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Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Classical Approach:
• Use average performance of random i.i.d. codebooks to argue good

codebooks exist.
• Powerful generalizations including superposition coding, dirty paper coding,

block Markov coding, and many more...
• Rate regions described in terms of (single-letter) information measures

optimized over pmfs.
• Many important successes: multiple-access channels, (degraded) broadcast

channels, Slepian-Wolf compression, network coding, and many more...
• Guided the development and optimization of modern communication

networks.
• State-of-the-art elegantly captured in the recent textbook of

El Gamal and Kim.
• Codes with algebraic structure are sought after to mimic the performance

of random i.i.d. codes with low implementation complexity.
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• Messages: m ∈ [2nR] , {0, . . . , 2nR − 1}
• Encoder: a mapping xn(m) ∈ X n for each m ∈ [2nR]

• Memoryless Channel: pY n|Xn(yn|xn) =∏n
i=1 pY |X(yi|xi)

• Decoder: a mapping m̂(yn) ∈ [2nR] for each yn ∈ Yn

Theorem (Shannon ’48)

C = max
pX(x)

I(X;Y )

• Proof relies on random i.i.d. codebooks combined with
joint typicality decoding.
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numbers, π(x|xn) converges to pX(x) in probability.

• This motivates the typical set

T (n)
ǫ (X) =

{
xn : |π(x|xn)− pX(x)| ≤ ǫpX(x) for all x ∈ X

}

which satisfies limn→∞ P
(
Xn ∈ T (n)

ǫ

)
= 1.

• We can generalize this definition to pairs of sequences (Xn, Y n)
that are i.i.d. according to pXY (x, y) and so on...
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• Joint typicality is a powerful framework due to the availability of
several key lemmas including

Joint Typicality Lemma

Select pXY (x, y) and 0 < ǫ′ < ǫ. Then, there exists δ(ǫ) that tends to
0 as ǫ → 0 such that

• For any ỹn ∈ Yn and X̃n i.i.d. pX(x̃),

P
{
(X̃n, ỹn) ∈ T (n)

ǫ (X,Y )
}
≤ 2−n(I(X;Y )−δ(ǫ))

• For any yn ∈ T (n)
ǫ′ (Y ) and X̃n i.i.d. pX(x̃),

P
{
(X̃n, yn) ∈ T (n)

ǫ (X,Y )
}
≥ 2−n(I(X;Y )+δ(ǫ)) .

Intuition: Probability that i.i.d. X̃n looks jointly typical ≈ 2−nI(X;Y )
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• Code Construction: Generate 2nR random codewords
Xn(1), . . . ,Xn(2nR) with each element drawn i.i.d. pX(x).

• Encoding: For message m ∈ [2nR], send codeword Xn(m).

• Decoding: Search for m̂ such that (Xn(m̂), Y n) is jointly typical. If
only one such m̂, output it as the message estimate. Otherwise,
declare an error.

• Error Analysis: Two possibilities.

• True codeword is not jointly typical, (Xn(m), Y n) /∈ T (n)
ǫ .

Probability goes to zero via WLLN.
• Some other codeword is jointly typical,

P

{
⋃

m̃ 6=m

{
(Xn(m̃), Y n) ∈ T (n)

ǫ

}
}

≤
∑

m̃ 6=m

P
{
(Xn(m̃), Y n) ∈ T (n)

ǫ

}

≤
∑

m̃ 6=m

2−nI(X;Y )−δ(ǫ)

< 2nR 2−nI(X;Y )−δ(ǫ) .

Probability goes to zero if R < I(X ;Y )− δ(ǫ).



Random i.i.d. Codebooks

X
n

T
(n)
ǫ (X)

Random i.i.d. Codes

• Codewords are independent of one another.

• Can directly target an input distribution pX(x).
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Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Algebraic Approach:

• Utilize linear or lattice codebooks.

• Compelling examples starting from the work of Körner and Marton on
distributed compression and, more recently, many papers on physical-layer
network coding, distributed dirty paper coding, and interference alignment.

• Coding schemes exhibit behavior not found via i.i.d. ensembles.

