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Two conflicting goals

* Utility: release aggregate statistics

® Privacy: individual information stays hidden
[ Utility [Privacy}
I

How do we define “privacy’?

* Studied since 1960’s in

» Statistics
» Databases & data mining

» Cryptography
* This century: Rigorous foundations and analysis



oyments

Apple Google

* Burgeoning field of research

: Crypto, Statistics, = Game theory,  Databases, Law,
Algorithms . : : : :
security learning economics programming policy

languages



Caveats

This is a tutorial.

°* Not a survey
» Incomplete

> If | don’t cite your (or my) work, please forgive me.

* Not a broadcast
» Ask questions!
» Lots of material. No agenda.



Some Fantastic Resources

* Cynthia Dwork and Aaron Roth. Algorithmic Foundations of
Data Privacy, 2013 (Extended tutorial / textbook)

* Salil Vadhan. The Complexity of Differential Privacy, 2017.

* Aaron Roth and Adam Smith. Lecture Notes on Adaptive
Data Analysis

» http://adaptivedatanalysis.com

* Tutorial videos:

» 2012 DIMACS Workshop on Differential Privacy across Computer
Science.

» 2013 Simons Workshop on Big Data and Differential Privacy
» 2016 Newton Institute Workshop on Data Privacy and Linkage
» 2017 Bar-llan Winter School on Private Data Analysis

» 2019 Simons Institute Semester Program
e Bootcamp + 3 workshops



http://adaptivedatanalysis.com/
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» Differential privacy
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First attempt: Remove obvious identifiers

Everything is an identifier

Images: whitehouse.gov, genesandhealth.org, medium.com

“Al recognizes blurred faces”
[McPherson Shokri Shmatikov ’16]

[Gymrek McGuire Golan
Halperin Erlich ’13]

[Pandurangan ‘4]

e D

On Taxis and Rainbows

Lessonsifrom NYC'’s improperly anonymized taxi logs

* Hospital
;% :
2 Hogaital

*"

[Ganta Kasiviswanathan S ’08]



[Citations omitted]

Other reidentification attacks

° ... based on external sources, e.g.
» Social networks g
XA 4
> Computer network traces ¥ Ay e g
] ; ‘.”'g._-o-l).!'ﬁ'
. . o P
» Microtargeted advertising ANEIVAD ;:f T
- L7 A
o 2L Y
» Recommendation systems ﬁ«.;jf\u;, o T
AN
» Genetic data < S
‘( .-“
4

... based on composition attacks

» Combining independent anonymized

releases
:‘ Hospital A \
Hospital B /

>0 >0 >0 >b >



Is the problem granularity?

What if we only release aggregate information!?

Statistics together may encode data
* Average salary before/after resignation

o o ©
* Support vector machine output © Q..-"
reveals individual data points Q__,g'. o
-” o © (]

* More generally:

Too many, “too accurate” statistics
reveal individual information
» Reconstruction attacks [Dinur Nissim 2003, ...]
» Membership attacks [Homer et al. 2008, ...]

Cannot release everything
everyone would want to know




Reconstruction Attacks




Reconstruction Attacks [Dinur, Nissim 2003]

Individuals
( r—
i —> queries n
i —] ¢ 9 < Z= 2z
z < | Agency” | Lnswers |Attacker -
L X
° |f

» Agency publishes “enough” facts
» Facts are “sufficiently accurate”

then attacker can reconstruct (part of) the data.
* Typically: view facts + side information as constraints
* IT angle: view agency as encoding + noise

Y . . Y 0
Computing Distorting
facts facts 13



To Reduce Privacy Risks, the Census
Plans to Report Less Accurate Data

Mark Hansen, New York Times, Dec. 5, 2018

In November 2016, the bureau staged something of an attack on itself.
Using only the summary tables with their eight billion numbers, [they
would] try to generate a record for every American that would show [their
Census answers| — a “reconstruction” of the person-level data.

l...]

[The NYT was] able to perform our own reconstruction experiment on
Manhattan. Roughly 1.6 million people are divided among 3,950 census
blocks — which typically correspond to actual city blocks. The summary
tables we needed came from the census website; we used simple tools like
R and the Gurobi Optimizer; and within a week we had our first results.

l...]



An Abstract Setting: Linear Queries |[DN’03]

The following problem arises in several settings:

* Data set has n people

* Secret vector z € {0,1}"
» (1 bit per person, not the same as the data set)

* Attacker sees only
Q € {0,1}™*"

1
y=5Q2+e where {|€|ooSC¥

* Under what conditions on (, @ can .

attacker reconstruct Z € {0,1}" y=—Qz+e
Ham(Z,z) n
> 0!
n where {

such that Q € {0,1}xn

lelo < @



Example 1: Secret Attribute

Data setis X = (4]|z) where
A € {0,1}4%" is matrix of known attributes,
Z is secret

» Each person’s data is d + 1 bits

Suppose release reveals...

