
Computation Alignment:

Capacity Approximation without Noise Accumulation

Urs Niesen Bobak Nazer Phil Whiting
Bell Labs Boston University Bell Labs

ISWCS 2011
November 7, 2011

· · ·

· · ·

D

· · ·

D

· · ·

D

Capacity: C = log(1 + SNR)

.

.

.
.
.
.

.

.

.

· · ·

· · ·

· · ·

.

.

.
.
.
.

.

.

.

· · ·

· · ·

· · ·

K

D

.

.

.
.
.
.

.

.

.

· · ·

· · ·

· · ·

K

D

Cutset Bound: C ≤ K log(1 +KSNR)

Relaying Strategies

K = Network Width D = Network Depth

• Decode-and-Forward (Cover-El Gamal ’79): Decode subsets of
messages. Removes noise but interference-limited.

C ≥ log(1 +KSNR)

Relaying Strategies

K = Network Width D = Network Depth

• Decode-and-Forward (Cover-El Gamal ’79): Decode subsets of
messages. Removes noise but interference-limited.

C ≥ log(1 +KSNR)

• Compress-and-Forward (Cover-El Gamal ’79): Quantize analog
observations. Captures signal interactions but accumulates noise.

Avestimehr-Diggavi-Tse ’11: C ≥ K log(1 +KSNR)−KD

Relaying Strategies

K = Network Width D = Network Depth

• Decode-and-Forward (Cover-El Gamal ’79): Decode subsets of
messages. Removes noise but interference-limited.

C ≥ log(1 +KSNR)

• Compress-and-Forward (Cover-El Gamal ’79): Quantize analog
observations. Captures signal interactions but accumulates noise.

Avestimehr-Diggavi-Tse ’11: C ≥ K log(1 +KSNR)−KD

• Compute-and-Forward (Nazer-Gastpar ’11): Decode equations of
messages. Partially captures signal interactions and removes noise.

What rates are attainable?

Compute-and-Forward to a Single Relay

Finite field messages:
wℓ ∈ F

m
q

Power-constrained inputs:
1

n
‖xℓ‖

2 ≤ SNR

AWGN noise:
z ∼ N (0, I)

Message rate:

Rℓ =
m

n
log2 q

w1 E1
x1

h1

w2 E2
x2 h2

wK EK
xK

hK...

z

y
D û

• Decoder makes an estimate û of a linear equation u =

K
⊕

ℓ=1

aℓwℓ

• Require that probability of error vanishes with blocklength.

• Receiver can use its knowledge of the channel gains to match the
integer equation coefficients aℓ to the channel coefficients hℓ.

Compute-and-Forward – Single Receiver

Lattice codes: Sums of
codewords are codewords.

Erez-Zamir ’04: Nested
lattice codes can
approach AWGN capacity.

x1

x2

z

y

Theorem (Nazer-Gastpar IT Trans. ’11)

A relay can reliably decode the linear equation with coefficients a ∈ Z
K

from a channel with coefficients h ∈ R
K if the message rates satisfy:

Rℓ < max
α∈R

1

2
log

(

SNR

|α|2 + SNR‖αh − a‖2

)

For complex-valued channels, use real-valued decomposition.

Compute-and-Forward – Multiple Receivers

w1 E1
x1

w2 E2
x2

...

wK EK
xK

H

z1
y1

z2
y2

zK
yK

D1 û1

D2 û2

...

DK ûK

Theorem (Nazer-Gastpar IT Trans. ’11)

The relays can decode a full rank set of linear equations from a

channel matrix with rows hT
k ∈ C

K as long as for some full rank

matrix with columns ak ∈ {Z+ jZ}K the message rates satisfy:

Rℓ < min
k:akℓ 6=0

log

(

1 + SNR‖hk‖
2

‖ak‖2 + SNR(‖hk‖2‖ak‖2 − (h∗
kak)

2)

)

Compute-and-Forward – Degrees-of-Freedom

• Compute-and-forward performs well in simulations at moderate SNR
(e.g. 15dB). Does it scale like K log SNR?