• However, some classical coding techniques are still unavailable.

• Most of the initial efforts have focused on Gaussian networks and have
employed nested lattice codebooks.

• Are these just a collection of intriguing examples or elements of a more
general theory?

This Talk: We build on previous work and propose a joint typicality
approach to algebraic network information theory.
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• Compute-and-forward can serve as a framework for communicating
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• Much of the recent work has focused on Gaussian networks.
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power constraint: If x ∈ VC, then

1
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• Can show that the achievable rate satisfies R >
1

2
log

(
P

σ2
eff

)

− δ.
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1
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• Finding the best a corresponds to finding the shortest vector in the
lattice (SNR−1I+ hhT)−1/2

Z
K .



Compute-and-Forward: Illustration

All users employ the same nested lattice code.
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Extra noise penalty for non-integer channel coefficients.
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Compute-and-Forward: Illustration

Recover integer linear combination of the codewords.
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2x1 + 3x2
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Theorem (Nazer-Gastpar ’11)

A receiver can recover a linear combination with coefficient vector

a ∈ Z
K over the channel vector h ∈ R

K if R < Rcomp(h,a) where

Rcomp(h,a) = max
α∈R
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2
log+

(
P

α2 + P‖αh − a‖2
)

.
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Theorem (Nazer-Gastpar ’11)
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Special Cases:

• Perfect Match: Rcomp(a,a) =
1
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log+
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‖a‖2 + P

)

• Decode the kth Message:

Rcomp

(

h, [0 · · · 0
︸ ︷︷ ︸

k−1 zeros

1 0 · · · 0]T
)

=
1

2
log

(

1 +
h2kP

1 + P
∑

ℓ 6=k

h2ℓ

)
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Application: MIMO Uplink Channel

m1 SISO Enc.
x1

m2 SISO Enc.
x2

mK SISO Enc.
xK

...
...

...

H

z1

z2

zK

y1

y2

...
yK

MIMO

Decoder

m̂1

m̂2

m̂K

...

Usual Assumptions:

• Each antenna carries an independent data stream xℓ ∈ C
n of rate R

(e.g., V-BLAST setting, cellular uplink). X = [x1 · · · xK ]T.

• Usual power constraint: ‖xℓ‖2 ≤ nP .

• Channel model: Y = HX+ Z

• Z is elementwise i.i.d. CN (0, 1).

• CSIR: Only the receiver knows channel realization H ∈ C
K×K.



MIMO Uplink Channel: Joint ML Decoding

m1 SISO Enc.
x1
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H
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Joint ML

Decoder

m̂1

m̂2

m̂K
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Joint Maximum Likelihood Decoding:

Rjoint(H) = min
S⊆{1,...,K}

1

|S| log det
(
I+ P HSH

∗
S

)

• Corresponds to the (symmetric) outage capacity.

• Naive implementation has prohibitively high complexity.

• Of course, there are many clever ways to reduce the complexity!



MIMO Uplink Channel: Zero-Forcing and Linear MMSE

m1 SISO Enc.
x1

m2 SISO Enc.
x2

mK SISO Enc.
xK
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...
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H

z1
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B

ỹ1
SISO Dec. m̂1

ỹ2
SISO Dec. m̂2

ỹK
SISO Dec. m̂K

...
...

...

Zero-Forcing and Linear MMSE Receivers:

• Project the received signal, Ỹ = BY to eliminate interference
between data streams.

• After projection, single-user decoders attempt to recover the
individual data streams.

• Optimal B is the MMSE projection.
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B

ỹ1
SISO Dec. x1

ỹ2
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ỹK
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Zero-Forcing and Linear MMSE Receivers:

• The kth SISO decoder tries to recover xk from bT
kY:

SINRLMMSE,k(H) = max
bk

P ‖bT
khk‖2

1 + P
∑

ℓ 6=k ‖bT
khℓ‖2

• Rate per user:

RLMMSE(H) = min
k=1,...,K

log
(
1 + SINRLMMSE,k(H)

)



MIMO Uplink Channel: Successive Interference Cancellation
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Successive Interference Cancellation Receivers:

• Decode in order π. Cancel xπ(1), . . . ,xπ(k−1) from ỹk:

SINRSIC,π(m)(H) = max
bm

P ‖bT
khπ(k)‖2

1 + SNR
∑K

ℓ=k+1 ‖bT
khπ(ℓ)‖2

• Rate per user:

RV-BLAST II(H) = max
π

min
k=1,...,K

log
(
1 + SINRSIC,π(k)(H)

)



MIMO Uplink Channel: Integer-Forcing
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What if we could decode something else?