Pairwise correlations

people
(a;2) + a for each j {

> Attacker learns y; =
> y=Az+eandm = d.
3-wise conjunctions

(a]*ag z)

» Attacker learns y; , =

Ta
> y=(AxA)'z+eandm = ( )

Convex optimization
» Example: linear regression
> Attacker learns 6 = argmingl||A6 — z||3
> Thatis, 2(40 —2)'A = 0
» Induces (approximate) linear constraints on z

g4l A |z

. R
attributes

1
=_0z+
y an e

mxn
where Q€ {01}
lele < a



1

=—Qz +
Example 2: Who’s In, Who’s Out? ° ..
where {|Q |€ 0.1}

* Attacker knows superset of actual data set

» A is matrix of superset (rows are potential individuals)

> 7 is indicator vector of actual data

e X =diag(z,2y,...,2,) A

» Column sums of X are 1'X = Az

» Approximate marginal statistics give
= approximate linear constraints on z

people 4

R R, OR OFR ©R

N

» Similarly with k-way statistics and convex optimization

* Reconstructing z tells attacker who is in the data set
» More about this type of attack later



1
=—Qz+
When can we reconstruct? [DN’03]” "q{)ze fo —
where ’

* All queries: what if Q contains all possible g € .,.}/l==¢
»m = 2"
» We know ‘y — %Qz‘ <a

* Attack: Given y, Q: Set Z = argmin,, ‘%QW — y‘

* Theorem: Ham(Z,z) < 4an

* Proof:
> Hom(Z2,z) < 2 Toaﬁnlqt(z —7)| < 4an
t(s _ — _
> But é?oai(}"lql (Z—2)| = n‘ Q(Z Z)‘
< |[—QzZ — ‘ Qz — < 2an
n o'e)
> Get ZAMEZ) g 4 Iong asa — 0

n
TC

* | To release anything that allows one to answer all counting
queries, even approximately, you have to release the data




How well can we reconstruct?

* Rough rule: If m > Cn and Q is “nice”, then

What if m is close to n, not 2™?
General strategy

Z = round (argminwe[_l’l]n

» When a < +/n, the error goes to 0.

Ham(z,z)

1
y—nQ

where {

» Beautiful connections to compressed sensing and discrepancy

What'’s “nice™?
» Large min eigenvalue [DY]

» Bounded “partial discrepancy” [MN]

Z+e

Q = {0,1}mxn
lelo < a

y —%QW”p) forap € [1, o0]

< 0(a’n)

» Restricted isometry properties (beyond ¢, bounds on error) [DMT,De]

What kinds of matrices?
» Random [DiNi,DMT,...]

» Random conjunctions [KRSU]
» Hadamard [DY]

# queries m 2™ 0(n)
Error [&m(Z2) 1a 2a*n
Running time Q(2™") O(nlogn)




Hadamard Queries [DY08]

* Queries given by rows of 1 Hadamard matrix:

Hn/z Hn/z
Hy = (1) Hy = (Hn/z _Hn/z)

1
* Attacks gets y = —H,z + e where |e|, < «
gets y = — Iy

> 7 = argmin, H%Hnw — y”z = nH:ly = z + nH7le
» 2 = round(Z)
* Running time: O(nlogn) by divide and conquer (FFT)

°* Error
> Ham (roznd (2),2)

> Eigenvalues of H,, are ++/n since (H,)? = nl
o [|Z—2z|; < \/H”e“z = an since |le]|, = a\/ﬁ

2
< - |Z — z||5 by Markov argument

Ham(round(Z),z)

>

< 2a’n
n

20



Membership Testing Attacks



A Few Membership Attacks

o [H Ome r et aI . 2008] SNP associations Genome-wide

significance threshold

-
o
1

Exact high-dimensional summaries
allow an attacker
to test membership in a data set

[+4]
i

onNn & O
—_

Chromosomal location

» Caused US NIH to change data sharing practices

* [Dwork, S, Steinke, Ullman, Vadhan, FOCS ‘15]
Distorted high-dimensional summaries
allow an attacker
to test membership in a data set

* [Shokri, Stronati, Song, Shmatikov, Oakland 2017]
Membership inference using ML as a service
(from exact answers)

» Several follow-up papers in the security literature
23



Membership Attacks

Population
d attributes
< >

o |1 In

0 I I 0 0 I

n o [1 |0 data |© (0 |I

people||! [0 || o (1 |0

i I I 0 0 I 0 I 0 0
Suppose

®* We have a data set in which membership is sensitive
» Participants in clinical trial
» Targeted ad audience

* Data has many binary attributes for each person

» Genome-wide association studies
d =1000000 (“SNPs”), n < 2000

24



Membership Attacks

Populationf= = ‘gut”
| ~
) d attributes , <

o 11 11 To Th Ta To To [ Alice’s data
“In”
n o it c dataOOIﬂ---->|0||||0|o
people|| ' |0 || o |1 |0
o jo 1o |1 0 |0

l €€ »
X |50 .75 |50 | .50 |.75 | .50 | 25 | .25 | .50 @ In’/
“Out”

* Release exact column averages

* Attacker succeeds with high probability when
there are more attributes than people

25



Membership Attacks

Populationf= = ‘gut”
| ~
) d attributes , <

o [0 11 To T Ta To To Iy Alice’s data
((I »
o |1 |o 0 |0 |1 n
n data mussPp(l (O |1 [0 |01 [01 [0 |1 |O
people|| ' |0 || o |1 |0
I 1 o o 1 o |1 o0 |o
v
l €€ »
X |50 .75|.50 .50 .75 | .50 | 25 | .25 | .50 Attacker In’/
; ] “Out,’
+ ad in each co ate
4 |7 6 |5 |8 4 |2 |3 6

—
No matter how

* Attacker succeeds with high probab. _ distortion performed _

* Release exacet distorted column ave

there are more attributes than people and a K vd/n

26



Membership Attacks

Populationf= = ‘gut”
- ~
) d attributes , <

Alice’s data

o (v |1 Jo v Tafo o |
‘(In”
n (o ! o data |(© |0 ' |, L (1 o |1 o
people||' [0 |! \J’\ L0
1 |1 |o |o
% Key technical idea [DSSUV]:
_ * Rows of data base form
X |50 .75 | .50 50 | .75 , o
(random) fingerprinting code
T a [Boneh Shaw '97,Tardos ’03, Bun Ullman
417 |6 |5 8| Vadhan’14]

