Computation Alignment:

Capacity Approximation without Noise Accumulation

Urs Niesen
Bell Labs

Bobak Nazer
Boston University

Phil Whiting
Bell Labs

ISWCS 2011
November 7, 2011

Capacity: $\quad C=\log (1+\mathrm{SNR})$

D
Cutset Bound: $C \leq K \log (1+K \mathrm{SNR})$

Relaying Strategies

$K=$ Network Width $\quad D=$ Network Depth

- Decode-and-Forward (Cover-El Gamal '79): Decode subsets of messages. Removes noise but interference-limited.

$$
C \geq \log (1+K \mathrm{SNR})
$$

Relaying Strategies

$K=$ Network Width $\quad D=$ Network Depth

- Decode-and-Forward (Cover-El Gamal '79): Decode subsets of messages. Removes noise but interference-limited.

$$
C \geq \log (1+K \mathrm{SNR})
$$

- Compress-and-Forward (Cover-El Gamal '79): Quantize analog observations. Captures signal interactions but accumulates noise.

Avestimehr-Diggavi-Tse '11: $\quad C \geq K \log (1+K \mathrm{SNR})-K D$

Relaying Strategies

$$
K=\text { Network Width } \quad D=\text { Network Depth }
$$

- Decode-and-Forward (Cover-El Gamal '79): Decode subsets of messages. Removes noise but interference-limited.

$$
C \geq \log (1+K \mathrm{SNR})
$$

- Compress-and-Forward (Cover-El Gamal '79): Quantize analog observations. Captures signal interactions but accumulates noise.

Avestimehr-Diggavi-Tse '11: $\quad C \geq K \log (1+K \mathrm{SNR})-K D$

- Compute-and-Forward (Nazer-Gastpar '11): Decode equations of messages. Partially captures signal interactions and removes noise.

What rates are attainable?

Compute-and-Forward to a Single Relay

Finite field messages:

$$
\mathbf{w}_{\ell} \in \mathbb{F}_{q}^{m}
$$

Power-constrained inputs:

$$
\frac{1}{n}\left\|\mathrm{x}_{\ell}\right\|^{2} \leq \mathrm{SNR}
$$

AWGN noise:

$$
\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
$$

Message rate:

$$
R_{\ell}=\frac{m}{n} \log _{2} q
$$

- Decoder makes an estimate $\hat{\mathbf{u}}$ of a linear equation $\mathbf{u}=\bigoplus_{\ell=1}^{K} a_{\ell} \mathbf{w}_{\ell}$
- Require that probability of error vanishes with blocklength.
- Receiver can use its knowledge of the channel gains to match the integer equation coefficients a_{ℓ} to the channel coefficients h_{ℓ}.

Compute-and-Forward - Single Receiver

Lattice codes: Sums of codewords are codewords.

Erez-Zamir '04: Nested lattice codes can approach AWGN capacity.

Theorem (Nazer-Gastpar IT Trans. '11)

A relay can reliably decode the linear equation with coefficients $\mathbf{a} \in \mathbb{Z}^{K}$ from a channel with coefficients $\mathbf{h} \in \mathbb{R}^{K}$ if the message rates satisfy:

$$
R_{\ell}<\max _{\alpha \in \mathbb{R}} \frac{1}{2} \log \left(\frac{\mathrm{SNR}}{|\alpha|^{2}+\mathrm{SNR}\|\alpha \mathbf{h}-\mathbf{a}\|^{2}}\right)
$$

For complex-valued channels, use real-valued decomposition.

Compute-and-Forward - Multiple Receivers

Theorem (Nazer-Gastpar IT Trans. '11)

The relays can decode a full rank set of linear equations from a channel matrix with rows $\mathbf{h}_{k}^{T} \in \mathbb{C}^{K}$ as long as for some full rank matrix with columns $\mathbf{a}_{k} \in\{\mathbb{Z}+j \mathbb{Z}\}^{K}$ the message rates satisfy:

$$
R_{\ell}<\min _{k: a_{k \ell} \neq 0} \log \left(\frac{1+\mathrm{SNR}\left\|\mathbf{h}_{k}\right\|^{2}}{\left\|\mathbf{a}_{k}\right\|^{2}+\operatorname{SNR}\left(\left\|\mathbf{h}_{k}\right\|^{2}\left\|\mathbf{a}_{k}\right\|^{2}-\left(\mathbf{h}_{k}^{*} \mathbf{a}_{k}\right)^{2}\right)}\right)
$$

Compute-and-Forward - Degrees-of-Freedom

- Compute-and-forward performs well in simulations at moderate SNR (e.g. 15 dB). Does it scale like $K \log \mathrm{SNR}$?

