
Towards an Algebraic Network Information Theory

Bobak Nazer (BU)

Tufts ECE Seminar
October 28, 2016



Motivation

pY |X



Motivation

pY |X



Motivation

pY |X

pY |X1X2



Motivation

pY |X

pY |X1X2 pY1Y2Y3|X1X2X3



Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.



Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Classical Approach:
• Use average performance of random i.i.d. codebooks to argue good

codebooks exist.



Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Classical Approach:
• Use average performance of random i.i.d. codebooks to argue good

codebooks exist.
• Powerful generalizations including superposition coding, dirty paper coding,

block Markov coding, and many more...



Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Classical Approach:
• Use average performance of random i.i.d. codebooks to argue good

codebooks exist.
• Powerful generalizations including superposition coding, dirty paper coding,

block Markov coding, and many more...
• Rate regions described in terms of (single-letter) information measures

optimized over pmfs.



Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Classical Approach:
• Use average performance of random i.i.d. codebooks to argue good

codebooks exist.
• Powerful generalizations including superposition coding, dirty paper coding,

block Markov coding, and many more...
• Rate regions described in terms of (single-letter) information measures

optimized over pmfs.
• Many important successes: multiple-access channels, (degraded) broadcast

channels, Slepian-Wolf compression, network coding, and many more...



Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Classical Approach:
• Use average performance of random i.i.d. codebooks to argue good

codebooks exist.
• Powerful generalizations including superposition coding, dirty paper coding,

block Markov coding, and many more...
• Rate regions described in terms of (single-letter) information measures

optimized over pmfs.
• Many important successes: multiple-access channels, (degraded) broadcast

channels, Slepian-Wolf compression, network coding, and many more...
• Guided the development and optimization of modern communication

networks.



Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Classical Approach:
• Use average performance of random i.i.d. codebooks to argue good

codebooks exist.
• Powerful generalizations including superposition coding, dirty paper coding,

block Markov coding, and many more...
• Rate regions described in terms of (single-letter) information measures

optimized over pmfs.
• Many important successes: multiple-access channels, (degraded) broadcast

channels, Slepian-Wolf compression, network coding, and many more...
• Guided the development and optimization of modern communication

networks.
• State-of-the-art elegantly captured in the recent textbook of

El Gamal and Kim.



Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Classical Approach:
• Use average performance of random i.i.d. codebooks to argue good

codebooks exist.
• Powerful generalizations including superposition coding, dirty paper coding,

block Markov coding, and many more...
• Rate regions described in terms of (single-letter) information measures

optimized over pmfs.
• Many important successes: multiple-access channels, (degraded) broadcast

channels, Slepian-Wolf compression, network coding, and many more...
• Guided the development and optimization of modern communication

networks.
• State-of-the-art elegantly captured in the recent textbook of

El Gamal and Kim.
• Codes with algebraic structure are sought after to mimic the performance

of random i.i.d. codes with low implementation complexity.



Point-to-Point Channels

M Encoder
Xn

pY |X
Y n

Decoder M̂



Point-to-Point Channels

M Encoder
Xn

pY |X
Y n

Decoder M̂

• Messages: m ∈ [2nR] , {0, . . . , 2nR − 1}



Point-to-Point Channels

M Encoder
Xn

pY |X
Y n

Decoder M̂

• Messages: m ∈ [2nR] , {0, . . . , 2nR − 1}
• Encoder: a mapping xn(m) ∈ X n for each m ∈ [2nR]



Point-to-Point Channels

M Encoder
Xn

pY |X
Y n

Decoder M̂

• Messages: m ∈ [2nR] , {0, . . . , 2nR − 1}
• Encoder: a mapping xn(m) ∈ X n for each m ∈ [2nR]

• Memoryless Channel: pY n|Xn(yn|xn) =∏n
i=1 pY |X(yi|xi)



Point-to-Point Channels

M Encoder
Xn

pY |X
Y n

Decoder M̂

• Messages: m ∈ [2nR] , {0, . . . , 2nR − 1}
• Encoder: a mapping xn(m) ∈ X n for each m ∈ [2nR]

• Memoryless Channel: pY n|Xn(yn|xn) =∏n
i=1 pY |X(yi|xi)

• Decoder: a mapping m̂(yn) ∈ [2nR] for each yn ∈ Yn



Point-to-Point Channels

M Encoder
Xn

pY |X
Y n

Decoder M̂

• Messages: m ∈ [2nR] , {0, . . . , 2nR − 1}
• Encoder: a mapping xn(m) ∈ X n for each m ∈ [2nR]

• Memoryless Channel: pY n|Xn(yn|xn) =∏n
i=1 pY |X(yi|xi)

• Decoder: a mapping m̂(yn) ∈ [2nR] for each yn ∈ Yn

Theorem (Shannon ’48)

C = max
pX(x)

I(X;Y )



Point-to-Point Channels

M Encoder
Xn

pY |X
Y n

Decoder M̂

• Messages: m ∈ [2nR] , {0, . . . , 2nR − 1}
• Encoder: a mapping xn(m) ∈ X n for each m ∈ [2nR]

• Memoryless Channel: pY n|Xn(yn|xn) =∏n
i=1 pY |X(yi|xi)

• Decoder: a mapping m̂(yn) ∈ [2nR] for each yn ∈ Yn

Theorem (Shannon ’48)

C = max
pX(x)

I(X;Y )

• Proof relies on random i.i.d. codebooks combined with
joint typicality decoding.



Typicality

• xn is a length-n sequence with elements from finite alphabet X
• The empirical pmf (i.e., type) of xn is

π(x|xn) = 1

n

∣
∣{i : xi = x}

∣
∣ x ∈ X



Typicality

• xn is a length-n sequence with elements from finite alphabet X
• The empirical pmf (i.e., type) of xn is

π(x|xn) = 1

n

∣
∣{i : xi = x}

∣
∣ x ∈ X

• If Xn is i.i.d. according to pX(x), then, by the weak law of large
numbers, π(x|xn) converges to pX(x) in probability.



Typicality

• xn is a length-n sequence with elements from finite alphabet X
• The empirical pmf (i.e., type) of xn is

π(x|xn) = 1

n

∣
∣{i : xi = x}

∣
∣ x ∈ X

• If Xn is i.i.d. according to pX(x), then, by the weak law of large
numbers, π(x|xn) converges to pX(x) in probability.

• This motivates the typical set

T (n)
ǫ (X) =

{
xn : |π(x|xn)− pX(x)| ≤ ǫpX(x) for all x ∈ X

}

which satisfies limn→∞ P
(
Xn ∈ T (n)

ǫ

)
= 1.



Typicality

• xn is a length-n sequence with elements from finite alphabet X
• The empirical pmf (i.e., type) of xn is

π(x|xn) = 1

n

∣
∣{i : xi = x}

∣
∣ x ∈ X

• If Xn is i.i.d. according to pX(x), then, by the weak law of large
numbers, π(x|xn) converges to pX(x) in probability.

• This motivates the typical set

T (n)
ǫ (X) =

{
xn : |π(x|xn)− pX(x)| ≤ ǫpX(x) for all x ∈ X

}

which satisfies limn→∞ P
(
Xn ∈ T (n)

ǫ

)
= 1.

• We can generalize this definition to pairs of sequences (Xn, Y n)
that are i.i.d. according to pXY (x, y) and so on...



Joint Typicality Lemma

• Joint typicality is a powerful framework due to the availability of
several key lemmas including



Joint Typicality Lemma

• Joint typicality is a powerful framework due to the availability of
several key lemmas including

Joint Typicality Lemma

Select pXY (x, y) and 0 < ǫ′ < ǫ. Then, there exists δ(ǫ) that tends to
0 as ǫ → 0 such that



Joint Typicality Lemma

• Joint typicality is a powerful framework due to the availability of
several key lemmas including

Joint Typicality Lemma

Select pXY (x, y) and 0 < ǫ′ < ǫ. Then, there exists δ(ǫ) that tends to
0 as ǫ → 0 such that

• For any ỹn ∈ Yn and X̃n i.i.d. pX(x̃),

P
{
(X̃n, ỹn) ∈ T (n)

ǫ (X,Y )
}
≤ 2−n(I(X;Y )−δ(ǫ))



Joint Typicality Lemma

• Joint typicality is a powerful framework due to the availability of
several key lemmas including

Joint Typicality Lemma

Select pXY (x, y) and 0 < ǫ′ < ǫ. Then, there exists δ(ǫ) that tends to
0 as ǫ → 0 such that

• For any ỹn ∈ Yn and X̃n i.i.d. pX(x̃),

P
{
(X̃n, ỹn) ∈ T (n)

ǫ (X,Y )
}
≤ 2−n(I(X;Y )−δ(ǫ))

• For any yn ∈ T (n)
ǫ′ (Y ) and X̃n i.i.d. pX(x̃),

P
{
(X̃n, yn) ∈ T (n)

ǫ (X,Y )
}
≥ 2−n(I(X;Y )+δ(ǫ)) .



Joint Typicality Lemma

• Joint typicality is a powerful framework due to the availability of
several key lemmas including

Joint Typicality Lemma

Select pXY (x, y) and 0 < ǫ′ < ǫ. Then, there exists δ(ǫ) that tends to
0 as ǫ → 0 such that

• For any ỹn ∈ Yn and X̃n i.i.d. pX(x̃),

P
{
(X̃n, ỹn) ∈ T (n)

ǫ (X,Y )
}
≤ 2−n(I(X;Y )−δ(ǫ))

• For any yn ∈ T (n)
ǫ′ (Y ) and X̃n i.i.d. pX(x̃),

P
{
(X̃n, yn) ∈ T (n)

ǫ (X,Y )
}
≥ 2−n(I(X;Y )+δ(ǫ)) .

Intuition: Probability that i.i.d. X̃n looks jointly typical ≈ 2−nI(X;Y )



Point-to-Point Capacity: Achievability Proof

• Code Construction: Generate 2nR random codewords
Xn(1), . . . ,Xn(2nR) with each element drawn i.i.d. pX(x).



Point-to-Point Capacity: Achievability Proof

• Code Construction: Generate 2nR random codewords
Xn(1), . . . ,Xn(2nR) with each element drawn i.i.d. pX(x).

• Encoding: For message m ∈ [2nR], send codeword Xn(m).



Point-to-Point Capacity: Achievability Proof

• Code Construction: Generate 2nR random codewords
Xn(1), . . . ,Xn(2nR) with each element drawn i.i.d. pX(x).

• Encoding: For message m ∈ [2nR], send codeword Xn(m).

• Decoding: Search for m̂ such that (Xn(m̂), Y n) is jointly typical. If
only one such m̂, output it as the message estimate. Otherwise,
declare an error.



Point-to-Point Capacity: Achievability Proof

• Code Construction: Generate 2nR random codewords
Xn(1), . . . ,Xn(2nR) with each element drawn i.i.d. pX(x).

• Encoding: For message m ∈ [2nR], send codeword Xn(m).

• Decoding: Search for m̂ such that (Xn(m̂), Y n) is jointly typical. If
only one such m̂, output it as the message estimate. Otherwise,
declare an error.