* Release exact di

* Attacker succeeds
there are more attributes

* Decoder only needs statistical
summaries
Analysis is subtle

27




Robustness to perturbation

e n=100 — —
e m= 200 8osllr P ]
o . -
o d — 5 OOO ,g 0E — Rounding, LR. auc =0,.'1935
’ ‘§ 1 - - Rounding, IP. auc = 0.9596
® a | — Exact, LR.auc =1.0
Two tests Q 04} Exact, IP. auc = 0.9894 1
~ -~
> LR [Sankararam et al’09] +— | )
0.2 |l ]
> IP [DSSUV’15] .
| -
%955 02 0.4 0.6 08 10

False positive rate

* Two publication mechanisms
» Rounded to nearest multiple of 0.1 (red / green)
» Exact statistics (yellow / blue)

Conclusion: IP test is robust.
Calibrating LR test seems difficult

28



Machine Learning as a Service

Google

Cloud Platform
ATaZon -

Webservices™

e
|

Input from  Classification
users, apps ...

Sensitive!
Transactions, preferences,

online and offline behavior

29



Exploiting Trained Models

Google

Cloud Platform

amazon
webservices™

Prediction API

] [ Training API

[
Input from ‘ |

the training set Classification 4

Input not from Clad
the training set

ification

recognize the difference

30



Exploiting Trained Models

Google ... without knowing the
Cloud Platform >
specifics of the actual model!
amazon
webservices™

[ Prediction API j [ Training API j

ification

Train a model to... recognize the difference



Lessons

|. “Too many, too accurate” statistics allow
one to reconstruct the data

2. “Aggregate” is hard to pin down

34
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Diﬁerential Privacz

* Several current deployments

Apple Google US Census

In the works: Uber, Yahoo, Microsoft, LinkedIn, ...

* Burgeoning field of research

: Crypto, Statistics, = Game theory,  Databases, Law,
Algorithms . : : : :
security learning economics programming policy
languages

36



Diﬁerential Privacz

* Dataset x= (x1,...,Z,) € D"
» Domain D can be numbers, categories, tax forms
» Think of x as fixed (not random)

° A = probabilistic procedure
» A(x) is a random variable

» Randomness might come from adding noise, resampling, etc.

37



Diﬁerential Privacz

* A thought experiment

» Change one person’s data (or add or remove them)

For any set of
outcomes,

(e.g. | get denied
health insurance)
about the same
probability in
both worlds

» Will the probabilities of outcomes change?

38



Diﬁerential Privacz

x—=

. . , AC)

local random i local random
coins coins

x" is a neighbor of x
if they differ in one data point

Neighboring databases
induce close distributions

Definition: A is e-differentially private fif,

. , on outputs
for all neighbors x, x/, @

for all subsets S of outputs e

Pr(A(x) € S) <e®Pr(A(x') €S5)

€ is a leakage measure

39




Randomized Response [Warner 1965]

=
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
=l

>0 o
= () —
=<

IS

o
>

y Agr(x) =Y, ...V

>

segesssyes

i
|
il
|
il
|
A
A
|
|
|
il
|
il
|
A
A
|
|
|
il
|
i

* Want to release the fraction of
students who’ve cheated on a test
» Each person’s dataisa bit: x; = 0orx; =1

* Randomized Response:

» Each individual rolls a die
* |,2,3 or 4:ReportY; = true value x;

* 5oré: Report Y; = opposite value 1 — x;

» Output = list of reported values Y3, ..., Y,

41



Randomized Response Each individual rolls a die

e 1,2 3o0r4: .
Report true value x; ¢ -
e 5o0r6: A

Report opposite value X;

°* Why is it “private’?
» Thought experiment: Change x444m from 0 to 1

* Yidam = 1 happens with probability 3 instead of;—
= Plausible deniability

» Satisfies e-DP with € = 0.7
°* Why is it “useful?

» Can estimate fraction of x;’s that are 1

> Exercise: Find f such that E [f (Agr (X)) — %Zixi = @)(L

e\vn

42



Laplace Mechanism

function f

A(x) = f(x) + noise

local random
coins

* Say we want to release a summary f(x) € R%

> e.g., proportion of cheaters: x; € {0,1} and f(x) = %Zixi

* Simple approach: add noise to f(x)
» How much noise is needed?
> ldea: Calibrate noise to some measure of f’s volatility

43



Laplace Mechanism

function f

local random
coins

A(x) = f(x) + noise

[ * Global Sensitivity: GS; =

max
neighbors z,z’

1£(z) — f(=)|I; j

. 1
» Example: Gsproportion — 5

/”‘--N\\
7))
X : 5
/’—-\ a ’
ll \\ ’/l ’
\— > f(x)
\\47,/
’.—
X

44



Laplace Mechanism

function f

local random
coins

A(x) = f(x) + noise

[ * Global Sensitivity: GSr=  max

neighbors z,z’

I£(x) — £(2')]x j

. 1
» Example: Gsproportion — 5

G'Sf
€

Theorem: Ay ,,(x) = f(x) + Lap (—) is e-DP.

» Requires noise from Laplace distribution

1
= — _|Y|//1 h
h(y) 57 (

» Changing one value translates curve

| g

45



Laplace Mechanism

function f

i~ L1 (

A(x) = f(x) + noise

i local ra_mdom
* Example: proportion of diabetics

» Gsproportion — % 1
> Release A(x) = proportion + —

. EnN
* |s this a lot?