Compute-and-Forward - Degrees-of-Freedom

- Compute-and-forward performs well in simulations at moderate SNR (e.g. 15 dB). Does it scale like $K \log$ SNR?

Theorem (Niesen-Whiting ISIT '11, arXiv '11)

Compute-and-forward scheme from Nazer-Gastpar '11 has at most 2 degrees-of-freedom.

Compute-and-Forward - Degrees-of-Freedom

- Compute-and-forward performs well in simulations at moderate SNR (e.g. 15 dB). Does it scale like $K \log$ SNR?

Theorem (Niesen-Whiting ISIT '11, arXiv '11)

Compute-and-forward scheme from Nazer-Gastpar '11 has at most 2 degrees-of-freedom.

- Is that the end of the story?

Compute-and-Forward - Degrees-of-Freedom

- Compute-and-forward performs well in simulations at moderate SNR (e.g. 15 dB). Does it scale like $K \log$ SNR?

Theorem (Niesen-Whiting ISIT '11, arXiv '11)

Compute-and-forward scheme from Nazer-Gastpar '11 has at most 2 degrees-of-freedom.

- Is that the end of the story?

Theorem (Niesen-Whiting ISIT '11, arXiv '11)

Coupling compute-and-forward with interference alignment can achieve K degrees-of-freedom.

- Key Idea: Use alignment scheme from Motahari et al. '09 to create effective integer channels that are good for compute-and-forward.

Finite SNR Bounds

- In the high SNR limit, noise accumulation does not show up: we could just as well use compress-and-forward.
- Goal for this talk: Design a computation alignment scheme that can send equations with rates within a constant gap of $K \log$ SNR.
- Ergodic interference alignment schemes offer excellent finite SNR rates for the standard interference channel problem.
- Requires time-varying channel coefficients. Our constant gap will depend on the number of sources K and the fading statistics but not the network depth D.

- Relays recover an invertible set of functions

$$
u_{k}=f_{k}\left(w_{1}, w_{2}, \ldots, w_{K}\right)
$$

- Vanishing probability of error.
- Channel coefficients are independent from each other, stationary and ergodic across time, and have uniform phase.

Starting Point - Ergodic Interference Alignment

Basic ergodic alignment scheme:

- Assume each relay wants a single message, $u_{k}=w_{k}$.
- Nazer-Gastpar-Jafar-Vishwanath '09: The following rate is achievable for each user:

$$
R_{k}=\frac{1}{2} \mathbb{E}\left[\log \left(1+2\left|h_{k k}\right|^{2} \mathrm{SNR}\right)\right]
$$

- Corresponds to a sum rate that scales like $\frac{K}{2} \log$ SNR.

Starting Point - Ergodic Interference Alignment

1. At time t with channel \mathbf{H}, user k transmits symbol X_{k}.

$$
\mathbf{H}=\left[\begin{array}{cccc}
h_{11} & h_{12} & \cdots & h_{1 K} \\
h_{21} & h_{22} & \cdots & h_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
h_{K 1} & h_{K 2} & \cdots & h_{K K}
\end{array}\right]
$$

Starting Point - Ergodic Interference Alignment

1. At time t with channel \mathbf{H}, user k transmits symbol X_{k}.

$$
\mathbf{H}=\left[\begin{array}{cccc}
h_{11} & h_{12} & \cdots & h_{1 K} \\
h_{21} & h_{22} & \cdots & h_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
h_{K 1} & h_{K 2} & \cdots & h_{K K}
\end{array}\right]
$$

2. When complementary matrix \mathbf{H}_{C} occurs, retransmit symbol X_{k}.

$$
\mathbf{H}_{C}=\left[\begin{array}{cccc}
h_{11} & -h_{12} & \cdots & -h_{1 K} \\
-h_{21} & h_{22} & \cdots & -h_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
-h_{K 1} & -h_{K 2} & \cdots & h_{K K}
\end{array}\right]
$$

