{\mathbf{v}}_{\ell} = \left[\sum_{k} a_{\ell,k} (\boldsymbol{\lambda}_k - \mathbf{u}_k)\right] \mod \Lambda_C \stackrel{\text{w.h.p.}}{=} \sum_{k} a_{\ell,k} (\mathbf{s}_k + \mathbf{q}_k)$$

Ordentlich-Erez '17:

- Gaussian sources $\mathbf{s}_1, \ldots, \mathbf{s}_K$ with covariance matrix \mathbf{K} .
- Quantize $\boldsymbol{\lambda}_k = \left[Q_{\Lambda_F}(\mathbf{s}_k + \mathbf{u}_k)
 ight] ext{ mod } \boldsymbol{\Lambda}_C.$
- Recover linear combinations

$$\hat{\mathbf{v}}_{\ell} = \left[\sum_{k} a_{\ell,k} (\boldsymbol{\lambda}_k - \mathbf{u}_k)\right] \mod \Lambda_C \stackrel{\text{w.h.p.}}{=} \sum_{k} a_{\ell,k} (\mathbf{s}_k + \mathbf{q}_k)$$

• Invert integer matrix $\widehat{\mathbf{S}} = \mathbf{A}^{-1}\widehat{\mathbf{V}} = \mathbf{A}^{-1}\mathbf{A}(\mathbf{S} + \mathbf{Q}) = \mathbf{S} + \mathbf{Q}.$

Ordentlich-Erez '17:

- Gaussian sources $\mathbf{s}_1, \ldots, \mathbf{s}_K$ with covariance matrix \mathbf{K} .
- Quantize $\lambda_k = \left[Q_{\Lambda_F}(\mathbf{s}_k + \mathbf{u}_k)\right] \mod \Lambda_C.$
- Recover linear combinations

$$\hat{\mathbf{v}}_{\ell} = \left[\sum_{k} a_{\ell,k} (\boldsymbol{\lambda}_k - \mathbf{u}_k)\right] \mod \Lambda_C \stackrel{\text{w.h.p.}}{=} \sum_{k} a_{\ell,k} (\mathbf{s}_k + \mathbf{q}_k)$$

- Invert integer matrix $\widehat{\mathbf{S}} = \mathbf{A}^{-1}\widehat{\mathbf{V}} = \mathbf{A}^{-1}\mathbf{A}(\mathbf{S} + \mathbf{Q}) = \mathbf{S} + \mathbf{Q}.$
- As before, Λ_F determines the distortion level d (i.e., $\sigma^2(\Lambda_F) = d$).

Ordentlich-Erez '17:

- Gaussian sources $\mathbf{s}_1, \ldots, \mathbf{s}_K$ with covariance matrix \mathbf{K} .
- Quantize $\lambda_k = \left[Q_{\Lambda_F}(\mathbf{s}_k + \mathbf{u}_k)\right] \mod \Lambda_C.$
- Recover linear combinations

$$\hat{\mathbf{v}}_{\ell} = \left[\sum_{k} a_{\ell,k} (\boldsymbol{\lambda}_k - \mathbf{u}_k)\right] \mod \Lambda_C \stackrel{\text{w.h.p.}}{=} \sum_{k} a_{\ell,k} (\mathbf{s}_k + \mathbf{q}_k)$$

- Invert integer matrix $\widehat{\mathbf{S}} = \mathbf{A}^{-1}\widehat{\mathbf{V}} = \mathbf{A}^{-1}\mathbf{A}(\mathbf{S} + \mathbf{Q}) = \mathbf{S} + \mathbf{Q}.$
- As before, Λ_F determines the distortion level d (i.e., $\sigma^2(\Lambda_F) = d$).
- Λ_C must contain $\mathbf{v}_1, \ldots, \mathbf{v}_K$ w.h.p.

$$\sigma^{2}(\boldsymbol{\Lambda}_{C}) = \max_{\ell} \mathbf{a}_{\ell}^{\mathsf{T}}(\mathbf{K} + d\mathbf{I})\mathbf{a}_{\ell}$$

Ordentlich-Erez '17:

- Gaussian sources $\mathbf{s}_1, \ldots, \mathbf{s}_K$ with covariance matrix \mathbf{K} .
- Quantize $\lambda_k = \left[Q_{\Lambda_F}(\mathbf{s}_k + \mathbf{u}_k)\right] \mod \Lambda_C.$
- Recover linear combinations

$$\hat{\mathbf{v}}_{\ell} = \left[\sum_{k} a_{\ell,k} (\boldsymbol{\lambda}_k - \mathbf{u}_k)\right] \mod \Lambda_C \stackrel{\text{w.h.p.}}{=} \sum_{k} a_{\ell,k} (\mathbf{s}_k + \mathbf{q}_k)$$

- Invert integer matrix $\widehat{\mathbf{S}} = \mathbf{A}^{-1}\widehat{\mathbf{V}} = \mathbf{A}^{-1}\mathbf{A}(\mathbf{S} + \mathbf{Q}) = \mathbf{S} + \mathbf{Q}.$
- As before, Λ_F determines the distortion level d (i.e., $\sigma^2(\Lambda_F) = d$).
- Λ_C must contain $\mathbf{v}_1, \ldots, \mathbf{v}_K$ w.h.p.

$$\sigma^{2}(\Lambda_{C}) = \max_{\ell} \mathbf{a}_{\ell}^{\mathsf{T}}(\mathbf{K} + d\mathbf{I})\mathbf{a}_{\ell}$$

• The achievable rate for IFSC with symmetric distortion is

$$R_{\mathsf{IFSC}} = \max_{\ell} \frac{1}{2} \log \left(\frac{\mathbf{a}_{\ell}^{\mathsf{T}} \left(\mathbf{K} + d\mathbf{I} \right) \mathbf{a}_{\ell}}{d} \right)$$

Select Integer Combinations to Minimize Effective Variance

Select Integer Combinations to Minimize Effective Variance

Select Integer Combinations to Minimize Effective Variance

Uplink Source Coding Rate Region

Uplink Compression \equiv Distributed Source Coding

- Source Model: $\mathbf{Y} \sim \mathcal{N}(\mathbf{0}, \mathbf{I} + P \mathbf{H} \mathbf{H}^{\mathsf{T}}).$
- Joint Typicality Decoding (Berger-Tung): Best-known rate region.
- Successive Cancellation (Wyner-Ziv): Achieves corner points of Berger-Tung region.
- Integer-Forcing: Far from optimal for bad choices of H.

Uplink Source Coding Rate Region

Uplink Compression \equiv Distributed Source Coding

- Source Model: $\mathbf{Y} \sim \mathcal{N}(\mathbf{0}, \mathbf{I} + P \mathbf{H} \mathbf{H}^{\mathsf{T}}).$
- Joint Typicality Decoding (Berger-Tung): Best-known rate region.
- Successive Cancellation (Wyner-Ziv): Achieves corner points of Berger-Tung region. Not outage optimal (lack of CSIT prevents rate allocation).
- Integer-Forcing: Far from optimal for bad choices of H. Domanovitz-Erez '17: For $h_{i,j} \sim \mathcal{N}(0,1)$ (and many other cases), integer-forcing operates within a constant gap of the Berger-Tung

Integer-Forcing C-RAN Architecture

Integer-Forcing Uplink

- El Bakoury Nazer '20: Integer-forcing for uplink C-RAN.
- Users emit lattice codewords, no CSIT.
- BSs employ lattice quantization, rates set using global or local CSIR.
- Central processor reconstructs BS observations via IFSC, then recovers messages via IFCC.
- Constant-gap outage optimality (for global CSIR): $p_{\text{IF-CRAN}}(R - \Delta C) \leq p_{\text{optimal}}(R) + \gamma(\max\{K, L\})2^{-\Delta C/3}$

Uplink C-RAN Plot

K = 6 users, L = 6 BSs, 5% outage, SNR = 25dB, global CSIR

Uplink C-RAN Plot

K=6 users, L=6 BSs, 10% outage, $\mathsf{SNR}=25\mathsf{dB},$ local CSIR

- Source Model: $\mathbf{X} \sim \mathcal{N}(\mathbf{0}, P\mathbf{I})$
- Joint Typicality Encoding: Search for jointly typical $\hat{\mathbf{x}}_1, \ldots, \hat{\mathbf{x}}_K$ that achieves quantization noise target covariance matrix $\boldsymbol{\Omega}$ and distortion constraints. (Park et al. '13)
- Integer-Forcing: Same procedure as integer-forcing source coding, but apply the inverse integer matrix prior to compression, A⁻¹X. Now, recovering AX will yield an estimate of X with quantization noise covariance matrix dAA^T.