• Error Analysis: Two possibilities.



Point-to-Point Capacity: Achievability Proof

• Code Construction: Generate 2nR random codewords
Xn(1), . . . ,Xn(2nR) with each element drawn i.i.d. pX(x).

• Encoding: For message m ∈ [2nR], send codeword Xn(m).

• Decoding: Search for m̂ such that (Xn(m̂), Y n) is jointly typical. If
only one such m̂, output it as the message estimate. Otherwise,
declare an error.

• Error Analysis: Two possibilities.

• True codeword is not jointly typical, (Xn(m), Y n) /∈ T (n)
ǫ .

Probability goes to zero via WLLN.



Point-to-Point Capacity: Achievability Proof

• Code Construction: Generate 2nR random codewords
Xn(1), . . . ,Xn(2nR) with each element drawn i.i.d. pX(x).

• Encoding: For message m ∈ [2nR], send codeword Xn(m).

• Decoding: Search for m̂ such that (Xn(m̂), Y n) is jointly typical. If
only one such m̂, output it as the message estimate. Otherwise,
declare an error.

• Error Analysis: Two possibilities.

• True codeword is not jointly typical, (Xn(m), Y n) /∈ T (n)
ǫ .

Probability goes to zero via WLLN.
• Some other codeword is jointly typical,

P

{
⋃

m̃ 6=m

{
(Xn(m̃), Y n) ∈ T (n)

ǫ

}
}

≤
∑

m̃ 6=m

P
{
(Xn(m̃), Y n) ∈ T (n)

ǫ

}

≤
∑

m̃ 6=m

2−nI(X;Y )−δ(ǫ)

< 2nR 2−nI(X;Y )−δ(ǫ) .

Probability goes to zero if R < I(X ;Y )− δ(ǫ).



Random i.i.d. Codebooks

X
n

T
(n)
ǫ (X)

Random i.i.d. Codes

• Codewords are independent of one another.

• Can directly target an input distribution pX(x).



Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.



Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Algebraic Approach:

• Utilize linear or lattice codebooks.



Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Algebraic Approach:

• Utilize linear or lattice codebooks.

• Compelling examples starting from the work of Körner and Marton on
distributed compression and, more recently, many papers on physical-layer
network coding, distributed dirty paper coding, and interference alignment.



Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Algebraic Approach:

• Utilize linear or lattice codebooks.

• Compelling examples starting from the work of Körner and Marton on
distributed compression and, more recently, many papers on physical-layer
network coding, distributed dirty paper coding, and interference alignment.

• Coding schemes exhibit behavior not found via i.i.d. ensembles.



Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Algebraic Approach:

• Utilize linear or lattice codebooks.

• Compelling examples starting from the work of Körner and Marton on
distributed compression and, more recently, many papers on physical-layer
network coding, distributed dirty paper coding, and interference alignment.

• Coding schemes exhibit behavior not found via i.i.d. ensembles.

• However, some classical coding techniques are still unavailable.



Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Algebraic Approach:

• Utilize linear or lattice codebooks.

• Compelling examples starting from the work of Körner and Marton on
distributed compression and, more recently, many papers on physical-layer
network coding, distributed dirty paper coding, and interference alignment.

• Coding schemes exhibit behavior not found via i.i.d. ensembles.

• However, some classical coding techniques are still unavailable.

• Most of the initial efforts have focused on Gaussian networks and have
employed nested lattice codebooks.



Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Algebraic Approach:

• Utilize linear or lattice codebooks.

• Compelling examples starting from the work of Körner and Marton on
distributed compression and, more recently, many papers on physical-layer
network coding, distributed dirty paper coding, and interference alignment.

• Coding schemes exhibit behavior not found via i.i.d. ensembles.

• However, some classical coding techniques are still unavailable.

• Most of the initial efforts have focused on Gaussian networks and have
employed nested lattice codebooks.

• Are these just a collection of intriguing examples or elements of a more
general theory?



Network Information Theory

Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Algebraic Approach:

• Utilize linear or lattice codebooks.

• Compelling examples starting from the work of Körner and Marton on
distributed compression and, more recently, many papers on physical-layer
network coding, distributed dirty paper coding, and interference alignment.

• Coding schemes exhibit behavior not found via i.i.d. ensembles.

• However, some classical coding techniques are still unavailable.

• Most of the initial efforts have focused on Gaussian networks and have
employed nested lattice codebooks.

• Are these just a collection of intriguing examples or elements of a more
general theory?

This Talk: We build on previous work and propose a joint typicality
approach to algebraic network information theory.



Compute-and-Forward

Goal: Send a linear combination of the messages to the receiver.



Compute-and-Forward

Goal: Send a linear combination of the messages to the receiver.

m1 E1
Xn

1

m2 E2
Xn

2

mK EK
Xn

K

...

Channel
Y n

D t̂



Compute-and-Forward

Goal: Send a linear combination of the messages to the receiver.

m1 E1
Xn

1

m2 E2
Xn

2

mK EK
Xn

K

...

ννν(·) = q-ary expansion

F
κ
q

Channel
Y n

D t̂

ννν(s) =

K⊕

k=1

ak ννν(mk)



Compute-and-Forward

Goal: Send linear combinations of the messages to the receivers.

m1 E1
Xn

1

m2 E2
Xn

2

mK EK
Xn

K

...

ννν(·) = q-ary expansion

F
κ
q

Channel

Y n
1 D1 ŝ1

Y n
2 D2 ŝ2

...

Y n
K DK ŝK

ννν(sℓ) =

K⊕

k=1

aℓ,k ννν(mk)



Compute-and-Forward

Goal: Send linear combinations of the messages to the receivers.

• Compute-and-forward can serve as a framework for communicating
messages across a network (e.g., relaying, MIMO uplink/downlink,
interference alignment).

m1 E1
Xn

1

m2 E2
Xn

2

mK EK
Xn

K

...

ννν(·) = q-ary expansion

F
κ
q

Channel

Y n
1 D1 ŝ1

Y n
2 D2 ŝ2

...

Y n
K DK ŝK

ννν(sℓ) =

K⊕

k=1

aℓ,k ννν(mk)



Compute-and-Forward

Goal: Send linear combinations of the messages to the receivers.

• Compute-and-forward can serve as a framework for communicating
messages across a network (e.g., relaying, MIMO uplink/downlink,
interference alignment).

• Much of the recent work has focused on Gaussian networks.

m1 E1
Xn

1

m2 E2
Xn

2

mK EK
Xn

K

...

R
n

ννν(·) = q-ary expansion

F
κ
q

H

Zn
1

Zn
2

Zn
K

Y n
1 D1 ŝ1

Y n
2 D2 ŝ2

...

Y n
K DK ŝK

ννν(sℓ) =

K⊕

k=1

aℓ,k ννν(mk)



The Usual Approach



Nested Lattice Codes

• Nested Lattice Code: Formed by
taking all elements of ΛF that lie in the
fundamental Voronoi region of ΛC.



Nested Lattice Codes

• Nested Lattice Code: Formed by
taking all elements of ΛF that lie in the
fundamental Voronoi region of ΛC.

• Fine lattice ΛF protects against noise.



Nested Lattice Codes

• Nested Lattice Code: Formed by
taking all elements of ΛF that lie in the
fundamental Voronoi region of ΛC.

• Fine lattice ΛF protects against noise.

• Coarse lattice ΛC enforces the power
constraint.



Nested Lattice Codes

• Nested Lattice Code: Formed by
taking all elements of ΛF that lie in the
fundamental Voronoi region of ΛC.

• Fine lattice ΛF protects against noise.

• Coarse lattice ΛC enforces the power
constraint.

• Existence of good nested lattice codes:
Loeliger ’97, Forney-Trott-Chung ’00,
Erez-Litsyn-Zamir ’05,

Ordentlich-Erez ’16.

• Erez-Zamir ’04: Nested lattice codes
can achieve the Gaussian capacity.

• Zamir-Shamai-Erez ’02: Excellent
framework for multi-terminal binning.



Nested Lattice Codes

• Nested Lattice Code: Formed by
taking all elements of ΛF that lie in the
fundamental Voronoi region of ΛC.

• Fine lattice ΛF protects against noise.

• Coarse lattice ΛC enforces the power
constraint.

• Existence of good nested lattice codes:
Loeliger ’97, Forney-Trott-Chung ’00,
Erez-Litsyn-Zamir ’05,

Ordentlich-Erez ’16.

• Erez-Zamir ’04: Nested lattice codes
can achieve the Gaussian capacity.

• Zamir-Shamai-Erez ’02: Excellent
framework for multi-terminal binning.

B(0,
√
nP )



Nested Lattice Codes

• Nested Lattice Code: Formed by
taking all elements of ΛF that lie in the
fundamental Voronoi region of ΛC.

• Fine lattice ΛF protects against noise.

• Coarse lattice ΛC enforces the power
constraint.

• Existence of good nested lattice codes:
Loeliger ’97, Forney-Trott-Chung ’00,
Erez-Litsyn-Zamir ’05,

Ordentlich-Erez ’16.

• Erez-Zamir ’04: Nested lattice codes
can achieve the Gaussian capacity.

• Zamir-Shamai-Erez ’02: Excellent
framework for multi-terminal binning.

B(0,
√
nP )



Nested Lattice Code Heuristics

• The Voronoi region VC of the coarse lattice ΛC enforces the
power constraint: If x ∈ VC, then

1
n‖x‖2 ≤ P .



Nested Lattice Code Heuristics

• The Voronoi region VC of the coarse lattice ΛC enforces the
power constraint: If x ∈ VC, then

1
n‖x‖2 ≤ P .

• The Voronoi region VF of the fine lattice ΛF tolerates noise up to
variance σ2

eff: For “well-behaved” noise zeff, if
1
nE‖zeff‖2 ≤ σ2

eff, then
P(zeff /∈ VF) < δ for some small δ.



Nested Lattice Code Heuristics

• The Voronoi region VC of the coarse lattice ΛC enforces the
power constraint: If x ∈ VC, then

1
n‖x‖2 ≤ P .

• The Voronoi region VF of the fine lattice ΛF tolerates noise up to
variance σ2

eff: For “well-behaved” noise zeff, if
1
nE‖zeff‖2 ≤ σ2

eff, then
P(zeff /∈ VF) < δ for some small δ.

• The number of codewords in the nested lattice codebook ΛF ∩ VC is

2nR =
Vol(VC)

Vol(VF)
≈

Vol
(

B
(
0,

√
nP
))

Vol
(

B
(
0,
√

nσ2
eff

)) =

(
P

σ2
eff

)n/2



Nested Lattice Code Heuristics

• The Voronoi region VC of the coarse lattice ΛC enforces the
power constraint: If x ∈ VC, then

1
n‖x‖2 ≤ P .

• The Voronoi region VF of the fine lattice ΛF tolerates noise up to
variance σ2

eff: For “well-behaved” noise zeff, if
1
nE‖zeff‖2 ≤ σ2

eff, then
P(zeff /∈ VF) < δ for some small δ.