• Zero-Forcing / LMMSE: First, eliminate interference.
Then, decode individual data streams.
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ỹ1
SISO Dec.

∑

ℓ a1ℓxℓ

ỹ2
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• Zero-Forcing / LMMSE: First, eliminate interference.
Then, decode individual data streams.

• Integer-Forcing: First, decode integer-linear combinations.
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What if we could decode something else?

• Zero-Forcing / LMMSE: First, eliminate interference.
Then, decode individual data streams.

• Integer-Forcing: First, decode integer-linear combinations.
Then, eliminate interference.
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ỹK
SISO Dec.

∑

ℓ aKℓxℓ

...
...

...
...

A−1

x1

x2

xK

What if we could decode something else?

• Zero-Forcing / LMMSE: First, eliminate interference.
Then, decode individual data streams.

• Integer-Forcing: First, decode integer-linear combinations.
Then, eliminate interference.

• If the integer matrix A is full rank, we can successfully recover the
individual data streams.
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MIMO Uplink Channel: Integer-Forcing

Integer-Forcing Linear Receivers:

• The kth effective channel after projection is

bT
kY = bT

kHX+ bT
kZ

= aTkX+ (bT
kH− aTk )X+ bT

kZ

=
K∑

ℓ=1

akℓx
T
ℓ

︸ ︷︷ ︸

Codeword

+(bT
kH− aTk )X+ bT

kZ
︸ ︷︷ ︸

Effective Noise

• The akℓ ∈ Z[j] are Gaussian integers and the codebook should be
closed under integer-linear combinations.

• We are free to choose any full-rank integer-valued matrix A.



MIMO Uplink Channel: Integer-Forcing
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Integer-Forcing Linear Receivers: (Zhan-Nazer-Erez-Gastpar ’14)

• The kth SISO decoder tries to recover
∑

ℓ akℓxℓ from bT
kY:

SINRIF,k(H,A) = max
bk

P

‖bk‖2 + P‖bT
kH− aTk ‖2

• Rate per user:

RIF(H) = max
A

min
k=1,...,K

log+
(
SINRIF,k(H,A)

)

• Includes linear MMSE as a special case by setting A = I.



Comparison: Outage Rates
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Many Other Applications

• Distributed Source Coding: Körner-Marton ’79,
Krithivasan-Pradhan ’09,’11, Wagner ’11, Tse-Maddah-Ali ’10

• Relaying: Wilson-Narayanan-Pfister-Sprintson ’10,
Nam-Chung-Lee ’10, ’11, Goseling-Gastpar-Weber ’11,
Song-Devroye ’13, Nokleby-Aazhang ’12

• Cellular Networks: Sanderovich-Peleg-Shamai ’11,
Nazer-Sanderovich-Gastpar-Shamai ’09, Hong-Caire ’13

• Distributed Dirty-Paper Coding: Philosof-Zamir ’09,
Philosof-Zamir-Erez-Khisti ’11, Wang ’12

• Joint Source-Channel Coding: Kochman-Zamir ’09,
Nazer-Gastpar ’07, ’08, Soundararajan-Vishwanath ’12

• Physical-Layer Secrecy: He-Yener ’11, ’14,
Kashyap-Shashank-Thangaraj ’12



A Joint Typicality Approach

• For the rest of the talk, I will discuss our recent efforts to bring these
lattice coding ideas into the joint typicality framework.

• This is joint work with Sung Hoon Lim, Chen Feng, Adriano Pastore,
and Michael Gastpar.