> If x is a random sample frolm a large underlying population,

then sampling noise ~ NG

> A(X) “as good as” real proportion ~ Proportion

A(X)




Diﬁerential Privacz

— T
i local random i local random

coins coins

s a neighbor of x
if differ in one data point
Neighboring databases

Definition: Ais (¢, (Sidifferentially private induce close distribution
on outputs

for all neighbors x, X,
for all subsets S of outputs

Pr(A(x) €S) <

47



Gaussian Noise

function f

—u

A(x) = f(x) + noise

local random
coins

Gaussian noise addition satisfies (€, 6)-DP

with Euclidean sensitivity GS¢ ,, = neigfrlrgglfsxxlllf(x) — (x5

Reconstruction Tracing attacks Differential

attacks ~ 1/vn [BUVI4,DSSUVI16] \/Hén privacy

48



Use{ul Proeerties

* Composition: If A, A,, ... Ay are (€, 0)-differentially private,
then joint output A4 (x), A,(x), ..., Ax(x) is
» (ke, ko)- differentially private [JL0O9,MM09], and
> = (Eﬁ\m, ko )-differentially private [DRVI10]

* Post-processing: If A is e-differentially private,
then so is g(A) for any function g

Consequence |: Modular design!
Consequence 2: Privacy is a consumable resource

® ¢ measures leakage

® can be treated as a “privacy budget”

* Each analysis consumes some

Slide idea from Kobbi Nissim 49



Interpreting Differential Privacy

* A naive hope:
' bout me
after ) outputa efore

* Impossible y
» Suppose you know that | smoke
» Clinical study: “smoking and cancer correlated”

Lung cancer

=1 ‘
» You learn something about me AL
* Whether or not my data were used !;,\}'

* Differential privacy implies:
No matter what you know ahead of time,

You learn (almost) the same things about me
whether or not my data are used

» Provably resists attacks mentioned earlier

50



Bayesian Interpretation [KS08]

® Suppose you are an attacker

> “Background knowledge” = prior distribution p(X =-)

» “Conclusions about i on output a” = p(X; = |[A(X) = a)
» Experiment 0: Run A(X)
> Experiment i: Run A(X_;) with x_; = (1, ..., %21, 0, X4 1, .., Xp)

* Theorem: If A is (¢, 5)-DP with § « -, then for all i,

Xi st Xi with prob.= 1 —Voén
AX)=a A(X_;)=a
Bayes’ rule with Y. —. )
Prior p(X =-) < Pr(y|x) = Pr(A(x) = y) Poli =) | Close
Output y Bayes’ rule with (X =) s
Pr(yly) = PrAG) =y) [ PR

51



What can we compute Erivatelz?

i~ L1 i_ 2L’1
= = LA
Ty,
local rand
X . i e

* “Privacy” = change in one input leads to small change in
output distribution

What computational tasks can we achieve privately?

* Lots of recent work, interesting questions

» Across different fields: statistics, data mining, machine
learning, cryptography, algorithmic game theory, networking,
information theory



A Broad, Active Field of Science

* Algorithmic tools and techniques

* Theoretical foundations ~N—e
> Feasibility results: Learning, //Q

optimization, synthetic data, statistics ~ /_‘
» Variations on the definition

* Design tools

» Programming/query languages, logics, Google Scholar:
evaluation platforms 1,000+ articles with
* Domain-specific algorithms differential privacy
in the title

» Networking, clinical data, social networks,
geographic data, mobile traces ...

13,000+ articles with
“differential privacy”

* Connections to other areas in text
» Law and policy

» “Adaptive” generalization bounds
» Game theory

54
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Basic Technique 1.
Noise Addition




Laplace + Gaussian Mechanisms

function f

A(x) = f(x) + noise

local random
coins

[ * Global Sensitivity: GSr,, = max ||f(x) — f(x)[, )

x,x’neighbors

. 1
» Example: Gsproportion — 5

/Theorem:
* Apgp(x) = f(x) + Lap( - ) is e-DP.
+ Agauss(®) = F() + N (0,(26S;2,/Tog 1/5 /€)” ) is (e, 6)-DP.

GSf,l




Examgle: Histogmms

* Say x4, ...,%x, in domain D
» Partition D into d disjoint bins
> f(x) = (ny,...,ng) where n; = #{i: x; in j—th bin}
>GSpq =GSpp =1

» Sufficient to add noise Lap G) to each count

>

* Examples

» Histogram on the line A 1
» Populations of 50 states
» Marginal tables

* bins = possible combinations of attributes

ABO Type | Rh Type | How Many Have It

(o] positive 38%
45%

0 negative 7%

A positive 34%
40%

A negative 6%

B positive 9%
1%

B negative 2%

AB positive 3%
4%

AB negative 1%

(Source: American Association of Blood Banks)




Global versus local INRS07]

’ f(y’)
2 \.1:()’)
f(x")
x’.‘% f ~ o adding  %AKX)
s ]?(X') noise A(x)
D" R¢ Distributions on R¢

Global sensitivity is worst case over inputs

Local sensitivity:
(S = mex 7@ = G

x’ neighbor of x

J

Reminder: GSf(:z:) — max I_Sf(gj)
[INRS’07,DL’09, ...] Techniques with error = local sensitivity

» Basis of best algorithms for graph data



Basic Technique 2:
Exponential Sampling




Exeonential S amEling [McSherry, Talwar 07

* Sometimes noise addition makes no sense
» mode of a discrete distribution
» minimum cut in a graph
» classification rule

* [MTO07] Motivation: auction design

* Subsequently applied very broadly



Exponential Sampling

* Data: x; = {websites visited by student i today}
° Range: Y = {website names}

° “Score” ofy: q(y; x) = |[{i:y S x;}|

* Goal: output a site with g(y; x) = mj?x q(y; x)

°* ExpMech: Given x,
Output website y with probability 7, (y) o« e€90%)

* Utility: Popular sites exponentially
more likely than rare ones
® Privacy: One person chan |

ges
websites’ scores by <I




Analysis

°* Lemma: ExpMech is (2¢, 0)-differentially private.