Compute-and-Forward – Degrees-of-Freedom

• Compute-and-forward performs well in simulations at moderate SNR
(e.g. 15dB). Does it scale like K log SNR?

Theorem (Niesen-Whiting ISIT ’11, arXiv ’11)

Compute-and-forward scheme from Nazer-Gastpar ’11 has at most

2 degrees-of-freedom.

Compute-and-Forward – Degrees-of-Freedom

• Compute-and-forward performs well in simulations at moderate SNR
(e.g. 15dB). Does it scale like K log SNR?

Theorem (Niesen-Whiting ISIT ’11, arXiv ’11)

Compute-and-forward scheme from Nazer-Gastpar ’11 has at most

2 degrees-of-freedom.

• Is that the end of the story?

Compute-and-Forward – Degrees-of-Freedom

• Compute-and-forward performs well in simulations at moderate SNR
(e.g. 15dB). Does it scale like K log SNR?

Theorem (Niesen-Whiting ISIT ’11, arXiv ’11)

Compute-and-forward scheme from Nazer-Gastpar ’11 has at most

2 degrees-of-freedom.

• Is that the end of the story?

Theorem (Niesen-Whiting ISIT ’11, arXiv ’11)

Coupling compute-and-forward with interference alignment can achieve

K degrees-of-freedom.

• Key Idea: Use alignment scheme from Motahari et al. ’09 to create
effective integer channels that are good for compute-and-forward.

Finite SNR Bounds

• In the high SNR limit, noise accumulation does not show up: we
could just as well use compress-and-forward.

• Goal for this talk: Design a computation alignment scheme that
can send equations with rates within a constant gap of K log SNR.

• Ergodic interference alignment schemes offer excellent finite SNR
rates for the standard interference channel problem.

• Requires time-varying channel coefficients. Our constant gap will
depend on the number of sources K and the fading statistics but not
the network depth D.

Computation Alignment - Setup

w1 E1
X1[t]

w2 E2
X2[t]

...

wK EK
XK [t]

H[t]

Z1[t]

Y1[t]

Z2[t]

Y2[t]

ZK [t]

YK [t]

D1 û1

D2 û2

...

DK ûK

• Relays recover an invertible set of functions

uk = fk(w1, w2, . . . , wK)

• Vanishing probability of error.

• Channel coefficients are independent from each other, stationary and
ergodic across time, and have uniform phase.

Starting Point – Ergodic Interference Alignment

Basic ergodic alignment scheme:

• Assume each relay wants a single message, uk = wk.

• Nazer-Gastpar-Jafar-Vishwanath ’09: The following rate is achievable
for each user:

Rk =
1

2
E
[

log(1 + 2|hkk|
2SNR)

]

• Corresponds to a sum rate that scales like
K

2
log SNR.

Starting Point – Ergodic Interference Alignment

1. At time t with channel H, user k transmits symbol Xk.

H =











h11 h12 · · · h1K
h21 h22 · · · h2K
...

...
. . .

...

hK1 hK2 · · · hKK











Starting Point – Ergodic Interference Alignment

1. At time t with channel H, user k transmits symbol Xk.

H =











h11 h12 · · · h1K
h21 h22 · · · h2K
...

...
. . .

...

hK1 hK2 · · · hKK











2. When complementary matrix HC occurs, retransmit symbol Xk.

HC =











h11 −h12 · · · −h1K
−h21 h22 · · · −h2K
...

...
. . .

...

−hK1 −hK2 · · · hKK











Starting Point – Ergodic Interference Alignment

1. At time t with channel H, user k transmits symbol Xk.

H =











h11 h12 · · · h1K
h21 h22 · · · h2K
...

...
. . .

...

hK1 hK2 · · · hKK











2. When complementary matrix HC occurs, retransmit symbol Xk.

HC =











h11 −h12 · · · −h1K
−h21 h22 · · · −h2K
...

...
. . .

...