• See arXiv for our June 2016 pre-print.
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• Decoder: assigns an estimate ŵn
a ∈ F

n
q to each yn ∈ Yn.
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• Messages: mk ∈ [2nRk ] , {0, . . . , 2nRk − 1}, k = 1, . . . ,K.

• Encoders: mappings (unk , x
n
k)(mk) ∈ F

n
q × X n

k , k = 1, . . . ,K
such that unk(mk) is bijective.

• Linear Combination: wn
a ,

⊕

k aku
n
k(mk), a = [a1 · · · aK ] ∈ F

K
q

• Decoder: assigns an estimate ŵn
a ∈ F

n
q to each yn ∈ Yn.

• Probability of Error: For uniformly distributed messages
M1, . . . ,MK , want vanishing probability of error P{Ŵ n

a 6= W n
a }.
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High-Level Intuition: (Low-Level Reality)

• Input Distribution: Want Un
k to look typical with respect to pmf

pUk
(uk). There are ≈ 2nH(Uk) typical sequences.

(Linear codewords look uniform.)

• True Codeword: Want (W n
a , Y

n) to look jointly typical.
(Proof is actually a bit involved.)

• Decoder searches for sequences w̃n
a that are jointly typical with Y n.

There are ≈ 2nH(Wa|Y ) possible sequences. If only one such
sequence is jointly typical, declare it as the estimate Ŵ n

a of the
linear combination W n

a = a1U
n
1 ⊕ · · · ⊕ aKUn

K .
(Suboptimal decoding rule)

• We can show that, for this decoding strategy, we can achieve any
rate tuple (R1, . . . , RK) satisfying

Rk < H(Uk)−H(Wa|Y ).

(Not a mutual information and can be negative.)
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Code Construction:

• Pick a finite field Fq and a symbol mapping x : Fq → X .

• Set κ = nR/ log(q).

• Draw a random generator matrix G ∈ F
κ×n
q elementwise

i.i.d. Unif(Fq). Let G be a realization.

• Draw a random shift (or “dither”) Dn elementwise i.i.d. Unif(Fq).
Let dn be a realization.

• Take q-ary expansion of message m into the vector ννν(m) ∈ F
κ
q .

• Linear codeword for message m is un(m) = ννν(m)G⊕ dn.

• Channel input at time i is xi(m) = x(ui(m)).



Random i.i.d. Codebooks

Random Linear Codes

X
n

T
(n)
ǫ (X)

• Codewords are pairwise independent of one another.

• Codewords are uniformly distributed over Fn
q .
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• Well known that a direct application of linear coding is not sufficient
to reach the point-to-point capacity, Ahlswede ’71.

• Gallager ’68: Pick Fq with q ≫ X and choose symbol mapping x(u)
to reach c.a.i.d. from Unif(Fq). This can attain the capacity.

• This will not work for us. Roughly speaking, if each encoder has a
different input distribution, the symbol mappings may be quite
different, which will disrupt the linear structure of the codebook.

• Padakandla-Pradhan ’13: It is possible to shape the input
distribution using nested linear codes.

• Basic idea: Generate many codewords to represent one message.
Search in this “bin” to find a codeword with the desired type, i.e.,
multicoding.
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Code Construction:

• Messages m ∈ [2nR] and auxiliary indices l ∈ [2nR̂].

• Set κ = n(R+ R̂)/ log(q).

• Pick generator matrix G and dither dn as before.

• Take q-ary expansions
[
ννν(m) ννν(l)

]
∈ F

κ
q .

• Linear codewords: un(m, l) =
[
ννν(m) ννν(l)

]
G⊕ dn.



Point-to-Point Channels: Linear Codes + Multicoding

M
Linear
Code

Multi-
coding

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Encoding:



Point-to-Point Channels: Linear Codes + Multicoding

M
Linear
Code

Multi-
coding

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Encoding:

• Fix p(u) and x(u).



Point-to-Point Channels: Linear Codes + Multicoding

M
Linear
Code

Multi-
coding

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Encoding:

• Fix p(u) and x(u).