* Proof:
() _ exp(eq(y;x)) €y
ra @) exp(eq(yix’)) Cy

where C,, = )., exp(eq(y; x))
> Each term contributes at most e€ to ratio.

* Prop: Let OPT, = max q(y;x). Forallf >0,y =
y

> Look at ratio

ExpMech(x) satisfies g(y; x) = OPT,, — In (%l) /€
with probability = 1 — (.
* Proof: Let G; = {y € Y:q(y;x) = OPT, — t}

Pr(Gy) —€et
(G < |Y|e €.

» Consider the ratio



Exponential Sampling, in General

Ingredients:

* Set of outputs Y with prior distribution p(y)
* Score function g(y; x) such that

for all y, neighbors x, x": |g(v; x) N qly; X)) <A

4 - .
ExpMech: Given x, o 00 .
O (e
° Output y from Y with ero)bability © Qe
€Eqly;x -_-_-_-_-_?."—:-:’;’*-;_ ®
R o
n(y) xp(y)e A e e %o
N ) o o

°* Prop: Let OPT, = maxq(y;x). Forall § > 0,y = ExpMech(x)
y

satisfies q(¥; x) = OPT,, — A

ln(%)

€

with probability 1 — £.



Using Exeonential Sameling

* Mechanism above very general
» Every differentially private mechanism is an instance!
» Still a useful design perspective

* Perspective used explicitly for
» Learning discrete classifiers [KLNRS’08]
» Synthetic data generation [BLR’08,...,HLM’10]
» Convex Optimization [CM’08,CMS’ 0]
» Frequent Pattern Mining [BLST’ 10]
» Genome-wide association studies [FUS’| |]

» High-dimensional sparse regression [KST’ 2]
> ...



About the Exponential Mechanism

* ExpMech is “Gibbs sampling”
» Maximizes expected score subject to entropy constraint
* Alternative Implementation: “Report Noisy Max”

» Add noise Lap (é) to each score

» Report argmax of noisy scores
* Basically the same distribution as Gibbs!

* Lower bound
» Every (€, 6)-DP algorithm, in worst case, outputs y with

q(3;x) < OPT, — o (~=2).

€
* Generalizations
» “Online” version (“sparse vector technique”)
» Variants do much better on specific classes of inputs
» Can handle scores with different sensitivities smoothly




Sparse Vector Technique [RR’10, HR’10]

* “Online” variant of exponential mechanism
* Input:
» Data set x

» Public score q(-;-), threshold T

» Set Y arrives as a public sequence y;4, y,, ...
with private scores q(y;; x)

* Goal:
» Output the first item with score (significantly) above T
. Stop and
o 4 P
Algorithm Scores —butput ye
»>T « T+ Lap (E) T ] o )
€ rR R T TS T TT T T
»Fori=12,..,[Y]|: e ¢ ¢
. 2A ¢ ¢ ¢
* §i < q(yi;x) + Lap (7)
* If§; > T, stop and output y; — ,/tems
Yi Y2 Y3 Va|Vs| Ye V7 L




Linear Queries

Case Study



Collections of linear queries

Could also
look at £, or
£, errors

* Data is a multi-set in domain D

* Represented as a histogram ¥ € N/P|
where x(i) = (# occurrences of i in x)

* Linear query is given by a function f: D — [0,1.,

> Answer to f on x is )i i, o f (D) = (f, x) O
* Goal: Given a workload of queries f, ..., fi, ©

2 2 C e 1 A
release f1, ..., f;; to minimize a = —max‘fj — (f],x)‘
n.j
» Captures releasing collections of contingency tables, means,
covariance matrices, etc

* How low can the error be
» in terms of n,m, |D|?
» for a particular collection of queries?



Error bounds for linear queries

* Goal: Given f3, ..., f;;, minimize an = max‘fj - (f],xH
j

» Alternately, find n necessary for given error a

* Laplace mechanism + composition results

» Requiren > 0 (m logm) orn = Og (\/m 08 m)

ae ae

» Best possible when nn > m
» Time O (mn)

* “Learn the data” paradigm [BLR'08, DNNRV'09, RR’I0,HR’10,HLM'| I]

J91og m-log |D
)orn205( gaz | l)

3
 Allows exponentially many queries ©
» Time O(mn|D|)

« Can be exponential ®

log3(m:|D|)
eas

>n20(



Idea: “Learn the data” [DNNRV’09, HR’10]

. | Exp. Mech : Learning i
X — + 3] Algorithm o
i Laplace Mech [===5 (maintains %) A_r’ X

Release mechanism learns a “model” of x through DP interface
* Search for X to minimize error(X) = max‘(fj,)?) — (f],x)‘
- J
(Generally do not get X = x

Traditional learning “Learn for privacy”
Parameters of classifier Data model
Training data User’s queries f;
Gradient computations Actual data access

* Learner computes a sequence of estimates Xy, X1, X5, ...
* Gradient: Verror(x;) = £f
where j* = argmaxj‘(fj,)?ti — (f]x)‘



“Learn the data” as a game

. | Exp. Mech : Learning i
X — + 3] Algorithm o
i Laplace Mech [===5 (maintains %) A_r’ X

* Can think of this as a two-player game
» Learner plays generative model X

» Data holder uses DP algorithm to find query that
distinguishes X from real data x

* Similar to generative adversarial networks (GANSs)

* Game perspective leads to current best algorithms for
creating synthetic data, e.g.