• The number of codewords in the nested lattice codebook ΛF ∩ VC is

2nR =
Vol(VC)

Vol(VF)
≈

Vol
(

B
(
0,

√
nP
))

Vol
(

B
(
0,
√

nσ2
eff

)) =

(
P

σ2
eff

)n/2

• Can show that the achievable rate satisfies R >
1

2
log

(
P

σ2
eff

)

− δ.



Compute-and-Forward with Lattice Codes

• Each encoder maps its message mk to a lattice codeword xk.



Compute-and-Forward with Lattice Codes

• Each encoder maps its message mk to a lattice codeword xk.

• The decoder observes y. It scales by α ∈ R to get h ∈ R
K “closer”

to a ∈ Z
K . We can write this as

αy =



Compute-and-Forward with Lattice Codes

• Each encoder maps its message mk to a lattice codeword xk.

• The decoder observes y. It scales by α ∈ R to get h ∈ R
K “closer”

to a ∈ Z
K . We can write this as

αy =
K∑

k=1

akxk

︸ ︷︷ ︸

Lattice Codeword

+
L∑

ℓ=1

(αhk − ak)xk + αz

︸ ︷︷ ︸

Effective Noise



Compute-and-Forward with Lattice Codes

• Each encoder maps its message mk to a lattice codeword xk.

• The decoder observes y. It scales by α ∈ R to get h ∈ R
K “closer”

to a ∈ Z
K . We can write this as

αy =
K∑

k=1

akxk

︸ ︷︷ ︸

Lattice Codeword

+
L∑

ℓ=1

(αhk − ak)xk + αz

︸ ︷︷ ︸

Effective Noise

= v + zeff



Compute-and-Forward with Lattice Codes

• Each encoder maps its message mk to a lattice codeword xk.

• The decoder observes y. It scales by α ∈ R to get h ∈ R
K “closer”

to a ∈ Z
K . We can write this as

αy =
K∑

k=1

akxk

︸ ︷︷ ︸

Lattice Codeword

+
L∑

ℓ=1

(αhk − ak)xk + αz

︸ ︷︷ ︸

Effective Noise

= v + zeff

• The effective noise variance is

σ2
eff =

1

n
E‖zeff‖2 = α2+SNR

K∑

k=1

(αhk−ak)
2 = α2+SNR‖αh−a‖2 .



Compute-and-Forward with Lattice Codes

• Each encoder maps its message mk to a lattice codeword xk.

• The decoder observes y. It scales by α ∈ R to get h ∈ R
K “closer”

to a ∈ Z
K . We can write this as

αy =
K∑

k=1

akxk

︸ ︷︷ ︸

Lattice Codeword

+
L∑

ℓ=1

(αhk − ak)xk + αz

︸ ︷︷ ︸

Effective Noise

= v + zeff

• The effective noise variance is

σ2
eff =

1

n
E‖zeff‖2 = α2+SNR

K∑

k=1

(αhk−ak)
2 = α2+SNR‖αh−a‖2 .

• We can decode v if R <
1

2
log

(
SNR

α2 + SNR‖αh− a‖2
)

.



Compute-and-Forward with Lattice Codes

• Each encoder maps its message mk to a lattice codeword xk.

• The decoder observes y. It scales by α ∈ R to get h ∈ R
K “closer”

to a ∈ Z
K . We can write this as

αy =
K∑

k=1

akxk

︸ ︷︷ ︸

Lattice Codeword

+
L∑

ℓ=1

(αhk − ak)xk + αz

︸ ︷︷ ︸

Effective Noise

= v + zeff

• The effective noise variance is

σ2
eff =

1

n
E‖zeff‖2 = α2+SNR

K∑

k=1

(αhk−ak)
2 = α2+SNR‖αh−a‖2 .

• We can decode v if R <
1

2
log

(
SNR

α2 + SNR‖αh− a‖2
)

.

• Finding the best a corresponds to finding the shortest vector in the
lattice (SNR−1I+ hhT)−1/2

Z
K .



Compute-and-Forward: Illustration

All users employ the same nested lattice code.



Compute-and-Forward: Illustration

Choose messages mk ∈ [2nR].

m2

m1



Compute-and-Forward: Illustration

Map mk to lattice codeword xk = Ek(mk).

m2

m1



Compute-and-Forward: Illustration

Transmit lattice points over the channel.

m2

m1
x1

h1

x2
h2

z

y

h = [ 1.4 2.1 ]

a = [ 2 3 ]



Compute-and-Forward: Illustration

Transmit lattice points over the channel.

m2

m1
x1

h1

x2
h2

z

y

h = [ 1.4 2.1 ]

a = [ 2 3 ]



Compute-and-Forward: Illustration

Lattice codewords are scaled by channel coefficients.

m2

m1
x1

h1

x2
h2

z

y

h = [ 1.4 2.1 ]

a = [ 2 3 ]



Compute-and-Forward: Illustration

Scaled codewords added together plus noise.

m2

m1
x1

h1

x2
h2

z

y

h = [ 1.4 2.1 ]

a = [ 2 3 ]



Compute-and-Forward: Illustration

Scaled codewords added together plus noise.

m2

m1
x1

h1

x2
h2

z

y

h = [ 1.4 2.1 ]

a = [ 2 3 ]



Compute-and-Forward: Illustration

Extra noise penalty for non-integer channel coefficients.

m2

m1
x1

h1

x2
h2

z

y

h = [ 1.4 2.1 ]

a = [ 2 3 ]

Effective noise: 1 + P‖h− a‖2



Compute-and-Forward: Illustration

Scale output by α to reduce non-integer noise penalty.

m2

m1
x1

h1

x2
h2

z

y

αh = [ α1.4 α2.1 ]

a = [ 2 3 ]

Effective noise: α2 + P‖αh− a‖2



Compute-and-Forward: Illustration

Scale output by α to reduce non-integer noise penalty.

m2

m1
x1

h1

x2
h2

z

y

αh = [ α1.4 α2.1 ]

a = [ 2 3 ]

Effective noise: α2 + P‖αh− a‖2



Compute-and-Forward: Illustration

Decode to the closest lattice point.

m2

m1
x1

h1

x2
h2

z

y

αh = [ α1.4 α2.1 ]

a = [ 2 3 ]

Effective noise: α2 + P‖αh− a‖2



Compute-and-Forward: Illustration

Recover integer linear combination of the codewords.

m2

m1
x1

h1

x2
h2

z

y

αh = [ α1.4 α2.1 ]

a = [ 2 3 ]

Effective noise: α2 + P‖αh− a‖2

2x1 + 3x2



Compute-and-Forward: Achievable Rates

Theorem (Nazer-Gastpar ’11)

A receiver can recover a linear combination with coefficient vector

a ∈ Z
K over the channel vector h ∈ R

K if R < Rcomp(h,a) where

Rcomp(h,a) = max
α∈R

1

2
log+

(
P

α2 + P‖αh − a‖2
)

.



Compute-and-Forward: Achievable Rates

Theorem (Nazer-Gastpar ’11)

A receiver can recover a linear combination with coefficient vector

a ∈ Z
K over the channel vector h ∈ R

K if R < Rcomp(h,a) where

Rcomp(h,a) =
1

2
log+

(

P

aT
(
P−1I+ hhT

)−1
a

)

.



Compute-and-Forward: Achievable Rates

Theorem (Nazer-Gastpar ’11)

A receiver can recover a linear combination with coefficient vector

a ∈ Z
K over the channel vector h ∈ R

K if R < Rcomp(h,a) where

Rcomp(h,a) =
1

2
log+

(

P

aT
(
P−1I+ hhT

)−1
a

)

.

ν(m1) E1
x1 h1

ν(mK) EK
xK

hK

...
...

z

y
D



Compute-and-Forward: Achievable Rates

Theorem (Nazer-Gastpar ’11)

A receiver can recover a linear combination with coefficient vector

a ∈ Z
K over the channel vector h ∈ R

K if R < Rcomp(h,a) where

Rcomp(h,a) =
1

2
log+

(

P

aT
(
P−1I+ hhT

)−1
a

)

.

ν(m1) E1
x1 h1

ν(mK) EK
xK

hK

...
...

z

y
D

R
n

F
k
p



Compute-and-Forward: Achievable Rates

Theorem (Nazer-Gastpar ’11)

A receiver can recover a linear combination with coefficient vector

a ∈ Z
K over the channel vector h ∈ R

K if R < Rcomp(h,a) where

Rcomp(h,a) =
1

2
log+

(

P

aT
(
P−1I+ hhT

)−1
a

)

.

ν(m1) E1
x1 h1

ν(mK) EK
xK

hK

...
...

z

y
D

R
n

F
k
p

Compute-and-Forward

ν(m1)

ν(mK)

Q
ŵ1

ŵL

...
...F

k
p

wℓ =
⊕

k aℓ,k ν(mk)



Compute-and-Forward: Achievable Rates

Theorem (Nazer-Gastpar ’11)

A receiver can recover a linear combination with coefficient vector

a ∈ Z
K over the channel vector h ∈ R

K if R < Rcomp(h,a) where

Rcomp(h,a) =
1

2
log+

(

P

aT
(
P−1I+ hhT

)−1
a

)

.

Special Cases:

• Perfect Match: Rcomp(a,a) =
1

2
log+

(
1

‖a‖2 + P

)



Compute-and-Forward: Achievable Rates

Theorem (Nazer-Gastpar ’11)

A receiver can recover a linear combination with coefficient vector

a ∈ Z
K over the channel vector h ∈ R

K if R < Rcomp(h,a) where

Rcomp(h,a) =
1

2
log+

(

P

aT
(
P−1I+ hhT

)−1
a

)

.

Special Cases:

• Perfect Match: Rcomp(a,a) =
1

2
log+

(
1

‖a‖2 + P

)

• Decode the kth Message:

Rcomp

(

h, [0 · · · 0
︸ ︷︷ ︸

k−1 zeros

1 0 · · · 0]T
)

=
1

2
log

(

1 +
h2kP

1 + P
∑

ℓ 6=k

h2ℓ

)



Random i.i.d. codes are not good for computation

2nR2 codewords

2nR1 codewords

x1

x2

y

2n(R1+R2) codewords



Random i.i.d. codes are not good for computation

2nR2 codewords

2nR1 codewords

x1

x2

y

2n(R1+R2) codewords



Application: MIMO Uplink Channel

m1 SISO Enc.
x1

m2 SISO Enc.
x2

mK SISO Enc.
xK

...
...

...

H

z1

z2

zK

y1

y2

...
yK

MIMO

Decoder

m̂1

m̂2

m̂K

...

Usual Assumptions:

• Each antenna carries an independent data stream xℓ ∈ C
n of rate R

(e.g., V-BLAST setting, cellular uplink). X = [x1 · · · xK ]T.

• Usual power constraint: ‖xℓ‖2 ≤ nP .

• Channel model: Y = HX+ Z

• Z is elementwise i.i.d. CN (0, 1).

• CSIR: Only the receiver knows channel realization H ∈ C
K×K.



MIMO Uplink Channel: Joint ML Decoding

m1 SISO Enc.
x1

m2 SISO Enc.
x2

mK SISO Enc.
xK

...
...