Starting Point - Ergodic Interference Alignment

1. At time t with channel \mathbf{H}, user k transmits symbol X_{k}.

$$
\mathbf{H}=\left[\begin{array}{cccc}
h_{11} & h_{12} & \cdots & h_{1 K} \\
h_{21} & h_{22} & \cdots & h_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
h_{K 1} & h_{K 2} & \cdots & h_{K K}
\end{array}\right]
$$

2. When complementary matrix \mathbf{H}_{C} occurs, retransmit symbol X_{k}.

$$
\mathbf{H}_{C}=\left[\begin{array}{cccc}
h_{11} & -h_{12} & \cdots & -h_{1 K} \\
-h_{21} & h_{22} & \cdots & -h_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
-h_{K 1} & -h_{K 2} & \cdots & h_{K K}
\end{array}\right] \pm \delta
$$

Starting Point - Ergodic Interference Alignment

1. At time t with channel \mathbf{H}, user k transmits symbol X_{k}.

$$
\mathbf{H}=\left[\begin{array}{cccc}
h_{11} & h_{12} & \cdots & h_{1 K} \\
h_{21} & h_{22} & \cdots & h_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
h_{K 1} & h_{K 2} & \cdots & h_{K K}
\end{array}\right]
$$

2. When complementary matrix \mathbf{H}_{C} occurs, retransmit symbol X_{k}.

$$
\mathbf{H}_{C}=\left[\begin{array}{cccc}
h_{11} & -h_{12} & \cdots & -h_{1 K} \\
-h_{21} & h_{22} & \cdots & -h_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
-h_{K 1} & -h_{K 2} & \cdots & h_{K K}
\end{array}\right] \pm \delta
$$

3. Otherwise, transmit new symbols and wait for their \mathbf{H}_{C}.

Starting Point - Ergodic Interference Alignment

- For long block lengths, nearly every matrix finds its quantized match.
- In general, we can successfully pair together matrices if their coefficients are phase rotations of each other,

$$
h_{k \ell}\left[t_{C}\right]=e^{j \phi_{k \ell}} h_{k \ell}[t] .
$$

- Computation alignment: Pair up coefficients to create effective integer channels.

Computation Alignment - Motivating Example

- Send 3 symbols over 2 channel uses. Sum rate is:

$$
R_{\text {sum }}=\frac{3}{2} \mathbb{E}\left[\min _{k, \ell} \log \left(1+\left|h_{k \ell}\right|^{2} \mathrm{SNR}\right)\right]
$$

- Each relay gets 2 equations. Coefficients a and b are non-zero integers so equations are always invertible.
- Use compute-and-forward to code over resulting effective channels.

Tx 1	$X_{1}\left[t_{C}\right]$
	$X_{1}[t]$

$\begin{aligned} X_{1}[t] & = \\ X_{1}\left[t_{C}\right] & =\end{aligned}$

Tx 2

$$
\begin{aligned}
X_{2}[t] & = \\
X_{2}\left[t_{C}\right] & =
\end{aligned}
$$

$Y_{1}[t]+Y_{1}\left[t_{C}\right]=$
$Y_{1}[t]-Y_{1}\left[t_{C}\right]=$

$Y_{2}[t]+Y_{2}\left[t_{C}\right]=$
$Y_{2}[t]-Y_{2}\left[t_{C}\right]=$

$X_{1}[t]=$
$X_{1}\left[t_{C}\right]=$

Tx 2

$$
\begin{aligned}
X_{2}[t] & = \\
X_{2}\left[t_{C}\right] & =
\end{aligned}
$$

Rx 1

$Y_{1}[t]+Y_{1}\left[t_{C}\right]=$
$Y_{1}[t]-Y_{1}\left[t_{C}\right]=$

Rx 2

$Y_{2}[t]+Y_{2}\left[t_{C}\right]=$
$Y_{2}[t]-Y_{2}\left[t_{C}\right]=$

$$
\begin{aligned}
X_{1}[t] & =S_{1 A}+S_{1 B} \\
X_{1}\left[t_{C}\right] & =S_{1 A}-S_{1 B}
\end{aligned}
$$