> Eg [Gaboardi, Arias, Su, Roth, Wu 2014, Beaulieu-Jones, Wu, Williams, Greene, 2017, Boob,

Cummings, Kimpara, Tantipongpipat, Waites, Zimmerman, 2019, McKenna, Sheldon, Miklau 2019, Jordon,

Yoon, van der Schaar, 2019]



“Geometric” approaches 1

* Consider matrix W with columns f;, ..., fin
» Goal: find W such that ||w — Wx]|| is small

* Define sensitivity polytope [Hardt Talwar 0]
K =conv(xfy, ..., fm)
* Observe:
> Sensitivity: for x, x" neighbors, Wx — Wx' € K
» Range: if x has n records, then Wx € n - K

* This suggests two general approaches

» [HT’10] Release noise scaled to K-norm: A(x) = Wx + Z where
pz(y) < exp(—€llyllg) and ||yllx = min{r = 0:y € r - K}
» Projection [Nikolov Talwar Zhang | 3]:
A(x) = Proj,x(Wx + noise)
where Proj,x(z) = argmin{|ly — z||,:y € n - K}
® Variations on these are known to be (close to) optimal in
several settings [HT'10,BDKT’I2,NTZ’| 3]
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“Geometric” approaches 11

* Given W, “matrix mechanism” [Li, Miklau, Hay,
McGregor, Rastogi, |10] and follow-ups have 3 stages:
» Select “good” kX|D| matrices A and B such that W = BA
» Measure y = Ax + Z where Z is Laplace/Gaussian
» “Reconstruct” W = By
» Output projected value W = Proj,,x (W)

* Selection of A, B depends on kind of noise and error
goal
» For Gaussian noise and ¥, error, objective is ||B||z - ||Al]1->

e ||B||g, is sum of squared entries
e ||A]l{57 is maximum norm of columns in A

* Basis of current Census implementations

21



DIRRERENRUAIES

| 2RINAG Y

* Episode lll: Attack of the Codes
» Reconstruction attacks
» Membership attacks

* Episode IV: A New Hope

» Differential privacy

* Episode VI: Return of the Algorithms

» Algorithms for counting queries
» Optimization and learning

(¢ Episode VII: The Connections Awaken ?
earning and adaptive data analysis

» Statistics
» Game theory
» Law and policy




The Local Model for Differential
Privacy



. Equivalent to [Efvimievski,
Local Model for Privacy | R e o

|
L1 I
i— :El i_> Ql \ I
9 To ! : Untrusted :
i i . : Q2 «~— aggregator :
In, . _I/ I
i local random iﬂl.; Qn A :

coins

* “Local” model
» Person i randomizes their own data
» Attacker sees everything except player i’s local state

*(Definition: A is e-locally differentially private if for all i: w

» for all neighbors x, x’,
» for all local coins r_; of all other parties, 0=20

> for all transcripts t: w.lo.g.
[BNSI7]

Pr (A(x,7_;) =t)<e€- Pr (Alx',r ;) =1t)

coins r; coins r;




Local Model for Privacy

: $ Zn!,

coins

®* Pros
» No trusted curator
» No single point of failure

» Highly distributed
* Cons

» Lower accuracy

Untrusted
aggregator




Local Model for Privacy

|
i

i_l:’ Q1 . :

i L2 II Untrusted :
. : Q2 «— aggregator :
Ty, _I/ :

_________________

What can and can’t we do
in the local model?



Example: Randomized response

* Each person has data x; € X'
> Analyst wants to know average of f: X — {—1,1} over x

» E.g. “what is the fraction of diabetics™?

* Randomization operator takes y € {—1,1}:
( e
e

Ty W.p.—
Q) =+ el+1 :>" ratio is e€
Y W'p'e€+1

\
° Observe°
1
> If ¢, = Q(y)) y Contrast with E
in central model
°* How can we estimate a proportion!? (via Laplace noise)
1
> A(Xl Xn) — _Z'Ce ) Q(f(xl))
1

\/_ evn '’

* Proposition: E|A(x) — —Z flx)] <



What can we do using noisy averages?

* An SQ algorithm interacts with a data set by asking a
series of “statistical queries”

» Query: f: X - [—1,1]

» Response: @ € %Zif(xi) 1+ a where a is the tolerance

* Huge fraction of basic learning/optimization algorithms
can be expressed in SQ form [Kearns 93]

*(Theorem (follows [Blum Dwork McSherry Nissim ‘05]):

Every g-query SQ algorithm with tolerance a can be
qlngq
a’e? ’

simulated by e-LDP protocol when n >

Central model: n =




. [Mishra Sandler 2006, Hsu Khanna Roth 2012,
Histograms  Eriingsson, Pihur, Korolova 2014, Bassily Smith 2015, ...

* Every participant has
Xi = {1,2, iy d}
* Histogramis h(x) = (ny,n,, ...,ng)
where n; = #{i: x; = j}

* Straightforward protocol: Map each x; X,

to indicator vector e, |
5o h) = Sie = 00,0100
» Q' (x;): Apply Q(+) to each Q'(ex) = (Q(0),...,Q(1), ..., Q(0))

entry of ey..