...

H

z1

z2

zK

y1

y2

...
yK

Joint ML

Decoder

m̂1

m̂2

m̂K

...

Joint Maximum Likelihood Decoding:

Rjoint(H) = min
S⊆{1,...,K}

1

|S| log det
(
I+ P HSH

∗
S

)

• Corresponds to the (symmetric) outage capacity.

• Naive implementation has prohibitively high complexity.

• Of course, there are many clever ways to reduce the complexity!



MIMO Uplink Channel: Zero-Forcing and Linear MMSE

m1 SISO Enc.
x1

m2 SISO Enc.
x2

mK SISO Enc.
xK

...
...

...

H

z1

z2

zK

y1

y2

...
yK

B

ỹ1
SISO Dec. m̂1

ỹ2
SISO Dec. m̂2

ỹK
SISO Dec. m̂K

...
...

...

Zero-Forcing and Linear MMSE Receivers:

• Project the received signal, Ỹ = BY to eliminate interference
between data streams.

• After projection, single-user decoders attempt to recover the
individual data streams.

• Optimal B is the MMSE projection.



MIMO Uplink Channel: Zero-Forcing and Linear MMSE

x1

x2

xK

...

H

z1

z2

zK

y1

y2

...
yK

B

ỹ1
SISO Dec. x1

ỹ2
SISO Dec. x2

ỹK
SISO Dec. xK

...
...

...

Zero-Forcing and Linear MMSE Receivers:

• The kth SISO decoder tries to recover xk from bT
kY:

SINRLMMSE,k(H) = max
bk

P ‖bT
khk‖2

1 + P
∑

ℓ 6=k ‖bT
khℓ‖2

• Rate per user:

RLMMSE(H) = min
k=1,...,K

log
(
1 + SINRLMMSE,k(H)

)



MIMO Uplink Channel: Successive Interference Cancellation

x1

x2

xK

...

H

z1

z2

zK

y1

y2

...
yK

B

ỹ1
SISO Dec. xπ(1)

ỹ2
SISO Dec. xπ(2)

ỹK
SISO Dec. xπ(K)

...
...

...

Successive Interference Cancellation Receivers:

• Decode in order π. Cancel xπ(1), . . . ,xπ(k−1) from ỹk:

SINRSIC,π(m)(H) = max
bm

P ‖bT
khπ(k)‖2

1 + SNR
∑K

ℓ=k+1 ‖bT
khπ(ℓ)‖2

• Rate per user:

RV-BLAST II(H) = max
π

min
k=1,...,K

log
(
1 + SINRSIC,π(k)(H)

)



MIMO Uplink Channel: Integer-Forcing

x1

x2

xK

...

H

z1

z2

zK

y1

y2

...
yK

B

ỹ1
SISO Dec. x1

ỹ2
SISO Dec. x2

ỹK
SISO Dec. xK

...
...

...

What if we could decode something else?

• Zero-Forcing / LMMSE: First, eliminate interference.
Then, decode individual data streams.



MIMO Uplink Channel: Integer-Forcing

x1

x2

xK

...

H

z1

z2

zK

y1

y2

...
yK

B

ỹ1
SISO Dec.

ỹ2
SISO Dec.

ỹK
SISO Dec.

...
...

What if we could decode something else?

• Zero-Forcing / LMMSE: First, eliminate interference.
Then, decode individual data streams.

First, decode



MIMO Uplink Channel: Integer-Forcing

x1

x2

xK

...

H

z1

z2

zK

y1

y2

...
yK

B

ỹ1
SISO Dec.

∑

ℓ a1ℓxℓ

ỹ2
SISO Dec.

∑

ℓ a2ℓxℓ

ỹK
SISO Dec.

∑

ℓ aKℓxℓ

...
...

...

What if we could decode something else?

• Zero-Forcing / LMMSE: First, eliminate interference.
Then, decode individual data streams.

• Integer-Forcing: First, decode integer-linear combinations.



MIMO Uplink Channel: Integer-Forcing

x1

x2

xK

...

H

z1

z2

zK

y1

y2

...
yK

B

ỹ1
SISO Dec.

∑

ℓ a1ℓxℓ

ỹ2
SISO Dec.

∑

ℓ a2ℓxℓ

ỹK
SISO Dec.

∑

ℓ aKℓxℓ

...
...

...
...

A−1

x1

x2

xK

What if we could decode something else?

• Zero-Forcing / LMMSE: First, eliminate interference.
Then, decode individual data streams.

• Integer-Forcing: First, decode integer-linear combinations.
Then, eliminate interference.



MIMO Uplink Channel: Integer-Forcing

x1

x2

xK

...

H

z1

z2

zK

y1

y2

...
yK

B

ỹ1
SISO Dec.

∑

ℓ a1ℓxℓ

ỹ2
SISO Dec.

∑

ℓ a2ℓxℓ

ỹK
SISO Dec.

∑

ℓ aKℓxℓ

...
...

...
...

A−1

x1

x2

xK

What if we could decode something else?

• Zero-Forcing / LMMSE: First, eliminate interference.
Then, decode individual data streams.

• Integer-Forcing: First, decode integer-linear combinations.
Then, eliminate interference.

• If the integer matrix A is full rank, we can successfully recover the
individual data streams.



MIMO Uplink Channel: Integer-Forcing

Integer-Forcing Linear Receivers:

• The kth effective channel after projection is

bT
kY = bT

kHX+ bT
kZ



MIMO Uplink Channel: Integer-Forcing

Integer-Forcing Linear Receivers:

• The kth effective channel after projection is

bT
kY = bT

kHX+ bT
kZ

= aTkX+ (bT
kH− aTk )X+ bT

kZ



MIMO Uplink Channel: Integer-Forcing

Integer-Forcing Linear Receivers:

• The kth effective channel after projection is

bT
kY = bT

kHX+ bT
kZ

= aTkX+ (bT
kH− aTk )X+ bT

kZ

=
K∑

ℓ=1

akℓx
T
ℓ

︸ ︷︷ ︸

Codeword

+(bT
kH− aTk )X+ bT

kZ
︸ ︷︷ ︸

Effective Noise



MIMO Uplink Channel: Integer-Forcing

Integer-Forcing Linear Receivers:

• The kth effective channel after projection is

bT
kY = bT

kHX+ bT
kZ

= aTkX+ (bT
kH− aTk )X+ bT

kZ

=
K∑

ℓ=1

akℓx
T
ℓ

︸ ︷︷ ︸

Codeword

+(bT
kH− aTk )X+ bT

kZ
︸ ︷︷ ︸

Effective Noise

• The akℓ ∈ Z[j] are Gaussian integers and the codebook should be
closed under integer-linear combinations.

• We are free to choose any full-rank integer-valued matrix A.



MIMO Uplink Channel: Integer-Forcing

x1

x2

xK

...

H

z1

z2

zK

y1

y2

...
yK

B

ỹ1
SISO Dec.

∑

ℓ a1ℓxℓ

ỹ2
SISO Dec.

∑

ℓ a2ℓxℓ

ỹK
SISO Dec.

∑

ℓ aKℓxℓ

...
...

...
...

A−1

x1

x2

xK

Integer-Forcing Linear Receivers: (Zhan-Nazer-Erez-Gastpar ’14)

• The kth SISO decoder tries to recover
∑

ℓ akℓxℓ from bT
kY:

SINRIF,k(H,A) = max
bk

P

‖bk‖2 + P‖bT
kH− aTk ‖2

• Rate per user:

RIF(H) = max
A

min
k=1,...,K

log+
(
SINRIF,k(H,A)

)

• Includes linear MMSE as a special case by setting A = I.



Comparison: Outage Rates

0 5 10 15 20
0

1

2

3

4

5

6

7

SNR (dB)

1 
%

 O
ut

ag
e 

R
at

e 
(b

its
 p

er
 c

om
pl

ex
 s

ym
bo

l)

 

 

Capacity

Integer−Forcing

V−BLAST III

V−BLAST II

Linear MMSE

2 users, 2 receive antennas, Rayleigh fading, 1% outage.



Many Other Applications

• Distributed Source Coding: Körner-Marton ’79,
Krithivasan-Pradhan ’09,’11, Wagner ’11, Tse-Maddah-Ali ’10

• Relaying: Wilson-Narayanan-Pfister-Sprintson ’10,
Nam-Chung-Lee ’10, ’11, Goseling-Gastpar-Weber ’11,
Song-Devroye ’13, Nokleby-Aazhang ’12

• Cellular Networks: Sanderovich-Peleg-Shamai ’11,
Nazer-Sanderovich-Gastpar-Shamai ’09, Hong-Caire ’13

• Distributed Dirty-Paper Coding: Philosof-Zamir ’09,
Philosof-Zamir-Erez-Khisti ’11, Wang ’12

• Joint Source-Channel Coding: Kochman-Zamir ’09,
Nazer-Gastpar ’07, ’08, Soundararajan-Vishwanath ’12

• Physical-Layer Secrecy: He-Yener ’11, ’14,
Kashyap-Shashank-Thangaraj ’12



A Joint Typicality Approach

• For the rest of the talk, I will discuss our recent efforts to bring these
lattice coding ideas into the joint typicality framework.

• This is joint work with Sung Hoon Lim, Chen Feng, Adriano Pastore,
and Michael Gastpar.

• See arXiv for our June 2016 pre-print.



Compute-and-Forward: Beyond Gaussian Channels

M1

Encoder 1

Bijective
Mapping to F

n
q

Un
1

xn
1 (u

n
1 )

Xn
1

...
...

MK

Encoder K

Bijective
Mapping to F

n
q

Un
K

xn
K(un

K)
Xn

K

PY |X1,...,XK

Y n

Decoder Ŵ n
a



Compute-and-Forward: Beyond Gaussian Channels

M1

Encoder 1

Bijective
Mapping to F

n
q

Un
1

xn
1 (u

n
1 )

Xn
1

...
...

MK

Encoder K

Bijective
Mapping to F

n
q

Un
K

xn
K(un

K)
Xn

K

PY |X1,...,XK

Y n

Decoder Ŵ n
a

• Messages: mk ∈ [2nRk ] , {0, . . . , 2nRk − 1}, k = 1, . . . ,K.



Compute-and-Forward: Beyond Gaussian Channels

M1

Encoder 1

Bijective
Mapping to F

n
q

Un
1

xn
1 (u

n
1 )

Xn
1

...
...

MK

Encoder K

Bijective
Mapping to F

n
q

Un
K

xn
K(un

K)
Xn

K

PY |X1,...,XK

Y n

Decoder Ŵ n
a

• Messages: mk ∈ [2nRk ] , {0, . . . , 2nRk − 1}, k = 1, . . . ,K.

• Encoders: mappings (unk , x
n
k)(mk) ∈ F

n
q × X n

k , k = 1, . . . ,K
such that unk(mk) is bijective.



Compute-and-Forward: Beyond Gaussian Channels

M1

Encoder 1

Bijective
Mapping to F

n
q

Un
1

xn
1 (u

n
1 )

Xn
1

...
...