−hK1 −hK2 · · · hKK











± δ

Starting Point – Ergodic Interference Alignment

1. At time t with channel H, user k transmits symbol Xk.

H =











h11 h12 · · · h1K
h21 h22 · · · h2K
...

...
. . .

...

hK1 hK2 · · · hKK











2. When complementary matrix HC occurs, retransmit symbol Xk.

HC =











h11 −h12 · · · −h1K
−h21 h22 · · · −h2K
...

...
. . .

...

−hK1 −hK2 · · · hKK











± δ

3. Otherwise, transmit new symbols and wait for their HC .

Starting Point – Ergodic Interference Alignment

• For long block lengths, nearly every matrix finds its quantized
match.

• In general, we can successfully pair together matrices if their
coefficients are phase rotations of each other,

hkℓ[tC] = ejφkℓhkℓ[t] .

• Computation alignment: Pair up coefficients to create effective
integer channels.

Computation Alignment - Motivating Example

S1A S1B E1
X1[t]

S2 E2
X2[t]

H[t]

Z1[t]

Y1[t]

Z2[t]

Y2[t]

D1

aS1A + S2

S1B

D2

bS1B + S2

S1A

• Send 3 symbols over 2 channel uses. Sum rate is:

Rsum =
3

2
E

[

min
k,ℓ

log(1 + |hkℓ|
2SNR)

]

• Each relay gets 2 equations. Coefficients a and b are non-zero
integers so equations are always invertible.

• Use compute-and-forward to code over resulting effective channels.

Tx 1

X1[t]

X1[tC]

X1[t] =

X1[tC] =

Tx 2

X2[t]

X2[tC]

X2[t] =

X2[tC] =

Rx 1

Y1[t]

Y1[tC]

Y1[t] + Y1[tC] =

Y1[t]− Y1[tC] =

Rx 2

Y2[t]

Y2[tC]

Y2[t] + Y2[tC] =

Y2[t]− Y2[tC] =

Tx 1

X1[t] =

X1[tC] =

Tx 2

X2[t] =

X2[tC] =

Rx 1

Y1[t] + Y1[tC] =

Y1[t]− Y1[tC] =

Rx 2

Y2[t] + Y2[tC] =

Y2[t]− Y2[tC] =

Tx 1

X1[t] = S1A + S1B

X1[tC] = S1A − S1B

Tx 2

X2[t] =

X2[tC] =

Rx 1

Y1[t] + Y1[tC] =

Y1[t]− Y1[tC] =

Rx 2

Y2[t] + Y2[tC] =

Y2[t]− Y2[tC] =

Tx 1

X1[t] = S1A + S1B

X1[tC] = S1A − S1B

Tx 2

X2[t] = S2

X2[tC] = S2

Rx 1

Y1[t] + Y1[tC] =

Y1[t]− Y1[tC] =

Rx 2

Y2[t] + Y2[tC] =

Y2[t]− Y2[tC] =

Tx 1

X1[t] = S1A + S1B

X1[tC] = S1A − S1B

Tx 2

X2[t] = S2

X2[tC] = S2

Rx 1

Y1[t] + Y1[tC] =

Y1[t]− Y1[tC] =

Rx 2

Y2[t] + Y2[tC] =

Y2[t]− Y2[tC] =

h11[t] 0

0 h11[tC]