Tx 2

$$
\begin{aligned}
X_{2}[t] & = \\
X_{2}\left[t_{C}\right] & =
\end{aligned}
$$

Rx 1

$Y_{1}[t]+Y_{1}\left[t_{C}\right]=$
$Y_{1}[t]-Y_{1}\left[t_{C}\right]=$

Rx 2

$Y_{2}[t]+Y_{2}\left[t_{C}\right]=$
$Y_{2}[t]-Y_{2}\left[t_{C}\right]=$

$$
\begin{aligned}
X_{1}[t] & =S_{1 A}+S_{1 B} \\
X_{1}\left[t_{C}\right] & =S_{1 A}-S_{1 B}
\end{aligned}
$$

Tx 2

$$
\begin{aligned}
X_{2}[t] & =S_{2} \\
X_{2}\left[t_{C}\right] & =S_{2}
\end{aligned}
$$

Rx 1

$Y_{1}[t]+Y_{1}\left[t_{C}\right]=$
$Y_{1}[t]-Y_{1}\left[t_{C}\right]=$

Rx 2

$Y_{2}[t]+Y_{2}\left[t_{C}\right]=$
$Y_{2}[t]-Y_{2}\left[t_{C}\right]=$

Channel Gains

$X_{1}[t]=S_{1 A}+S_{1 B}$
$X_{1}\left[t_{C}\right]=S_{1 A}-S_{1 B}$

Tx 2

$$
\begin{aligned}
X_{2}[t] & =S_{2} \\
X_{2}\left[t_{C}\right] & =S_{2}
\end{aligned}
$$

$R \times 2$

$Y_{2}[t]+Y_{2}\left[t_{C}\right]=$
$Y_{2}[t]-Y_{2}\left[t_{C}\right]=$

Tx 1

Rx 1

$X_{1}[t]=S_{1 A}+S_{1 B}$
$X_{1}\left[t_{C}\right]=S_{1 A}-S_{1 B}$

Tx 2

$\begin{aligned} X_{2}[t] & =S_{2} \\ X_{2}\left[t_{C}\right] & =S_{2}\end{aligned}$
$Y_{1}[t]+Y_{1}\left[t_{C}\right]=$
$Y_{1}[t]-Y_{1}\left[t_{C}\right]=$
$R \times 2$

$Y_{2}[t]+Y_{2}\left[t_{C}\right]=$
$Y_{2}[t]-Y_{2}\left[t_{C}\right]=$

$X_{1}[t]=S_{1 A}+S_{1 B}$
$X_{1}\left[t_{C}\right]=S_{1 A}-S_{1 B}$

Tx 2

$\begin{aligned} X_{2}[t] & =S_{2} \\ X_{2}\left[t_{C}\right] & =S_{2}\end{aligned}$

Rx 1

$Y_{1}[t]+Y_{1}\left[t_{C}\right]=2 h_{11} S_{1 A}$
$Y_{1}[t]-Y_{1}\left[t_{C}\right]=2 h_{11} S_{1 B}$
$R \times 2$

$Y_{2}[t]+Y_{2}\left[t_{C}\right]=$
$Y_{2}[t]-Y_{2}\left[t_{C}\right]=$

$X_{1}[t]=S_{1 A}+S_{1 B}$
$X_{1}\left[t_{C}\right]=S_{1 A}-S_{1 B}$

Rx 1

$Y_{1}[t]+Y_{1}\left[t_{C}\right]=2 h_{11} S_{1 A}$
$Y_{1}[t]-Y_{1}\left[t_{C}\right]=2 h_{11} S_{1 B}$

$\begin{aligned} X_{2}[t] & =S_{2} \\ X_{2}\left[t_{C}\right] & =S_{2}\end{aligned}$

Tx 2
$Y_{2}[t]+Y_{2}\left[t_{C}\right]=$
$Y_{2}[t]-Y_{2}\left[t_{C}\right]=$

$X_{1}[t]=S_{1 A}+S_{1 B}$
$X_{1}\left[t_{C}\right]=S_{1 A}-S_{1 B}$
$R \times 1$

$$
\begin{aligned}
& Y_{1}[t]+Y_{1}\left[t_{C}\right]=2\left(h_{11} S_{1 A}+h_{12} S_{2}\right) \\
& Y_{1}[t]-Y_{1}\left[t_{C}\right]=2 h_{11} S_{1 B}
\end{aligned}
$$

Tx 2

$\begin{aligned} X_{2}[t] & =S_{2} \\ X_{2}\left[t_{C}\right] & =S_{2}\end{aligned}$

$Y_{2}[t]+Y_{2}\left[t_{C}\right]=$
$Y_{2}[t]-Y_{2}\left[t_{C}\right]=$

Adjust strength of $S_{1 A}$ to get integer coefficients.