MK

Encoder K

Bijective
Mapping to F

n
q

Un
K

xn
K(un

K)
Xn

K

PY |X1,...,XK

Y n

Decoder Ŵ n
a

• Messages: mk ∈ [2nRk ] , {0, . . . , 2nRk − 1}, k = 1, . . . ,K.

• Encoders: mappings (unk , x
n
k)(mk) ∈ F

n
q × X n

k , k = 1, . . . ,K
such that unk(mk) is bijective.

• Linear Combination: wn
a ,

⊕

k aku
n
k(mk), a = [a1 · · · aK ] ∈ F

K
q



Compute-and-Forward: Beyond Gaussian Channels

M1

Encoder 1

Bijective
Mapping to F

n
q

Un
1

xn
1 (u

n
1 )

Xn
1

...
...

MK

Encoder K

Bijective
Mapping to F

n
q

Un
K

xn
K(un

K)
Xn

K

PY |X1,...,XK

Y n

Decoder Ŵ n
a

• Messages: mk ∈ [2nRk ] , {0, . . . , 2nRk − 1}, k = 1, . . . ,K.

• Encoders: mappings (unk , x
n
k)(mk) ∈ F

n
q × X n

k , k = 1, . . . ,K
such that unk(mk) is bijective.

• Linear Combination: wn
a ,

⊕

k aku
n
k(mk), a = [a1 · · · aK ] ∈ F

K
q

• Decoder: assigns an estimate ŵn
a ∈ F

n
q to each yn ∈ Yn.



Compute-and-Forward: Beyond Gaussian Channels

M1

Encoder 1

Bijective
Mapping to F

n
q

Un
1

xn
1 (u

n
1 )

Xn
1

...
...

MK

Encoder K

Bijective
Mapping to F

n
q

Un
K

xn
K(un

K)
Xn

K

PY |X1,...,XK

Y n

Decoder Ŵ n
a

• Messages: mk ∈ [2nRk ] , {0, . . . , 2nRk − 1}, k = 1, . . . ,K.

• Encoders: mappings (unk , x
n
k)(mk) ∈ F

n
q × X n

k , k = 1, . . . ,K
such that unk(mk) is bijective.

• Linear Combination: wn
a ,

⊕

k aku
n
k(mk), a = [a1 · · · aK ] ∈ F

K
q

• Decoder: assigns an estimate ŵn
a ∈ F

n
q to each yn ∈ Yn.

• Probability of Error: For uniformly distributed messages
M1, . . . ,MK , want vanishing probability of error P{Ŵ n

a 6= W n
a }.



Compute-and-Forward: Beyond Gaussian Channels

High-Level Intuition:

• Input Distribution: Want Un
k to look typical with respect to pmf

pUk
(uk). There are ≈ 2nH(Uk) typical sequences.



Compute-and-Forward: Beyond Gaussian Channels

High-Level Intuition:

• Input Distribution: Want Un
k to look typical with respect to pmf

pUk
(uk). There are ≈ 2nH(Uk) typical sequences.

• True Codeword: Want (W n
a , Y

n) to look jointly typical.



Compute-and-Forward: Beyond Gaussian Channels

High-Level Intuition:

• Input Distribution: Want Un
k to look typical with respect to pmf

pUk
(uk). There are ≈ 2nH(Uk) typical sequences.

• True Codeword: Want (W n
a , Y

n) to look jointly typical.

• Decoder searches for sequences w̃n
a that are jointly typical with Y n.

There are ≈ 2nH(Wa|Y ) possible sequences. If only one such
sequence is jointly typical, declare it as the estimate Ŵ n

a of the
linear combination W n

a = a1U
n
1 ⊕ · · · ⊕ aKUn

K .



Compute-and-Forward: Beyond Gaussian Channels

High-Level Intuition:

• Input Distribution: Want Un
k to look typical with respect to pmf

pUk
(uk). There are ≈ 2nH(Uk) typical sequences.

• True Codeword: Want (W n
a , Y

n) to look jointly typical.

• Decoder searches for sequences w̃n
a that are jointly typical with Y n.

There are ≈ 2nH(Wa|Y ) possible sequences. If only one such
sequence is jointly typical, declare it as the estimate Ŵ n

a of the
linear combination W n

a = a1U
n
1 ⊕ · · · ⊕ aKUn

K .

• We can show that, for this decoding strategy, we can achieve any
rate tuple (R1, . . . , RK) satisfying

Rk < H(Uk)−H(Wa|Y ).



Compute-and-Forward: Beyond Gaussian Channels

High-Level Intuition: (Low-Level Reality)

• Input Distribution: Want Un
k to look typical with respect to pmf

pUk
(uk). There are ≈ 2nH(Uk) typical sequences.

• True Codeword: Want (W n
a , Y

n) to look jointly typical.

• Decoder searches for sequences w̃n
a that are jointly typical with Y n.

There are ≈ 2nH(Wa|Y ) possible sequences. If only one such
sequence is jointly typical, declare it as the estimate Ŵ n

a of the
linear combination W n

a = a1U
n
1 ⊕ · · · ⊕ aKUn

K .

• We can show that, for this decoding strategy, we can achieve any
rate tuple (R1, . . . , RK) satisfying

Rk < H(Uk)−H(Wa|Y ).



Compute-and-Forward: Beyond Gaussian Channels

High-Level Intuition: (Low-Level Reality)

• Input Distribution: Want Un
k to look typical with respect to pmf

pUk
(uk). There are ≈ 2nH(Uk) typical sequences.

(Linear codewords look uniform.)

• True Codeword: Want (W n
a , Y

n) to look jointly typical.

• Decoder searches for sequences w̃n
a that are jointly typical with Y n.

There are ≈ 2nH(Wa|Y ) possible sequences. If only one such
sequence is jointly typical, declare it as the estimate Ŵ n

a of the
linear combination W n

a = a1U
n
1 ⊕ · · · ⊕ aKUn

K .

• We can show that, for this decoding strategy, we can achieve any
rate tuple (R1, . . . , RK) satisfying

Rk < H(Uk)−H(Wa|Y ).



Compute-and-Forward: Beyond Gaussian Channels

High-Level Intuition: (Low-Level Reality)

• Input Distribution: Want Un
k to look typical with respect to pmf

pUk
(uk). There are ≈ 2nH(Uk) typical sequences.

(Linear codewords look uniform.)

• True Codeword: Want (W n
a , Y

n) to look jointly typical.
(Proof is actually a bit involved.)

• Decoder searches for sequences w̃n
a that are jointly typical with Y n.

There are ≈ 2nH(Wa|Y ) possible sequences. If only one such
sequence is jointly typical, declare it as the estimate Ŵ n

a of the
linear combination W n

a = a1U
n
1 ⊕ · · · ⊕ aKUn

K .

• We can show that, for this decoding strategy, we can achieve any
rate tuple (R1, . . . , RK) satisfying

Rk < H(Uk)−H(Wa|Y ).



Compute-and-Forward: Beyond Gaussian Channels

High-Level Intuition: (Low-Level Reality)

• Input Distribution: Want Un
k to look typical with respect to pmf

pUk
(uk). There are ≈ 2nH(Uk) typical sequences.

(Linear codewords look uniform.)

• True Codeword: Want (W n
a , Y

n) to look jointly typical.
(Proof is actually a bit involved.)

• Decoder searches for sequences w̃n
a that are jointly typical with Y n.

There are ≈ 2nH(Wa|Y ) possible sequences. If only one such
sequence is jointly typical, declare it as the estimate Ŵ n

a of the
linear combination W n

a = a1U
n
1 ⊕ · · · ⊕ aKUn

K .
(Suboptimal decoding rule)

• We can show that, for this decoding strategy, we can achieve any
rate tuple (R1, . . . , RK) satisfying

Rk < H(Uk)−H(Wa|Y ).



Compute-and-Forward: Beyond Gaussian Channels

High-Level Intuition: (Low-Level Reality)

• Input Distribution: Want Un
k to look typical with respect to pmf

pUk
(uk). There are ≈ 2nH(Uk) typical sequences.

(Linear codewords look uniform.)

• True Codeword: Want (W n
a , Y

n) to look jointly typical.
(Proof is actually a bit involved.)

• Decoder searches for sequences w̃n
a that are jointly typical with Y n.

There are ≈ 2nH(Wa|Y ) possible sequences. If only one such
sequence is jointly typical, declare it as the estimate Ŵ n

a of the
linear combination W n

a = a1U
n
1 ⊕ · · · ⊕ aKUn

K .
(Suboptimal decoding rule)

• We can show that, for this decoding strategy, we can achieve any
rate tuple (R1, . . . , RK) satisfying

Rk < H(Uk)−H(Wa|Y ).

(Not a mutual information and can be negative.)



Point-to-Point Channels: Linear Codes

M
Linear
Code

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Code Construction:



Point-to-Point Channels: Linear Codes

M
Linear
Code

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Code Construction:

• Pick a finite field Fq and a symbol mapping x : Fq → X .



Point-to-Point Channels: Linear Codes

M
Linear
Code

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Code Construction:

• Pick a finite field Fq and a symbol mapping x : Fq → X .

• Set κ = nR/ log(q).



Point-to-Point Channels: Linear Codes

M
Linear
Code

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Code Construction:

• Pick a finite field Fq and a symbol mapping x : Fq → X .

• Set κ = nR/ log(q).

• Draw a random generator matrix G ∈ F
κ×n
q elementwise

i.i.d. Unif(Fq). Let G be a realization.



Point-to-Point Channels: Linear Codes

M
Linear
Code

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Code Construction:

• Pick a finite field Fq and a symbol mapping x : Fq → X .

• Set κ = nR/ log(q).

• Draw a random generator matrix G ∈ F
κ×n
q elementwise

i.i.d. Unif(Fq). Let G be a realization.

• Draw a random shift (or “dither”) Dn elementwise i.i.d. Unif(Fq).
Let dn be a realization.



Point-to-Point Channels: Linear Codes

M
Linear
Code

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Code Construction:

• Pick a finite field Fq and a symbol mapping x : Fq → X .

• Set κ = nR/ log(q).

• Draw a random generator matrix G ∈ F
κ×n
q elementwise

i.i.d. Unif(Fq). Let G be a realization.

• Draw a random shift (or “dither”) Dn elementwise i.i.d. Unif(Fq).
Let dn be a realization.

• Take q-ary expansion of message m into the vector ννν(m) ∈ F
κ
q .



Point-to-Point Channels: Linear Codes

M
Linear
Code

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Code Construction:

• Pick a finite field Fq and a symbol mapping x : Fq → X .

• Set κ = nR/ log(q).

• Draw a random generator matrix G ∈ F
κ×n
q elementwise

i.i.d. Unif(Fq). Let G be a realization.

• Draw a random shift (or “dither”) Dn elementwise i.i.d. Unif(Fq).
Let dn be a realization.

• Take q-ary expansion of message m into the vector ννν(m) ∈ F
κ
q .

• Linear codeword for message m is un(m) = ννν(m)G⊕ dn.