• Gaussian sources $\mathbf{s}_1, \ldots, \mathbf{s}_K$ with covariance matrix \mathbf{K} .

- Gaussian sources $\mathbf{s}_1, \ldots, \mathbf{s}_K$ with covariance matrix \mathbf{K} .
- Pre-invert integer matrix $V = A^{-1}S$.

- Gaussian sources $\mathbf{s}_1, \ldots, \mathbf{s}_K$ with covariance matrix \mathbf{K} .
- Pre-invert integer matrix $\mathbf{V} = \mathbf{A}^{-1}\mathbf{S}$.
- Quantize $\boldsymbol{\nu}_k = \left[Q_{\Lambda_F}(\mathbf{v}_k + \mathbf{u}_k)\right] \mod \Lambda_C.$

- Gaussian sources $\mathbf{s}_1, \ldots, \mathbf{s}_K$ with covariance matrix \mathbf{K} .
- Pre-invert integer matrix $\mathbf{V} = \mathbf{A}^{-1}\mathbf{S}$.
- Quantize $\boldsymbol{\nu}_k = \left[Q_{\Lambda_F}(\mathbf{v}_k + \mathbf{u}_k)\right] \mod \Lambda_C.$
- Take linear combinations $oldsymbol{\lambda}_\ell = ig[\sum_k a_{\ell,k}oldsymbol{
 u}_kig] egin{array}{c} & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & &$

- Gaussian sources $\mathbf{s}_1, \ldots, \mathbf{s}_K$ with covariance matrix \mathbf{K} .
- Pre-invert integer matrix $\mathbf{V} = \mathbf{A}^{-1}\mathbf{S}$.
- Quantize $\boldsymbol{\nu}_k = \left[Q_{\Lambda_F}(\mathbf{v}_k + \mathbf{u}_k)\right] \mod \Lambda_C.$
- Take linear combinations $oldsymbol{\lambda}_\ell = ig[\sum_k a_{\ell,k}oldsymbol{
 u}_kig] egin{array}{c} \mathrm{mod} \ \Lambda_C \end{array}$
- Each decoder removes dithers and obtains:

$$\hat{\mathbf{s}}_{\ell} = \left[\boldsymbol{\lambda}_{\ell} - \sum_{k} a_{\ell,k} \mathbf{u}_{k} \right] \mod \boldsymbol{\Lambda}_{C} \stackrel{\text{w.h.p.}}{=} \mathbf{s}_{k} + \sum_{k} a_{\ell,k} \mathbf{q}_{k}$$

where $\mathbf{q}_k = -[\mathbf{v}_k + \mathbf{u}_k] \mod \Lambda_F \sim \mathsf{Unif}(\mathcal{V}_F)$ and the quantization noise matrix has effective covariance matrix $d\mathbf{A}\mathbf{A}^\mathsf{T}$.

- Gaussian sources $\mathbf{s}_1, \ldots, \mathbf{s}_K$ with covariance matrix \mathbf{K} .
- Pre-invert integer matrix $\mathbf{V} = \mathbf{A}^{-1}\mathbf{S}$.
- Quantize $\boldsymbol{\nu}_k = \left[Q_{\Lambda_F}(\mathbf{v}_k + \mathbf{u}_k)\right] \mod \Lambda_C.$
- Take linear combinations $oldsymbol{\lambda}_\ell = ig[\sum_k a_{\ell,k}oldsymbol{
 u}_kig] egin{array}{c} \mathrm{mod} \ \Lambda_C \end{array}$
- Each decoder removes dithers and obtains:

$$\hat{\mathbf{s}}_{\ell} = \left[\boldsymbol{\lambda}_{\ell} - \sum_{k} a_{\ell,k} \mathbf{u}_{k} \right] \mod \boldsymbol{\Lambda}_{C} \stackrel{\text{w.h.p.}}{=} \mathbf{s}_{k} + \sum_{k} a_{\ell,k} \mathbf{q}_{k}$$

where $\mathbf{q}_k = -[\mathbf{v}_k + \mathbf{u}_k] \mod \Lambda_F \sim \mathsf{Unif}(\mathcal{V}_F)$ and the quantization noise matrix has effective covariance matrix $d\mathbf{A}\mathbf{A}^\mathsf{T}$.