* Proposition: Q'(:) is 2e-LDP and
\/Tl lOgd Cenltralz1 5
E|) ') —h(o| < o (50/)
i

€ €

” '

optimal 5



Succinctness

Jnlogd

€
» Problem: Communication, time, and server memory Q(d)

» How much is really needed?

* Randomized response has optimal error

* Theorem [Bassily, Nissim, Stemmer, Thakurta ‘17, Bun, Nelson, Stemmer ‘18].
Protocol with

» optimal error,
> 5(6,/nlogd) space,
» 0(n) total time

* Upper bound idea:

» Connection to “heavy hitters” algorithms from streaming
[Hsu, Khanna, Roth ‘I 2]

» Two data structures:
* estimate individual frequencies
* Identify heavy hitters

* Experimental evaluation [cites above + Wang, Li, Jha ‘| 8]



Vector averages [Duchi Jordan Wainright “13]

* Suppose each input is a vector x; € R% with ||x;]|, <1
» How can we estimate %Zixi?

* Use rand. response for each of the d coordinates?

n . .
» Use - players to estimate each coordinate.

» Error \/d/ne? per coordinate.
> Total £, error E ‘ A(x) — %Zixi

< d/Vne?
2

*| Theorem [DJW’13]: Can estimate to error /d /ne2.

° |dea: Let B; = unit ball in R

» R(v) samples uniformly from either
e {u€Byi:(u,v)=0}wp.e/(1+¢e°),or
e {u€By:(u,v)<0}w.p.1/(1+e®).

> If ||lx|l, = 1, then E(R(X)) = ccq - x

where ¢ 4 = @(E/\/E).




Limitations of Local Algorithms



SO algorithms and Local Privacy [KLNRS’08]
* Every SQ algorithm can be simulated by a LDP protocol.

Theorem: Every LDP algorithm that assumes i.i.d. data can be

simulated by SQ withg =nanda = 1/n

* Corollary (via [Kearns’93]): No LDP algorithm can learn parity
with polynomially many samples (n = 2Hd),

* “Learn parity” = distinguish between n samples from either
> Uniform on {0,1}¢, or

> Uniform on {x € {0,1}%:x ® z = 0 mod 2}
where z is a secret in {0,1}¢.

* Theorem: Centralized DP can learn
. . d
parity withn = 0 (E) samples.

» “Simpler” exponential separation now known
[Duchi, Jordan, Wainright’| 3, Ullman’17]




SO Algorithms simulate LDP protocols

* Roughly:
Every LDP algorithm with n data points can be
simulated by an O(n)-query SQ algorithm with

» Actually a distributional statement: assume that data drawn
i.i.d from some distribution P

* Key piece: Transform the randomizer so only | bit is
sent to aggregator by each participant

» Use rejection sampling to get right distribution

* Corollary [Bun, Nelson, Stemmer’18]: In the local model,
(¢,0)-DP = (¢,6)-DP



Information-theoretic lower bounds

* For local DP algorithms, easiest arguments use

information-theoretic framework
[Beimel,Nissim,Omri’ 10, Chan,Shi,Song’ |2, Duchi,Jordan,Wainwright’| 3]

» Tight lower bounds for many basic estimation tasks

°* Theorem: If A is (¢, 6)-locally DP, then
E|AG) = =%, f(x)| = @(1/evn)

* |dea:

» Suppose Xi, ..., X,, ~ P i.i.d,, where P is randomly chosen
» Show that protocol leaks little information about P

Lemma: For every
distribution on P,
I(P;Yy,...,Y,) < ne?




Main Lemmas
* Lemma: If R is €-DP, then I(X; R(X)) < 0(¢?)

* Stronger Lemma: If R is €-DP, and
_fx wp. o«
W(x) _{0. w.p.l—a’

then I(X; RIW (X))) < 0(a?€?).

* To prove 1/ey/n lower bound for counting query:
> Show that algorithm with error « leaks < na“e? bits

> To estimate P, need to learn at least one bit
> So error a = 1/e\/n



Selection Lower Bounds IDJW’13, Ullman “17]

) k attributes

4

n 1 In

o |1 |1 0 (0 |I
n o |1 |0 data |0 |0 |
people || ! [0 || o [I |o
v v o jo 1 jo |1 0o |0

* Suppose each person has k binary attributes
* Goal: Find index j with highest count (£a)

* Central model: n = O(log(k)/ea) suffices
[McSherry Talwar ‘07]

° Local model: Any noninteractive local DP protocol
with nontrivial error requires
n = Q(klog(k) /%)
> [DJW’13, Ullman ‘17]
» (No lower bound known for interactive protocols)

20



What about interaction?

* Simplest protocols have

=
just | message -
. . —
»> (; is known to player i :
at start of protocol % 4y
=

> Called “noninteractive”

* But some protocols are interactive

Q1\
>

Q2

Untrusted
aggregator

On

» Server might talk to each player several times

» Server may choose (), based on Q;(X;)

* Interaction is expensive
» Latency
» Aggregator must be online

21



Interaction is necessary for LDP

* [KLNRSO8]
For “hidden parity” problem, X

noninteractive LDP requires i—>

exponentially more data
than 2-round LPD

Ql \
Untrusted
Q2 [« aggregator
Ty
—| 0n

» Proof by separating adaptive SQ from nonadaptive SQ

» Stronger separations now known

[Feldman 2019, Joseph-Mao-Roth 2019]

* Is interaction useful in practice?