Point-to-Point Channels: Linear Codes

M
Linear
Code

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Code Construction:

• Pick a finite field Fq and a symbol mapping x : Fq → X .

• Set κ = nR/ log(q).

• Draw a random generator matrix G ∈ F
κ×n
q elementwise

i.i.d. Unif(Fq). Let G be a realization.

• Draw a random shift (or “dither”) Dn elementwise i.i.d. Unif(Fq).
Let dn be a realization.

• Take q-ary expansion of message m into the vector ννν(m) ∈ F
κ
q .

• Linear codeword for message m is un(m) = ννν(m)G⊕ dn.

• Channel input at time i is xi(m) = x(ui(m)).



Random i.i.d. Codebooks

Random Linear Codes

X
n

T
(n)
ǫ (X)

• Codewords are pairwise independent of one another.

• Codewords are uniformly distributed over Fn
q .



Point-to-Point Channels: Linear Codes

M
Linear
Code

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

• Well known that a direct application of linear coding is not sufficient
to reach the point-to-point capacity, Ahlswede ’71.



Point-to-Point Channels: Linear Codes

M
Linear
Code

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

• Well known that a direct application of linear coding is not sufficient
to reach the point-to-point capacity, Ahlswede ’71.

• Gallager ’68: Pick Fq with q ≫ X and choose symbol mapping x(u)
to reach c.a.i.d. from Unif(Fq). This can attain the capacity.



Point-to-Point Channels: Linear Codes

M
Linear
Code

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

• Well known that a direct application of linear coding is not sufficient
to reach the point-to-point capacity, Ahlswede ’71.

• Gallager ’68: Pick Fq with q ≫ X and choose symbol mapping x(u)
to reach c.a.i.d. from Unif(Fq). This can attain the capacity.

• This will not work for us. Roughly speaking, if each encoder has a
different input distribution, the symbol mappings may be quite
different, which will disrupt the linear structure of the codebook.



Point-to-Point Channels: Linear Codes

M
Linear
Code

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

• Well known that a direct application of linear coding is not sufficient
to reach the point-to-point capacity, Ahlswede ’71.

• Gallager ’68: Pick Fq with q ≫ X and choose symbol mapping x(u)
to reach c.a.i.d. from Unif(Fq). This can attain the capacity.

• This will not work for us. Roughly speaking, if each encoder has a
different input distribution, the symbol mappings may be quite
different, which will disrupt the linear structure of the codebook.

• Padakandla-Pradhan ’13: It is possible to shape the input
distribution using nested linear codes.



Point-to-Point Channels: Linear Codes

M
Linear
Code

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

• Well known that a direct application of linear coding is not sufficient
to reach the point-to-point capacity, Ahlswede ’71.

• Gallager ’68: Pick Fq with q ≫ X and choose symbol mapping x(u)
to reach c.a.i.d. from Unif(Fq). This can attain the capacity.

• This will not work for us. Roughly speaking, if each encoder has a
different input distribution, the symbol mappings may be quite
different, which will disrupt the linear structure of the codebook.

• Padakandla-Pradhan ’13: It is possible to shape the input
distribution using nested linear codes.

• Basic idea: Generate many codewords to represent one message.
Search in this “bin” to find a codeword with the desired type, i.e.,
multicoding.



Point-to-Point Channels: Linear Codes + Multicoding

M
Linear
Code

Multi-
coding

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Code Construction:



Point-to-Point Channels: Linear Codes + Multicoding

M
Linear
Code

Multi-
coding

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Code Construction:

• Messages m ∈ [2nR] and auxiliary indices l ∈ [2nR̂].



Point-to-Point Channels: Linear Codes + Multicoding

M
Linear
Code

Multi-
coding

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Code Construction:

• Messages m ∈ [2nR] and auxiliary indices l ∈ [2nR̂].

• Set κ = n(R+ R̂)/ log(q).



Point-to-Point Channels: Linear Codes + Multicoding

M
Linear
Code

Multi-
coding

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Code Construction:

• Messages m ∈ [2nR] and auxiliary indices l ∈ [2nR̂].

• Set κ = n(R+ R̂)/ log(q).

• Pick generator matrix G and dither dn as before.



Point-to-Point Channels: Linear Codes + Multicoding

M
Linear
Code

Multi-
coding

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Code Construction:

• Messages m ∈ [2nR] and auxiliary indices l ∈ [2nR̂].

• Set κ = n(R+ R̂)/ log(q).

• Pick generator matrix G and dither dn as before.

• Take q-ary expansions
[
ννν(m) ννν(l)

]
∈ F

κ
q .



Point-to-Point Channels: Linear Codes + Multicoding

M
Linear
Code

Multi-
coding

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Code Construction:

• Messages m ∈ [2nR] and auxiliary indices l ∈ [2nR̂].

• Set κ = n(R+ R̂)/ log(q).

• Pick generator matrix G and dither dn as before.

• Take q-ary expansions
[
ννν(m) ννν(l)

]
∈ F

κ
q .

• Linear codewords: un(m, l) =
[
ννν(m) ννν(l)

]
G⊕ dn.



Point-to-Point Channels: Linear Codes + Multicoding

M
Linear
Code

Multi-
coding

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Encoding:



Point-to-Point Channels: Linear Codes + Multicoding

M
Linear
Code

Multi-
coding

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Encoding:

• Fix p(u) and x(u).



Point-to-Point Channels: Linear Codes + Multicoding

M
Linear
Code

Multi-
coding

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Encoding:

• Fix p(u) and x(u).

• Multicoding: For each m, find an index l such that

un(m, l) ∈ T (n)
ǫ′ (U)



Point-to-Point Channels: Linear Codes + Multicoding

M
Linear
Code

Multi-
coding

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Encoding:

• Fix p(u) and x(u).

• Multicoding: For each m, find an index l such that

un(m, l) ∈ T (n)
ǫ′ (U)

• Succeeds w.h.p. if R̂ > D(pU‖pq) (where pq is uniform over Fq).



Point-to-Point Channels: Linear Codes + Multicoding

M
Linear
Code

Multi-
coding

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Encoding:

• Fix p(u) and x(u).

• Multicoding: For each m, find an index l such that

un(m, l) ∈ T (n)
ǫ′ (U)

• Succeeds w.h.p. if R̂ > D(pU‖pq) (where pq is uniform over Fq).

• Transmit xi = x
(
ui(m, l)

)
.



Point-to-Point Channels: Linear Codes + Multicoding

M
Linear
Code

Multi-
coding

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Encoding:

• Fix p(u) and x(u).

• Multicoding: For each m, find an index l such that

un(m, l) ∈ T (n)
ǫ′ (U)

• Succeeds w.h.p. if R̂ > D(pU‖pq) (where pq is uniform over Fq).

• Transmit xi = x
(
ui(m, l)

)
.

Decoding:



Point-to-Point Channels: Linear Codes + Multicoding

M
Linear
Code

Multi-
coding

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Encoding:

• Fix p(u) and x(u).

• Multicoding: For each m, find an index l such that

un(m, l) ∈ T (n)
ǫ′ (U)

• Succeeds w.h.p. if R̂ > D(pU‖pq) (where pq is uniform over Fq).

• Transmit xi = x
(
ui(m, l)

)
.

Decoding:

• Joint Typicality Decoding: Find the unique index m̂ such that
(
un(m̂, l̂), yn) ∈ T (n)

ǫ (U, Y ) for some index l̂.



Point-to-Point Channels: Linear Codes + Multicoding

M
Linear
Code

Multi-
coding

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Encoding:

• Fix p(u) and x(u).

• Multicoding: For each m, find an index l such that

un(m, l) ∈ T (n)
ǫ′ (U)

• Succeeds w.h.p. if R̂ > D(pU‖pq) (where pq is uniform over Fq).

• Transmit xi = x
(
ui(m, l)

)
.

Decoding:

• Joint Typicality Decoding: Find the unique index m̂ such that
(
un(m̂, l̂), yn) ∈ T (n)

ǫ (U, Y ) for some index l̂.

• Succeeds w.h.p. if R+ R̂ < I(U ;Y ) +D(pU‖pq)



Point-to-Point Channels: Linear Codes + Multicoding

M
Linear
Code

Multi-
coding

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Theorem (Padakandla-Pradhan ’13)

Any rate R satisfying

R < max
p(u), x(u)

I(U ;Y )

is achievable. This is equal to the capacity if q ≥ |X |.



Point-to-Point Channels: Linear Codes + Multicoding

M
Linear
Code

Multi-
coding

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Theorem (Padakandla-Pradhan ’13)

Any rate R satisfying

R < max
p(u), x(u)

I(U ;Y )

is achievable. This is equal to the capacity if q ≥ |X |.

• This is the basic coding framework that we will use for each
transmitter.



Point-to-Point Channels: Linear Codes + Multicoding

M
Linear
Code

Multi-
coding

Un
x(u)

Encoder

Xn
pY |X

Y n
Decoder M̂

Theorem (Padakandla-Pradhan ’13)

Any rate R satisfying

R < max
p(u), x(u)

I(U ;Y )

is achievable. This is equal to the capacity if q ≥ |X |.

• This is the basic coding framework that we will use for each
transmitter.

• Next, let’s examine a two-transmitter, one-receiver
“compute-and-forward” network.



Nested Linear Coding Architecture

M1
Linear
Code

Multi-
coding

Un
1 x1(u1)

Xn
1

M2
Linear
Code

Multi-
coding

Un
2 x2(u2)

Xn
2

PY |X1X2

Y n

Decoder Ŵ n
a

Code Construction:

• Messages mk ∈ [2nRk ] and auxiliary indices lk ∈ [2nR̂k ], k = 1, 2.



Nested Linear Coding Architecture

M1
Linear
Code

Multi-
coding

Un
1 x1(u1)

Xn
1

M2
Linear
Code

Multi-
coding

Un
2 x2(u2)

Xn
2

PY |X1X2

Y n

Decoder Ŵ n
a

Code Construction:

• Messages mk ∈ [2nRk ] and auxiliary indices lk ∈ [2nR̂k ], k = 1, 2.

• Set κ = n(max{R1 + R̂1, R2 + R̂2})/ log(q).



Nested Linear Coding Architecture

M1
Linear
Code

Multi-
coding

Un
1 x1(u1)

Xn
1

M2
Linear
Code

Multi-
coding

Un
2 x2(u2)

Xn
2

PY |X1X2

Y n

Decoder Ŵ n
a

Code Construction:

• Messages mk ∈ [2nRk ] and auxiliary indices lk ∈ [2nR̂k ], k = 1, 2.

• Set κ = n(max{R1 + R̂1, R2 + R̂2})/ log(q).
• Pick generator matrix G and dithers dn1 , dn2 as before.



Nested Linear Coding Architecture

M1
Linear
Code

Multi-
coding

Un
1 x1(u1)

Xn
1

M2
Linear
Code

Multi-
coding

Un
2 x2(u2)

Xn
2

PY |X1X2

Y n

Decoder Ŵ n
a

Code Construction:

• Messages mk ∈ [2nRk ] and auxiliary indices lk ∈ [2nR̂k ], k = 1, 2.