• As before, Λ_F determines the distortion level d (i.e., $\sigma^2(\Lambda_F) = d$).

- Gaussian sources $\mathbf{s}_1, \ldots, \mathbf{s}_K$ with covariance matrix \mathbf{K} .
- Pre-invert integer matrix $\mathbf{V} = \mathbf{A}^{-1}\mathbf{S}$.
- Quantize $\boldsymbol{\nu}_k = \left[Q_{\Lambda_F}(\mathbf{v}_k + \mathbf{u}_k)\right] \mod \Lambda_C.$
- Take linear combinations $oldsymbol{\lambda}_\ell = ig[\sum_k a_{\ell,k}oldsymbol{
 u}_kig] egin{array}{c} \mathrm{mod} \ \Lambda_C \end{array}$
- Each decoder removes dithers and obtains:

$$\hat{\mathbf{s}}_{\ell} = \left[\boldsymbol{\lambda}_{\ell} - \sum_{k} a_{\ell,k} \mathbf{u}_{k} \right] \mod \boldsymbol{\Lambda}_{C} \stackrel{\text{w.h.p.}}{=} \mathbf{s}_{k} + \sum_{k} a_{\ell,k} \mathbf{q}_{k}$$

where $\mathbf{q}_k = -[\mathbf{v}_k + \mathbf{u}_k] \mod \Lambda_F \sim \mathsf{Unif}(\mathcal{V}_F)$ and the quantization noise matrix has effective covariance matrix $d\mathbf{A}\mathbf{A}^\mathsf{T}$.

- As before, Λ_F determines the distortion level d (i.e., $\sigma^2(\Lambda_F) = d$).
- Λ_C must contain $\mathbf{s}_k + \sum_k a_{\ell,k} \mathbf{q}_k \ \forall k \text{ so } \sigma^2(\Lambda_C) = \max_\ell \sigma_\ell^2 + d\mathbf{a}_\ell^\mathsf{T} \mathbf{a}_\ell$
- The achievable rate for IFMC with symmetric distortion is

$$R_{\mathsf{IFMC}} = \max_{\ell} \frac{1}{2} \log \left(\frac{\sigma_{\ell}^2 + d\mathbf{a}_{\ell}^{\mathsf{T}} \mathbf{a}_{\ell}}{d} \right)$$

- El Bakoury Nazer '20: Integer-forcing for downlink C-RAN.
- BSs send sequence corresponding to quantization index.
- Users employ single-user decoding.
- Central processor encodes messages via RIFCC, then quantizes codewords via RIFSC to correlate the quantization noise.
- RIFSC: Same sum rate as joint typicality multivariate compression.
- Uplink-downlink duality with uplink integer-forcing C-RAN (with full CSI and total power constraint).

Downlink C-RAN Plot

K = 4 users, L = 4 BSs, SNR = 30dB, full CSI

Overview: Integer-Forcing Channel and Source Coding

	Channel	Source
Uplink		
Downlink		

Overview: Integer-Forcing Channel and Source Coding

Overview of C-RAN Capacity Bounds

Uplink:

- Joint typicality coding operates within a constant gap of the sum capacity (with full CSI) and symmetric outage capacity (Zhou-Yu '14, Ganguly-Hong-Kim '19). Capacity known if relays restricted to oblivious operation (Aguerri et al. '17).
- Sequential coding attains a constant gap to the sum capacity under a sum fronthaul rate constraint. (**Zhou et al. '16**)
- Integer-forcing attains a constant gap to the symmetric outage capacity.

Downlink:

- Joint typicality coding operates within a constant gap of the sum capacity (Liu-Patel-Yu '16, Ganguly-Hong-Kim '19). Capacity for special cases (Bidokhti-Kramer '16).
- Sequential coding can reach a constant gap to the sum capacity under a sum fronthaul rate constraint (Patil-Yu '18).
- Integer-forcing performance not known, but we conjecture that a constant gap to the sum capacity is also attainable.