Channel Gains

Tx 1

X1[t] = S1A + S1B

X1[tC] = S1A − S1B

Tx 2

X2[t] = S2

X2[tC] = S2

Rx 1

Y1[t] + Y1[tC] =

Y1[t]− Y1[tC] =

Rx 2

Y2[t] + Y2[tC] =

Y2[t]− Y2[tC] =

h11 0
0 h11

Tx 1

X1[t] = S1A + S1B

X1[tC] = S1A − S1B

Tx 2

X2[t] = S2

X2[tC] = S2

Rx 1

Y1[t] + Y1[tC] = 2h11S1A

Y1[t]− Y1[tC] = 2h11S1B

Rx 2

Y2[t] + Y2[tC] =

Y2[t]− Y2[tC] =

h11 0
0 h11

Tx 1

X1[t] = S1A + S1B

X1[tC] = S1A − S1B

Tx 2

X2[t] = S2

X2[tC] = S2

Rx 1

Y1[t] + Y1[tC] = 2h11S1A

Y1[t]− Y1[tC] = 2h11S1B

Rx 2

Y2[t] + Y2[tC] =

Y2[t]− Y2[tC] =

h12 0
0 h12

Tx 1

X1[t] = S1A + S1B

X1[tC] = S1A − S1B

Tx 2

X2[t] = S2

X2[tC] = S2

Rx 1

Y1[t]− Y1[tC] = 2h11S1B

Y1[t] + Y1[tC] = 2(h11S1A + h12S2)

Rx 2

Y2[t] + Y2[tC] =

Y2[t]− Y2[tC] =

h12 0
0 h12

Tx 1

X1[t] = S1A + S1B

X1[tC] = S1A − S1B

Tx 2

X2[t] = S2

X2[tC] = S2

Rx 1

Y1[t]− Y1[tC] = 2h11S1B

Y1[t] + Y1[tC] = 2(h11S1A + h12S2)

Rx 2

Y2[t] + Y2[tC] =

Y2[t]− Y2[tC] =

Adjust strength of S1A

to get integer coefficients.

Tx 1

X1[t] = ρS1A + S1B

X1[tC] = ρS1A − S1B

Tx 2

X2[t] = S2

X2[tC] = S2

Rx 1

Y1[t]− Y1[tC] = 2h11S1B

Y1[t] + Y1[tC] = 2(h11S1A + h12S2)

Rx 2

Y2[t] + Y2[tC] =

Y2[t]− Y2[tC] =

Adjust strength of S1A

to get integer coefficients.

Tx 1

X1[t] = ρS1A + S1B

X1[tC] = ρS1A − S1B

Tx 2

X2[t] = S2

X2[tC] = S2

Rx 1

Y1[t]− Y1[tC] = 2h11S1B

Y1[t] + Y1[tC] = 2h12(aS1A + S2)

Rx 2

Y2[t] + Y2[tC] =

Y2[t]− Y2[tC] =

Adjust strength of S1A

to get integer coefficients.

Tx 1

X1[t] = ρS1A + S1B

X1[tC] = ρS1A − S1B

Tx 2

X2[t] = S2

X2[tC] = S2

Rx 1

Y1[t]− Y1[tC] = 2h11S1B

Y1[t] + Y1[tC] = 2h12(aS1A + S2)

Rx 2

Y2[t] + Y2[tC] =

Y2[t]− Y2[tC] =

h21 0
0 − h21

Tx 1

X1[t] = ρS1A + S1B

X1[tC] = ρS1A − S1B

Tx 2

X2[t] = S2

X2[tC] = S2

Rx 1

Y1[t]− Y1[tC] = 2h11S1B

Y1[t] + Y1[tC] = 2h12(aS1A + S2)

Rx 2

Y2[t] + Y2[tC] = 2h21S1B

Y2[t]− Y2[tC] = 2h21ρS1A

h21 0
0 − h21

Tx 1

X1[t] = ρS1A + S1B

X1[tC] = ρS1A − S1B

Tx 2

X2[t] = S2

X2[tC] = S2

Rx 1

Y1[t]− Y1[tC] = 2h11S1B

Y1[t] + Y1[tC] = 2h12(aS1A + S2)

Rx 2

Y2[t] + Y2[tC] = 2h21S1B

Y2[t]− Y2[tC] = 2h21ρS1A

h22 0
0 h22

Tx 1

X1[t] = ρS1A + S1B

X1[tC] = ρS1A − S1B

Tx 2

X2[t] = S2

X2[tC] = S2

Rx 1

Y1[t]− Y1[tC] = 2h11S1B

Y1[t] + Y1[tC] = 2h12(aS1A + S2)

Rx 2

Y2[t]− Y2[tC] = 2h21ρS1A

Y2[t] + Y2[tC] = 2(h21S1B + h22S2)

h22 0
0 h22

Tx 1

X1[t] = ρS1A + S1B

X1[tC] = ρS1A − S1B

Tx 2

X2[t] = S2

X2[tC] = S2

Rx 1

Y1[t]− Y1[tC] = 2h11S1B

Y1[t] + Y1[tC] = 2h12(aS1A + S2)

Rx 2

Y2[t]− Y2[tC] = 2h21ρS1A

Y2[t] + Y2[tC] = 2(h21S1B + h22S2)

Adjust strength of S1B

to get integer coefficients.