» Known protocols for convex optimization use lots of

interaction [DJW’13,STU ‘17]

» Lower bounds known for a subclass of protocols
[STU’ 17, McMahan, Srebro, S. ,Wang, Woodward’ | 8]
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Differential Privacy and Game Theory



Game-theoretic interpretation of DP

* Suppose that person i is deciding whether to
contribute data to a data set $— wries

* Different outputs of A have F—= : A (‘_)

different utility to i 4 y“—

> U; = w;(AX))

* If Ais (¢, §)-differentially private, then
E(U;|personi’s datais used)
< e “E(U;|person i’'s datais not used) — §
* Implications
» Participating in a study costs me little

» [McSherry-Talwar ’07] Every differentially private algorithm is
approximately truthful

* Little incentive to misreport values

24



Digital Good Auction vt 07

* | seller with a digital good

* n potential buyers
» Each has a secret value v; in [0, 1] for song
» Setting price p will get revenue rev(p) = p|{i: vi = p}|
» How can seller set p to get revenue = OPT = maxrev(p)?

* Straightforward bidding mechanism
» Each player reports v; = 0
» Lying can drastically change best price

* Instead, sample p* from r(p) « exp(€ - rev(p))
» Approximately truthful

» Expected revenue = OPT — O (

ln(en))

€

25



Economic Theory & Differential Privacy

* Mechanism Design
» Twin goals

* Incentive-compatibility
* Incentive-compatibility

» Exactly truthful mecha
Orlandi, Smorodinsky ’12, Ch

* “Pricing” privacy [Ghosh

» Can we reward survey

See videos of tutorials by

Katrina Ligett at Simons Institute January

2019 “bootcamp”
Aaron Roth at 2012 DIMACS Workshop

on Differential Privacy

» Can we use prices to elicit values for privacy?

» “Endogenize” €!?

* How can private information change games!?

> Equilibrium selection [Kearns, Pai, Roth, Ullman ’14, Rogers Roth ‘14]

* Sensitive information as a public good

» How can we decide how to use the privacy budget?




Law, Policy and Differential Privacy



From Law to Technical Definitions

Two central challenges

|. Given a body of law and regulation, what technical definitions
comply with that law!?
> Eg., GDPR

2. How should we write laws and regulations so they make sense
given evolving technology!?
» E.g., Surveillance # physical wiretaps

* Technical research must inform these questions
» E.g. “personally identifiable information” is meaningless

° [Nissim et al. 2016] Mathematical formulations play an
important role
» E.g. formal interpretation of FERPA (a US law) mirrors DP
» “Singling out” in GDPR is challenging to make sense of
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Adaptive Data Analysis



Overfitting

Wi e

Rad Population P _» data  method

* Inference: Draw conclusions about P based on X

* Overfitting / false discovery:
Conclusions that hold for X but not for P



Overfitting

i —-

—> outcome

Population P data  method

Static

* Decades of work on preventing overfitting

» Cross-validation, bootstrap,

multiple hypothesis testing, FDR control, ...

* Designed for static data analysis

» Assumes method selected independently of data
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Overfitting

ih—-

A

—> outcome

Population P data  method

Static

W —r

Ay

—> outcome 1

Population P data

Adaptive

A'2_~|-> outcome 2
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Adaptivity is common

The Statistical Crisis in Science

Data-dependent analysis—a “garden of forking paths”"— explains why many
statistically significant comparisons don’t hold up.

Andrew Gelman and Eric Loken

that reported “statistically sig- expressed in two different contexts, well known in statistics and has been
nificant” claims in scientific involving either healthcare or the called “p-hacking” in an influential
nithlicationg are rontinely mis-  militarv. The auestion mav be framed 2011 paner bv the psvcholoev re-

There is a growing realization a short mathematics test when it is This multiple comparisons issue is

American Scientist, 2014

How can we provide statistically valid answers
to adaptively selected analyses!?
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Getting a Baseline

I —Cor

4 i 4
LT ) LT
-

P

Adaptive Statistical

.lj

setting ideal: J_I
L, Fresh sample A, —
for each analysis #

* Goal: Relate adaptive setting to statistical ideal worlds

* Understand how properties of algorithms A, A, ...
affect that relationship
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Folklore: Differential privacy
don’t overfit

i —COra
Privacy and overfitting |’ ;

Adaptive
setting

1
I Statistical

g

..Ij

ideal

Ak ‘—’

* Recent discovery: DP prevents adaptive overfitting
[Dwork Feldman Hardt Pitassi Reingold Roth ‘1 5]

* Recent developments (my work and others...)

» Tight connection between DP and overfitting

* Best known bounds on accuracy

» General information-theoretic framework

* Unifies & generalizes known results

Differential
privacy

N

Information
bounds

)
o

Adaptive
analysis
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A few things I didn’t tell you about

* Other algorithmic techniques
» Local sensitivity, smoothed sensitivity, and Lipschitz extensions
» Subsample and aggregate

* PAC learning
* Different access models
» Continual release

» Local privacy
» Pan-privacy

* Computational notions
* Lower bounds

» Accuracy (sometimes via information theory)
» Computation time

* Programming tools
» New developments in type theory

* DPin practice
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Conclusions

* Define privacy in terms of my effect on output
» Meaningful despite arbitrary external information
> | should participate if | get benefit

* Rigorous framework for private data analysis

» Rich algorithmic literature (theoretical and applied)
» There is no competing theory

* What computations can we secure!

» Differential privacy provided a surprising formalization for a
previously ad hoc area

> What other areas need formalization?
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