• Multicoding: For each m, find an index l such that

un(m, l) ∈ T (n)
ǫ′ (U)



Point-to-Point Channels: Linear Codes + Multicoding

M
Linear
Code

Multi-
coding

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Encoding:

• Fix p(u) and x(u).

• Multicoding: For each m, find an index l such that

un(m, l) ∈ T (n)
ǫ′ (U)

• Succeeds w.h.p. if R̂ > D(pU‖pq) (where pq is uniform over Fq).



Point-to-Point Channels: Linear Codes + Multicoding

M
Linear
Code

Multi-
coding

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Encoding:

• Fix p(u) and x(u).

• Multicoding: For each m, find an index l such that

un(m, l) ∈ T (n)
ǫ′ (U)

• Succeeds w.h.p. if R̂ > D(pU‖pq) (where pq is uniform over Fq).

• Transmit xi = x
(
ui(m, l)

)
.



Point-to-Point Channels: Linear Codes + Multicoding

M
Linear
Code

Multi-
coding

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Encoding:

• Fix p(u) and x(u).

• Multicoding: For each m, find an index l such that

un(m, l) ∈ T (n)
ǫ′ (U)

• Succeeds w.h.p. if R̂ > D(pU‖pq) (where pq is uniform over Fq).

• Transmit xi = x
(
ui(m, l)

)
.

Decoding:



Point-to-Point Channels: Linear Codes + Multicoding

M
Linear
Code

Multi-
coding

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Encoding:

• Fix p(u) and x(u).

• Multicoding: For each m, find an index l such that

un(m, l) ∈ T (n)
ǫ′ (U)

• Succeeds w.h.p. if R̂ > D(pU‖pq) (where pq is uniform over Fq).

• Transmit xi = x
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)
.

Decoding:

• Joint Typicality Decoding: Find the unique index m̂ such that
(
un(m̂, l̂), yn) ∈ T (n)

ǫ (U, Y ) for some index l̂.
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Encoding:

• Fix p(u) and x(u).

• Multicoding: For each m, find an index l such that

un(m, l) ∈ T (n)
ǫ′ (U)

• Succeeds w.h.p. if R̂ > D(pU‖pq) (where pq is uniform over Fq).

• Transmit xi = x
(
ui(m, l)

)
.

Decoding:

• Joint Typicality Decoding: Find the unique index m̂ such that
(
un(m̂, l̂), yn) ∈ T (n)

ǫ (U, Y ) for some index l̂.

• Succeeds w.h.p. if R+ R̂ < I(U ;Y ) +D(pU‖pq)
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Theorem (Padakandla-Pradhan ’13)

Any rate R satisfying

R < max
p(u), x(u)

I(U ;Y )

is achievable. This is equal to the capacity if q ≥ |X |.

• This is the basic coding framework that we will use for each
transmitter.

• Next, let’s examine a two-transmitter, one-receiver
“compute-and-forward” network.
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Code Construction:

• Messages mk ∈ [2nRk ] and auxiliary indices lk ∈ [2nR̂k ], k = 1, 2.

• Set κ = n(max{R1 + R̂1, R2 + R̂2})/ log(q).
• Pick generator matrix G and dithers dn1 , dn2 as before.

• Take q-ary expansions
[
ηηη(m1, l1)

]
∈ F

κ
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[
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• Linear codewords: un1 (m1, l1) = ηηη(m1, l1)G⊕ dn1

un2 (m2, l2) = ηηη(m2, l2)G⊕ dn2
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a

Encoding:

• Fix pmfs p(u1), p(u2) and mappings x1(u1), and x2(u2).

• Multicoding: For each mk, find an index lk such that

unk(mk, lk) ∈ T (n)
ǫ′ (Uk). (If no such lk, pick one randomly.)

• Transmit xki = xk
(
uki(mk, lk)

)
, i = 1, . . . , n.