Tx 1

X1[t] = ρS1A + γS1B

X1[tC] = ρS1A − γS1B

Tx 2

X2[t] = S2

X2[tC] = S2

Rx 1

Y1[t]− Y1[tC] = 2h11S1B

Y1[t] + Y1[tC] = 2h12(aS1A + S2)

Rx 2

Y2[t]− Y2[tC] = 2h21ρS1A

Y2[t] + Y2[tC] = 2(h21S1B + h22S2)

Adjust strength of S1B

to get integer coefficients.

Tx 1

X1[t] = ρS1A + γS1B

X1[tC] = ρS1A − γS1B

Tx 2

X2[t] = S2

X2[tC] = S2

Rx 1

Y1[t] + Y1[tC] = 2h12(aS1A + S2)

Y1[t]− Y1[tC] = 2h11γS1B

Rx 2

Y2[t]− Y2[tC] = 2h21ρS1A

Y2[t] + Y2[tC] = 2h22(bS1B + S2)

Adjust strength of S1B

to get integer coefficients.

Computation Alignment - Main Result

K = 2 case:

• User 1 sends L symbols using L DFT vectors.

• User 2 sends L− 1 symbols using L− 1 DFT vectors.

• Relays get 2L equations. Sum rate is approximately 2L−1

L
log SNR.

Computation Alignment - Main Result

K = 2 case:

• User 1 sends L symbols using L DFT vectors.

• User 2 sends L− 1 symbols using L− 1 DFT vectors.

• Relays get 2L equations. Sum rate is approximately 2L−1

L
log SNR.

K ≥ 2 case: More sophisticated set of alignment vectors.

Theorem (Niesen-Nazer-Whiting arXiv ’11)

For Rayleigh fading, hkℓ[t] ∼ CN (0, 1), the following sum rate is

achievable using computation alignment:

Rsum = K log SNR− 7K3 .

Computation Alignment - Main Result

K = 2 case:

• User 1 sends L symbols using L DFT vectors.

• User 2 sends L− 1 symbols using L− 1 DFT vectors.

• Relays get 2L equations. Sum rate is approximately 2L−1

L
log SNR.

K ≥ 2 case: More sophisticated set of alignment vectors.

Theorem (Niesen-Nazer-Whiting arXiv ’11)

For Rayleigh fading, hkℓ[t] ∼ CN (0, 1), the following sum rate is

achievable using computation alignment:

Rsum = K log SNR− 7K3 .

• Penalty term is due to setting rates using the weakest coefficient.

• For equal magnitudes, |hkℓ| = 1, we can achieve Rsum = K log SNR.

.

.

.
.
.
.

.

.

.

· · ·

· · ·

· · ·

K

D

Avestimehr-Diggavi-Tse ’11: C ≥ K log SNR− g1(K,D)

This talk: C ≥ K log SNR− g2(K, fading)

.

.

.
.
.
.

.

.

.

· · ·

· · ·

· · ·

K

D

Avestimehr-Diggavi-Tse ’11: C ≥ K log SNR−KD

This talk: C ≥ K log SNR− 7K3

Conclusions and Future Work

• Compute-and-forward combined with alignment as a new tool for
capacity approximation.

• More work is needed to get a constant gap that does not depend on
the fading statistics.

• Multiple receivers. Layered interference channels.

• Fixed channel coefficients.

• For more info: ISIT ’11 tutorial slides on Algebraic Structure in
Network Information Theory available at iss.bu.edu/bobak