Rx 1

$$
\begin{aligned}
X_{1}[t] & =S_{1 A}+S_{1 B} \\
X_{1}\left[t_{C}\right] & =S_{1 A}-S_{1 B}
\end{aligned}
$$

Tx 2

$$
\begin{aligned}
X_{2}[t] & =S_{2} \\
X_{2}\left[t_{C}\right] & =S_{2}
\end{aligned}
$$

$$
\begin{aligned}
& Y_{1}[t]+Y_{1}\left[t_{C}\right]=2\left(h_{11} S_{1 A}+h_{12} S_{2}\right) \\
& Y_{1}[t]-Y_{1}\left[t_{C}\right]=2 h_{11} S_{1 B}
\end{aligned}
$$

$R \times 2$

$Y_{2}[t]+Y_{2}\left[t_{C}\right]=$
$Y_{2}[t]-Y_{2}\left[t_{C}\right]=$

Adjust strength of $S_{1 A}$ to get integer coefficients.

R× 1

$$
\begin{aligned}
X_{1}[t] & =\rho S_{1 A}+S_{1 B} \\
X_{1}\left[t_{C}\right] & =\rho S_{1 A}-S_{1 B}
\end{aligned}
$$

Tx 2

$$
\begin{aligned}
X_{2}[t] & =S_{2} \\
X_{2}\left[t_{C}\right] & =S_{2}
\end{aligned}
$$

$$
\begin{aligned}
& Y_{1}[t]+Y_{1}\left[t_{C}\right]=2\left(h_{11} S_{1 A}+h_{12} S_{2}\right) \\
& Y_{1}[t]-Y_{1}\left[t_{C}\right]=2 h_{11} S_{1 B}
\end{aligned}
$$

$Y_{2}[t]+Y_{2}\left[t_{C}\right]=$
$Y_{2}[t]-Y_{2}\left[t_{C}\right]=$

Adjust strength of $S_{1 A}$ to get integer coefficients.

R× 1

$$
\begin{aligned}
X_{1}[t] & =\rho S_{1 A}+S_{1 B} \\
X_{1}\left[t_{C}\right] & =\rho S_{1 A}-S_{1 B}
\end{aligned}
$$

Tx 2

$$
\begin{aligned}
X_{2}[t] & =S_{2} \\
X_{2}\left[t_{C}\right] & =S_{2}
\end{aligned}
$$

$$
\begin{aligned}
& Y_{1}[t]+Y_{1}\left[t_{C}\right]=2 h_{12}\left(a S_{1 A}+S_{2}\right) \\
& Y_{1}[t]-Y_{1}\left[t_{C}\right]=2 h_{11} S_{1 B}
\end{aligned}
$$

$R \times 2$

$Y_{2}[t]+Y_{2}\left[t_{C}\right]=$
$Y_{2}[t]-Y_{2}\left[t_{C}\right]=$

$$
X_{1}\left[t_{C}\right]=\rho S_{1 A}-S_{1 B}
$$

Tx 2

$$
\begin{aligned}
X_{2}[t] & =S_{2} \\
X_{2}\left[t_{C}\right] & =S_{2}
\end{aligned}
$$

Rx 1

$$
X_{1}[t]=\rho S_{1 A}+S_{1 B} \searrow \quad Y_{1}[t]+Y_{1}\left[t_{C}\right]=2 h_{12}\left(a S_{1 A}+S_{2}\right)
$$

$$
\begin{array}{|lr}
\hline h_{21} & 0 \\
0-h_{21}
\end{array} \quad Y_{1}[t]-Y_{1}\left[t_{C}\right]=2 h_{11} S_{1 B}
$$