Nested Linear Coding Architecture

M1
Linear
Code

Multi-
coding

Un
1 x1(u1)

Xn
1

M2
Linear
Code

Multi-
coding

Un
2 x2(u2)

Xn
2

PY |X1X2

Y n

Decoder Ŵ n
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Computation Problem:

• For mk ∈ [2nRk ], lk ∈ [2nR̂k ], we can express the linear combination
of codewords as

wn
a = a1u

n
1 (m1, l1)⊕ a2u

n
2 (m2, l2)

=
[
a1ηηη(m1, l1)⊕ a2ηηη(m2, l2)

]
G⊕ a1d

n
1 ⊕ a2d

n
2

= ννν(sa)G⊕ a1d
n
1 ⊕ a2d

n
2

where sa ∈ [2nmax{R1+R̂1,R2+R̂2}].
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P{Ŵ n
a 6= W n

a } ≤ P{E1}+ P{E2 ∩ Ec
1}+ P{E3 ∩ Ec

1}.



Error Analysis

• For some message, we cannot find a typical linear codeword:

E1 = {Un
k (mk, lk) 6∈ T (n)

ǫ′ for all lk, for some mk, k = 1, 2}.



Error Analysis

• For some message, we cannot find a typical linear codeword:

E1 = {Un
k (mk, lk) 6∈ T (n)

ǫ′ for all lk, for some mk, k = 1, 2}.

• If R̂k > D(pUk
‖pq) + δ(ǫ), then limn→∞ P{E1} = 0 where δ(ǫ) → 0

as ǫ → 0.



Error Analysis

• For some message, we cannot find a typical linear codeword:

E1 = {Un
k (mk, lk) 6∈ T (n)

ǫ′ for all lk, for some mk, k = 1, 2}.

• If R̂k > D(pUk
‖pq) + δ(ǫ), then limn→∞ P{E1} = 0 where δ(ǫ) → 0

as ǫ → 0.

• D(pUk
‖pq) = log q−H(Uk).



Error Analysis

• For some message, we cannot find a typical linear codeword:

E1 = {Un
k (mk, lk) 6∈ T (n)

ǫ′ for all lk, for some mk, k = 1, 2}.

• If R̂k > D(pUk
‖pq) + δ(ǫ), then limn→∞ P{E1} = 0 where δ(ǫ) → 0

as ǫ → 0.

• D(pUk
‖pq) = log q−H(Uk).

• Intuition: Searching for one of ≈ 2nH(Uk) typical sequences out of
2n log q total sequences. Will succeed w.h.p. if

2nR̂k > 2n(log q−H(Uk)).



Error Analysis

• For some message, we cannot find a typical linear codeword:

E1 = {Un
k (mk, lk) 6∈ T (n)

ǫ′ for all lk, for some mk, k = 1, 2}.

• If R̂k > D(pUk
‖pq) + δ(ǫ), then limn→∞ P{E1} = 0 where δ(ǫ) → 0
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‖pq) = log q−H(Uk).

• Intuition: Searching for one of ≈ 2nH(Uk) typical sequences out of
2n log q total sequences. Will succeed w.h.p. if

2nR̂k > 2n(log q−H(Uk)).

• Proof just requires second moment method.
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• If R̂k > D(pUk
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1} = 0 where
δ(ǫ) → 0 as ǫ → 0.

• In a random i.i.d. coding proof, we would just use the fact that the
codewords are independent and that the channel is memoryless.

• Here, the linear codewords can be statistically dependent, since the
choices of the auxiliary indices Lk is coupled due to the shared
nested linear codebook.

• Our proof handles these statistical dependencies by breaking up the
possible error events according to the underlying rank of the selected
linear codewords. (Markov Lemma for Nested Linear Codes.)

• Prior work by Padakandla-Pradhan ’13 developed a bound that also
requires R̂k < D(pUk

‖pq) + 3δ(ǫ).
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• Can show that limn→∞ P{E3 ∩ Ec
1} = 0 if

R1 < ICF,1(a) , H(U1)−H(Wa|Y )

R2 < ICF,2(a) , H(U2)−H(Wa|Y ),

which matches our intuition from earlier.
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• The ICF,2(b) term plays a key role in handling the dependencies
between competing pairs of linear codewords.
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Concluding Remarks

• First steps towards bringing algebraic network information theory
back into the realm of joint typicality.

• Joint decoding rate region for compute-and-forward that
outperforms parallel and successive decoding.