• Set κ = n(max{R1 + R̂1, R2 + R̂2})/ log(q).
• Pick generator matrix G and dithers dn1 , dn2 as before.

• Take q-ary expansions
[
ννν(m1) ννν(l1)

]
∈ F

κ
q

[
ννν(m2) ννν(l2) 0

]
∈ F

κ
q Zero-padding



Nested Linear Coding Architecture

M1
Linear
Code

Multi-
coding

Un
1 x1(u1)

Xn
1

M2
Linear
Code

Multi-
coding

Un
2 x2(u2)

Xn
2

PY |X1X2

Y n

Decoder Ŵ n
a

Code Construction:

• Messages mk ∈ [2nRk ] and auxiliary indices lk ∈ [2nR̂k ], k = 1, 2.

• Set κ = n(max{R1 + R̂1, R2 + R̂2})/ log(q).
• Pick generator matrix G and dithers dn1 , dn2 as before.

• Take q-ary expansions
[
ηηη(m1, l1)

]
∈ F

κ
q

[
ηηη(m2, l2)

]
∈ F

κ
q



Nested Linear Coding Architecture

M1
Linear
Code

Multi-
coding

Un
1 x1(u1)

Xn
1

M2
Linear
Code

Multi-
coding

Un
2 x2(u2)

Xn
2

PY |X1X2

Y n

Decoder Ŵ n
a

Code Construction:

• Messages mk ∈ [2nRk ] and auxiliary indices lk ∈ [2nR̂k ], k = 1, 2.

• Set κ = n(max{R1 + R̂1, R2 + R̂2})/ log(q).
• Pick generator matrix G and dithers dn1 , dn2 as before.

• Take q-ary expansions
[
ηηη(m1, l1)

]
∈ F

κ
q

[
ηηη(m2, l2)

]
∈ F

κ
q

• Linear codewords: un1 (m1, l1) = ηηη(m1, l1)G⊕ dn1

un2 (m2, l2) = ηηη(m2, l2)G⊕ dn2



Nested Linear Coding Architecture

M1
Linear
Code

Multi-
coding

Un
1 x1(u1)

Xn
1

M2
Linear
Code

Multi-
coding

Un
2 x2(u2)

Xn
2

PY |X1X2

Y n

Decoder Ŵ n
a

Encoding:



Nested Linear Coding Architecture

M1
Linear
Code

Multi-
coding

Un
1 x1(u1)

Xn
1

M2
Linear
Code

Multi-
coding

Un
2 x2(u2)

Xn
2

PY |X1X2

Y n

Decoder Ŵ n
a

Encoding:

• Fix pmfs p(u1), p(u2) and mappings x1(u1), and x2(u2).



Nested Linear Coding Architecture

M1
Linear
Code

Multi-
coding

Un
1 x1(u1)

Xn
1

M2
Linear
Code

Multi-
coding

Un
2 x2(u2)

Xn
2

PY |X1X2

Y n

Decoder Ŵ n
a

Encoding:

• Fix pmfs p(u1), p(u2) and mappings x1(u1), and x2(u2).

• Multicoding: For each mk, find an index lk such that

unk(mk, lk) ∈ T (n)
ǫ′ (Uk). (If no such lk, pick one randomly.)



Nested Linear Coding Architecture

M1
Linear
Code

Multi-
coding

Un
1 x1(u1)

Xn
1

M2
Linear
Code

Multi-
coding

Un
2 x2(u2)

Xn
2

PY |X1X2

Y n

Decoder Ŵ n
a

Encoding:

• Fix pmfs p(u1), p(u2) and mappings x1(u1), and x2(u2).

• Multicoding: For each mk, find an index lk such that

unk(mk, lk) ∈ T (n)
ǫ′ (Uk). (If no such lk, pick one randomly.)

• Transmit xki = xk
(
uki(mk, lk)

)
, i = 1, . . . , n.



Nested Linear Coding Architecture

M1
Linear
Code

Multi-
coding

Un
1 x1(u1)

Xn
1

M2
Linear
Code

Multi-
coding

Un
2 x2(u2)

Xn
2

PY |X1X2

Y n

Decoder Ŵ n
a

Encoding:

• Fix pmfs p(u1), p(u2) and mappings x1(u1), and x2(u2).

• Multicoding: For each mk, find an index lk such that

unk(mk, lk) ∈ T (n)
ǫ′ (Uk). (If no such lk, pick one randomly.)

• Transmit xki = xk
(
uki(mk, lk)

)
, i = 1, . . . , n.



Nested Linear Coding Architecture

M1
Linear
Code

Multi-
coding

Un
1 x1(u1)

Xn
1

M2
Linear
Code

Multi-
coding

Un
2 x2(u2)

Xn
2

PY |X1X2

Y n

Decoder Ŵ n
a

Computation Problem:



Nested Linear Coding Architecture

M1
Linear
Code

Multi-
coding

Un
1 x1(u1)

Xn
1

M2
Linear
Code

Multi-
coding

Un
2 x2(u2)

Xn
2

PY |X1X2

Y n

Decoder Ŵ n
a

Computation Problem:

• For mk ∈ [2nRk ], lk ∈ [2nR̂k ], we can express the linear combination
of codewords as

wn
a = a1u

n
1 (m1, l1)⊕ a2u

n
2 (m2, l2)

=
[
a1ηηη(m1, l1)⊕ a2ηηη(m2, l2)

]
G⊕ a1d

n
1 ⊕ a2d

n
2

= ννν(sa)G⊕ a1d
n
1 ⊕ a2d

n
2

where sa ∈ [2nmax{R1+R̂1,R2+R̂2}].



Nested Linear Coding Architecture

M1
Linear
Code

Multi-
coding

Un
1 x1(u1)

Xn
1

M2
Linear
Code

Multi-
coding

Un
2 x2(u2)

Xn
2

PY |X1X2

Y n

Decoder Ŵ n
a

Decoding:

• Let ǫ′ < ǫ.



Nested Linear Coding Architecture

M1
Linear
Code

Multi-
coding

Un
1 x1(u1)

Xn
1

M2
Linear
Code

Multi-
coding

Un
2 x2(u2)

Xn
2

PY |X1X2

Y n

Decoder Ŵ n
a

Decoding:

• Let ǫ′ < ǫ.

• Search for a unique index sa ∈ [2nmax{R1+R̂1,R2+R̂2}] such that

(un1 (m1, l1), u
n
2 (m2, l2), y

n) ∈ T (n)
ǫ (U1, U2, Y ),

for some (m1, l1,m2, l2) ∈ [2nR1 ]× [2nR̂1 ]× [2nR2 ]× [2nR̂2 ] such that

ν(sa) = a1η(m1, l1)⊕ a2η(m2, l2).



Nested Linear Coding Architecture

M1
Linear
Code

Multi-
coding

Un
1 x1(u1)

Xn
1

M2
Linear
Code

Multi-
coding

Un
2 x2(u2)

Xn
2

PY |X1X2

Y n

Decoder Ŵ n
a

Decoding:

• Let ǫ′ < ǫ.

• Search for a unique index sa ∈ [2nmax{R1+R̂1,R2+R̂2}] such that

(un1 (m1, l1), u
n
2 (m2, l2), y

n) ∈ T (n)
ǫ (U1, U2, Y ),

for some (m1, l1,m2, l2) ∈ [2nR1 ]× [2nR̂1 ]× [2nR2 ]× [2nR̂2 ] such that

ν(sa) = a1η(m1, l1)⊕ a2η(m2, l2).

• If there is no such index, or more than one, the decoder declares an
error.



Error Analysis

An error occurs only if one or more of the following events occur,

• For some message, we cannot find a typical linear codeword:

E1 = {Un
k (mk, lk) 6∈ T (n)

ǫ′ for all lk, for some mk, k = 1, 2}.



Error Analysis

An error occurs only if one or more of the following events occur,

• For some message, we cannot find a typical linear codeword:

E1 = {Un
k (mk, lk) 6∈ T (n)

ǫ′ for all lk, for some mk, k = 1, 2}.

• The channel inputs and output are not jointly typical:

E2 = {(Un
1 (M1, L1), U

n
2 (M2, L2), Y

n) 6∈ T (n)
ǫ }.



Error Analysis

An error occurs only if one or more of the following events occur,

• For some message, we cannot find a typical linear codeword:

E1 = {Un
k (mk, lk) 6∈ T (n)

ǫ′ for all lk, for some mk, k = 1, 2}.

• The channel inputs and output are not jointly typical:

E2 = {(Un
1 (M1, L1), U

n
2 (M2, L2), Y

n) 6∈ T (n)
ǫ }.

• There are linear codewords that are jointly typical with the channel
output and give the wrong linear combination:

E3 = {(Un
1 (m1, l1), U

n
2 (m2, l2), Y

n) ∈ T (n)
ǫ for some (m1, l1,m2, l2)

such that ν(Sa) 6= a1η(m1, l1)⊕ a2η(m2, l2)}.



Error Analysis

An error occurs only if one or more of the following events occur,

• For some message, we cannot find a typical linear codeword:

E1 = {Un
k (mk, lk) 6∈ T (n)

ǫ′ for all lk, for some mk, k = 1, 2}.

• The channel inputs and output are not jointly typical:

E2 = {(Un
1 (M1, L1), U

n
2 (M2, L2), Y

n) 6∈ T (n)
ǫ }.

• There are linear codewords that are jointly typical with the channel
output and give the wrong linear combination:

E3 = {(Un
1 (m1, l1), U

n
2 (m2, l2), Y

n) ∈ T (n)
ǫ for some (m1, l1,m2, l2)

such that ν(Sa) 6= a1η(m1, l1)⊕ a2η(m2, l2)}.
Then, by the union of events bound,

P{Ŵ n
a 6= W n

a } ≤ P{E1}+ P{E2 ∩ Ec
1}+ P{E3 ∩ Ec

1}.



Error Analysis

• For some message, we cannot find a typical linear codeword:

E1 = {Un
k (mk, lk) 6∈ T (n)

ǫ′ for all lk, for some mk, k = 1, 2}.



Error Analysis

• For some message, we cannot find a typical linear codeword:

E1 = {Un
k (mk, lk) 6∈ T (n)

ǫ′ for all lk, for some mk, k = 1, 2}.

• If R̂k > D(pUk
‖pq) + δ(ǫ), then limn→∞ P{E1} = 0 where δ(ǫ) → 0

as ǫ → 0.



Error Analysis

• For some message, we cannot find a typical linear codeword:

E1 = {Un
k (mk, lk) 6∈ T (n)

ǫ′ for all lk, for some mk, k = 1, 2}.

• If R̂k > D(pUk
‖pq) + δ(ǫ), then limn→∞ P{E1} = 0 where δ(ǫ) → 0

as ǫ → 0.

• D(pUk
‖pq) = log q−H(Uk).



Error Analysis

• For some message, we cannot find a typical linear codeword:

E1 = {Un
k (mk, lk) 6∈ T (n)

ǫ′ for all lk, for some mk, k = 1, 2}.