Rx 2

$Y_{2}[t]+Y_{2}\left[t_{C}\right]=$
$Y_{2}[t]-Y_{2}\left[t_{C}\right]=$
$\xrightarrow{T \times 1}$

| $X_{1}[t]$ | $=\rho S_{1 A}+S_{1 B}$ | |
| ---: | :--- | ---: | :--- |
| $X_{1}\left[t_{C}\right]$ | $=\rho S_{1 A}-S_{1 B}$ | |
| | h_{21} 0
 0 $-h_{21}$ | $\left.\begin{array}{l}Y_{1}[t]+Y_{1}\left[t_{C}\right]\end{array}\right)=2 h_{12}\left(a S_{1 A}+S_{2}\right)$ |
| $Y_{1}[t]-Y_{1}\left[t_{C}\right]$ | $=2 h_{11} S_{1 B}$ | |

Tx 2

$$
\begin{aligned}
X_{2}[t] & =S_{2} \\
X_{2}\left[t_{C}\right] & =S_{2}
\end{aligned}
$$

Rx 1

$Y_{2}[t]+Y_{2}\left[t_{C}\right]=2 h_{21} S_{1 B}$
$Y_{2}[t]-Y_{2}\left[t_{C}\right]=2 h_{21} \rho S_{1 A}$

$$
\begin{aligned}
X_{1}[t] & =\rho S_{1 A}+S_{1 B} \\
X_{1}\left[t_{C}\right] & =\rho S_{1 A}-S_{1 B}
\end{aligned}
$$

Rx 1

$$
\begin{aligned}
& Y_{1}[t]+Y_{1}\left[t_{C}\right]=2 h_{12}\left(a S_{1 A}+S_{2}\right) \\
& Y_{1}[t]-Y_{1}\left[t_{C}\right]=2 h_{11} S_{1 B}
\end{aligned}
$$

Tx 2

$X_{2}[t]=S_{2}$
$X_{2}\left[t_{C}\right]=S_{2}$

Rx 2

$$
\begin{aligned}
Y_{2}[t]+Y_{2}\left[t_{C}\right] & =2 h_{21} S_{1 B} \\
Y_{2}[t]-Y_{2}\left[t_{C}\right] & =2 h_{21} \rho S_{1 A}
\end{aligned}
$$

$$
\begin{aligned}
X_{1}[t] & =\rho S_{1 A}+S_{1 B} \\
X_{1}\left[t_{C}\right] & =\rho S_{1 A}-S_{1 B}
\end{aligned}
$$

Rx 1

$$
\begin{aligned}
& Y_{1}[t]+Y_{1}\left[t_{C}\right]=2 h_{12}\left(a S_{1 A}+S_{2}\right) \\
& Y_{1}[t]-Y_{1}\left[t_{C}\right]=2 h_{11} S_{1 B}
\end{aligned}
$$

Tx 2

$X_{2}[t]=S_{2}$
$X_{2}\left[t_{C}\right]=S_{2}$

Rx 2

$Y_{2}[t]+Y_{2}\left[t_{C}\right]=2\left(h_{21} S_{1 B}+h_{22} S_{2}\right)$
$Y_{2}[t]-Y_{2}\left[t_{C}\right]=2 h_{21} \rho S_{1 A}$

Adjust strength of $S_{1 B}$ to get integer coefficients.

R× 1

$$
\begin{aligned}
X_{1}[t] & =\rho S_{1 A}+S_{1 B} \\
X_{1}\left[t_{C}\right] & =\rho S_{1 A}-S_{1 B}
\end{aligned}
$$

Tx 2

$$
\begin{aligned}
X_{2}[t] & =S_{2} \\
X_{2}\left[t_{C}\right] & =S_{2}
\end{aligned}
$$

$$
\begin{aligned}
& Y_{1}[t]+Y_{1}\left[t_{C}\right]=2 h_{12}\left(a S_{1 A}+S_{2}\right) \\
& Y_{1}[t]-Y_{1}\left[t_{C}\right]=2 h_{11} S_{1 B}
\end{aligned}
$$

$Y_{2}[t]+Y_{2}\left[t_{C}\right]=2\left(h_{21} S_{1 B}+h_{22} S_{2}\right)$
$Y_{2}[t]-Y_{2}\left[t_{C}\right]=2 h_{21} \rho S_{1 A}$

Adjust strength of $S_{1 B}$ to get integer coefficients.