• If R̂k > D(pUk
‖pq) + δ(ǫ), then limn→∞ P{E1} = 0 where δ(ǫ) → 0

as ǫ → 0.

• D(pUk
‖pq) = log q−H(Uk).

• Intuition: Searching for one of ≈ 2nH(Uk) typical sequences out of
2n log q total sequences. Will succeed w.h.p. if

2nR̂k > 2n(log q−H(Uk)).



Error Analysis

• For some message, we cannot find a typical linear codeword:

E1 = {Un
k (mk, lk) 6∈ T (n)

ǫ′ for all lk, for some mk, k = 1, 2}.

• If R̂k > D(pUk
‖pq) + δ(ǫ), then limn→∞ P{E1} = 0 where δ(ǫ) → 0

as ǫ → 0.

• D(pUk
‖pq) = log q−H(Uk).

• Intuition: Searching for one of ≈ 2nH(Uk) typical sequences out of
2n log q total sequences. Will succeed w.h.p. if

2nR̂k > 2n(log q−H(Uk)).

• Proof just requires second moment method.



Error Analysis

• The channel inputs and output are not jointly typical:

E2 = {(Un
1 (M1, L1), U

n
2 (M2, L2), Y

n) 6∈ T (n)
ǫ }.



Error Analysis

• The channel inputs and output are not jointly typical:

E2 = {(Un
1 (M1, L1), U

n
2 (M2, L2), Y

n) 6∈ T (n)
ǫ }.

• If R̂k > D(pUk
‖pq) + δ(ǫ), then limn→∞ P{E2 ∩ Ec

1} = 0 where
δ(ǫ) → 0 as ǫ → 0.



Error Analysis

• The channel inputs and output are not jointly typical:

E2 = {(Un
1 (M1, L1), U

n
2 (M2, L2), Y

n) 6∈ T (n)
ǫ }.

• If R̂k > D(pUk
‖pq) + δ(ǫ), then limn→∞ P{E2 ∩ Ec

1} = 0 where
δ(ǫ) → 0 as ǫ → 0.

• In a random i.i.d. coding proof, we would just use the fact that the
codewords are independent and that the channel is memoryless.



Error Analysis

• The channel inputs and output are not jointly typical:

E2 = {(Un
1 (M1, L1), U

n
2 (M2, L2), Y

n) 6∈ T (n)
ǫ }.

• If R̂k > D(pUk
‖pq) + δ(ǫ), then limn→∞ P{E2 ∩ Ec

1} = 0 where
δ(ǫ) → 0 as ǫ → 0.

• In a random i.i.d. coding proof, we would just use the fact that the
codewords are independent and that the channel is memoryless.

• Here, the linear codewords can be statistically dependent, since the
choices of the auxiliary indices Lk is coupled due to the shared
nested linear codebook.



Error Analysis

• The channel inputs and output are not jointly typical:

E2 = {(Un
1 (M1, L1), U

n
2 (M2, L2), Y

n) 6∈ T (n)
ǫ }.

• If R̂k > D(pUk
‖pq) + δ(ǫ), then limn→∞ P{E2 ∩ Ec

1} = 0 where
δ(ǫ) → 0 as ǫ → 0.

• In a random i.i.d. coding proof, we would just use the fact that the
codewords are independent and that the channel is memoryless.

• Here, the linear codewords can be statistically dependent, since the
choices of the auxiliary indices Lk is coupled due to the shared
nested linear codebook.

• Our proof handles these statistical dependencies by breaking up the
possible error events according to the underlying rank of the selected
linear codewords. (Markov Lemma for Nested Linear Codes.)



Error Analysis

• The channel inputs and output are not jointly typical:

E2 = {(Un
1 (M1, L1), U

n
2 (M2, L2), Y

n) 6∈ T (n)
ǫ }.

• If R̂k > D(pUk
‖pq) + δ(ǫ), then limn→∞ P{E2 ∩ Ec

1} = 0 where
δ(ǫ) → 0 as ǫ → 0.

• In a random i.i.d. coding proof, we would just use the fact that the
codewords are independent and that the channel is memoryless.

• Here, the linear codewords can be statistically dependent, since the
choices of the auxiliary indices Lk is coupled due to the shared
nested linear codebook.

• Our proof handles these statistical dependencies by breaking up the
possible error events according to the underlying rank of the selected
linear codewords. (Markov Lemma for Nested Linear Codes.)

• Prior work by Padakandla-Pradhan ’13 developed a bound that also
requires R̂k < D(pUk

‖pq) + 3δ(ǫ).



Error Analysis

• There are linear codewords that are jointly typical with the channel
output and give the wrong linear combination:

E3 = {(Un
1 (m1, l1), U

n
2 (m2, l2), Y

n) ∈ T (n)
ǫ for some (m1, l1,m2, l2)

such that ν(Sa) 6= a1η(m1, l1)⊕ a2η(m2, l2)}.



Error Analysis

• There are linear codewords that are jointly typical with the channel
output and give the wrong linear combination:

E3 = {(Un
1 (m1, l1), U

n
2 (m2, l2), Y

n) ∈ T (n)
ǫ for some (m1, l1,m2, l2)

such that ν(Sa) 6= a1η(m1, l1)⊕ a2η(m2, l2)}.

• We upper bound this event in two ways.



Error Analysis

• There are linear codewords that are jointly typical with the channel
output and give the wrong linear combination:

E3 = {(Un
1 (m1, l1), U

n
2 (m2, l2), Y

n) ∈ T (n)
ǫ for some (m1, l1,m2, l2)

such that ν(Sa) 6= a1η(m1, l1)⊕ a2η(m2, l2)}.

• We upper bound this event in two ways.
1. “Direct Decoding” Bound

P{E3 ∩ Ec
1} ≤ P

{

(W n
a (sa), Y

n) ∈ T (n)
ǫ , Ec

1 , sa 6= Sa

}



Error Analysis

• There are linear codewords that are jointly typical with the channel
output and give the wrong linear combination:

E3 = {(Un
1 (m1, l1), U

n
2 (m2, l2), Y

n) ∈ T (n)
ǫ for some (m1, l1,m2, l2)

such that ν(Sa) 6= a1η(m1, l1)⊕ a2η(m2, l2)}.

• We upper bound this event in two ways.
1. “Direct Decoding” Bound

P{E3 ∩ Ec
1} ≤ P

{

(W n
a (sa), Y

n) ∈ T (n)
ǫ , Ec

1 , sa 6= Sa

}

2. “Multiple-Access Decoding” Bound

P{E3 ∩ Ec
1} ≤ P

{

(Un
1 (m1, l1), U

n
2 (m2, l2), Y

n) ∈ T (n)
ǫ , Ec

1

for some (m1, l1,m2, l2) 6= (M1, L1,M2, L2)
}



Error Analysis: “Direct Decoding” Bound

P{E3 ∩ Ec
1} ≤ P

{

(W n
a (sa), Y

n) ∈ T (n)
ǫ , Ec

1, sa 6= Sa

}



Error Analysis: “Direct Decoding” Bound

P{E3 ∩ Ec
1} ≤ P

{

(W n
a (sa), Y

n) ∈ T (n)
ǫ , Ec

1, sa 6= Sa

}

• Can show that limn→∞ P{E3 ∩ Ec
1} = 0 if

R1 < ICF,1(a) , H(U1)−H(Wa|Y )

R2 < ICF,2(a) , H(U2)−H(Wa|Y ),

which matches our intuition from earlier.



Error Analysis: “Multiple-Access Decoding” Bound

P{E3 ∩ Ec
1} ≤ P

{

(Un
1 (m1, l1), U

n
2 (m2, l2), Y

n) ∈ T (n)
ǫ , Ec

1

for some (m1, l1,m2, l2) 6= (M1, L1,M2, L2)
}



Error Analysis: “Multiple-Access Decoding” Bound

P{E3 ∩ Ec
1} ≤ P

{

(Un
1 (m1, l1), U

n
2 (m2, l2), Y

n) ∈ T (n)
ǫ , Ec

1

for some (m1, l1,m2, l2) 6= (M1, L1,M2, L2)
}

• Can show that limn→∞ P{E3 ∩ Ec
1} = 0 if

R1 < max
b∈A2\{0}

min{ICF,1(b), I(X1,X2;Y )− ICF,2(b)},

R2 < I(X2;Y |X1),

R1 +R2 < I(X1,X2;Y )



Error Analysis: “Multiple-Access Decoding” Bound

P{E3 ∩ Ec
1} ≤ P

{

(Un
1 (m1, l1), U

n
2 (m2, l2), Y

n) ∈ T (n)
ǫ , Ec

1

for some (m1, l1,m2, l2) 6= (M1, L1,M2, L2)
}

• Can show that limn→∞ P{E3 ∩ Ec
1} = 0 if

R1 < max
b∈A2\{0}

min{ICF,1(b), I(X1,X2;Y )− ICF,2(b)},

R2 < I(X2;Y |X1),

R1 +R2 < I(X1,X2;Y )

OR

R1 < I(X1;Y |X2),

R2 < max
b∈A2\{0}

min{ICF,2(b), I(X1,X2;Y )− ICF,1(b)},

R1 +R2 < I(X1,X2;Y ).



Error Analysis: “Multiple-Access Decoding” Bound

P{E3 ∩ Ec
1} ≤ P

{

(Un
1 (m1, l1), U

n
2 (m2, l2), Y

n) ∈ T (n)
ǫ , Ec

1

for some (m1, l1,m2, l2) 6= (M1, L1,M2, L2)
}

• Can show that limn→∞ P{E3 ∩ Ec
1} = 0 if

R1 < max
b∈A2\{0}

min{ICF,1(b), I(X1,X2;Y )− ICF,2(b)},

R2 < I(X2;Y |X1),

R1 +R2 < I(X1,X2;Y )

OR

R1 < I(X1;Y |X2),

R2 < max
b∈A2\{0}

min{ICF,2(b), I(X1,X2;Y )− ICF,1(b)},

R1 +R2 < I(X1,X2;Y ).

• The ICF,2(b) term plays a key role in handling the dependencies
between competing pairs of linear codewords.



Rate Region

R1

R2

I(X1, X2; Y )

−ICF,2(a)

ICF,1(a) I(X1;Y |X2)

I(X1, X2; Y )
−ICF,2(a)

I(X2;Y |X1)

ICF,2(a)

RCF(a)

R1

R2

R1 +R2 = I(X1, X2;Y )

I(X1, X2; Y )

−ICF,2(a)

ICF,1(a) I(X1;Y |X2)

I(X1, X2; Y )
−ICF,2(a)

I(X2;Y |X1)

ICF,2(a)

RLMAC

R1

R2

I(X1, X2; Y )

−ICF,2(a)

ICF,1(a) I(X1;Y |X2)

I(X1, X2; Y )
−ICF,2(a)

I(X2;Y |X1)

ICF,2(a)

RCF(a) ∪ RLMAC



Concluding Remarks

• First steps towards bringing algebraic network information theory
back into the realm of joint typicality.

• Joint decoding rate region for compute-and-forward that
outperforms parallel and successive decoding.