R× 1

$$
\begin{aligned}
X_{1}[t] & =\rho S_{1 A}+\gamma S_{1 B} \\
X_{1}\left[t_{C}\right] & =\rho S_{1 A}-\gamma S_{1 B}
\end{aligned}
$$

Tx 2

$$
\begin{aligned}
X_{2}[t] & =S_{2} \\
X_{2}\left[t_{C}\right] & =S_{2}
\end{aligned}
$$

$$
\begin{aligned}
& Y_{1}[t]+Y_{1}\left[t_{C}\right]=2 h_{12}\left(a S_{1 A}+S_{2}\right) \\
& Y_{1}[t]-Y_{1}\left[t_{C}\right]=2 h_{11} S_{1 B}
\end{aligned}
$$

$Y_{2}[t]+Y_{2}\left[t_{C}\right]=2\left(h_{21} S_{1 B}+h_{22} S_{2}\right)$
$Y_{2}[t]-Y_{2}\left[t_{C}\right]=2 h_{21} \rho S_{1 A}$

Adjust strength of $S_{1 B}$ to get integer coefficients.

R× 1

$$
\begin{aligned}
& Y_{1}[t]+Y_{1}\left[t_{C}\right]=2 h_{12}\left(a S_{1 A}+S_{2}\right) \\
& Y_{1}[t]-Y_{1}\left[t_{C}\right]=2 h_{11} \gamma S_{1 B}
\end{aligned}
$$

Tx 2

$$
\begin{aligned}
X_{2}[t] & =S_{2} \\
X_{2}\left[t_{C}\right] & =S_{2}
\end{aligned}
$$

$R \times 2$

$$
\begin{aligned}
& Y_{2}[t]+Y_{2}\left[t_{C}\right]=2 h_{22}\left(b S_{1 B}+S_{2}\right) \\
& Y_{2}[t]-Y_{2}\left[t_{C}\right]=2 h_{21} \rho S_{1 A}
\end{aligned}
$$

Computation Alignment - Main Result

$K=2$ case:

- User 1 sends L symbols using L DFT vectors.
- User 2 sends $L-1$ symbols using $L-1$ DFT vectors.
- Relays get $2 L$ equations. Sum rate is approximately $\frac{2 L-1}{L} \log$ SNR.

Computation Alignment - Main Result

$K=2$ case:

- User 1 sends L symbols using L DFT vectors.
- User 2 sends $L-1$ symbols using $L-1$ DFT vectors.
- Relays get $2 L$ equations. Sum rate is approximately $\frac{2 L-1}{L} \log$ SNR.
$K \geq 2$ case: More sophisticated set of alignment vectors.

Theorem (Niesen-Nazer-Whiting arXiv '11)

For Rayleigh fading, $h_{k \ell}[t] \sim \mathcal{C N}(0,1)$, the following sum rate is achievable using computation alignment:

$$
R_{\text {sum }}=K \log \mathrm{SNR}-7 K^{3} .
$$

Computation Alignment - Main Result

$K=2$ case:

- User 1 sends L symbols using L DFT vectors.
- User 2 sends $L-1$ symbols using $L-1$ DFT vectors.
- Relays get $2 L$ equations. Sum rate is approximately $\frac{2 L-1}{L} \log$ SNR.
$K \geq 2$ case: More sophisticated set of alignment vectors.

Theorem (Niesen-Nazer-Whiting arXiv '11)

For Rayleigh fading, $h_{k \ell}[t] \sim \mathcal{C N}(0,1)$, the following sum rate is achievable using computation alignment:

$$
R_{\text {sum }}=K \log \mathrm{SNR}-7 K^{3} .
$$

- Penalty term is due to setting rates using the weakest coefficient.
- For equal magnitudes, $\left|h_{k \ell}\right|=1$, we can achieve $R_{\text {sum }}=K \log$ SNR.

Avestimehr-Diggavi-Tse '11: $C \geq K \log$ SNR $-g_{1}(K, D)$
This talk: $C \geq K \log \mathrm{SNR}-g_{2}(K$, fading $)$

Avestimehr-Diggavi-Tse '11: $C \geq K \log$ SNR $-K D$
This talk: $C \geq K \log \mathrm{SNR}-7 K^{3}$

Conclusions and Future Work

- Compute-and-forward combined with alignment as a new tool for capacity approximation.
- More work is needed to get a constant gap that does not depend on the fading statistics.
- Multiple receivers. Layered interference channels.
- Fixed channel coefficients.
- For more info: ISIT '11 tutorial slides on Algebraic Structure in Network Information Theory available at iss.bu.edu/bobak

