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Statistical Data Privacy

Large collections of 
personal information
• census data
• medical/public health
• social networks
• education
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Two conflicting goals
• Utility: release aggregate statistics
• Privacy: individual information stays hidden

How do we define “privacy”?
• Studied since 1960’s in 

ØStatistics
ØDatabases & data mining
ØCryptography

• This century: Rigorous foundations and analysis 
4

Utility Privacy



• Several current deployments

• Burgeoning field of research
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Differential Privacy [Dwork, McSherry, Nissim, S., 2006]



Caveats

This is a tutorial.

• Not a survey
Ø Incomplete
Ø If I don’t cite your (or my) work, please forgive me. 

• Not a broadcast
ØAsk questions!
ØLots of material. No agenda.
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Some Fantastic Resources

• Cynthia Dwork and Aaron Roth. Algorithmic Foundations of 
Data Privacy, 2013 (Extended tutorial / textbook)

• Salil Vadhan. The Complexity of Differential Privacy, 2017.
• Aaron Roth and Adam Smith. Lecture Notes on Adaptive 

Data Analysis
Ø http://adaptivedatanalysis.com

• Tutorial videos:
Ø 2012 DIMACS Workshop on Differential Privacy across Computer 

Science. 
Ø 2013 Simons Workshop on Big Data and Differential Privacy
Ø 2016 Newton Institute Workshop on Data Privacy and Linkage
Ø 2017 Bar-Ilan Winter School on Private Data Analysis
Ø 2019 Simons Institute Semester Program 

• Bootcamp + 3 workshops 
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http://adaptivedatanalysis.com/


• Episode III: Attack of the Codes
Ø Reconstruction attacks
Ø Membership attacks

• Episode IV: A New Hope
Ø Differential privacy

• Episode VI: Return of the Algorithms
Ø Algorithms for counting queries
Ø Optimization and learning

• Episode VII: The Connections Awaken
Ø Learning and adaptive data analysis
Ø Statistics
Ø Game theory
Ø Law and policy
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First attempt: Remove obvious identifiers

Everything is an identifier

9Images: whitehouse.gov, genesandhealth.org, medium.com
[Ganta Kasiviswanathan S ’08]

“AI recognizes blurred faces”
[McPherson Shokri Shmatikov ’16]

Name:Ethnicity:

[Gymrek McGuire Golan 
Halperin Erlich ’13]

[Pandurangan ‘14]



Other reidentification attacks
• … based on external sources, e.g.

Ø Social networks
ØComputer network traces
ØMicrotargeted advertising
ØRecommendation systems
ØGenetic data

• … based on composition attacks
ØCombining independent anonymized 

releases

[Citations omitted]
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Is the problem granularity?
What if we only release aggregate information?

Statistics together may encode data
• Average salary before/after resignation
• Support vector machine output

reveals individual data points

• More generally:
Too many, “too accurate” statistics 

reveal individual information
Ø Reconstruction attacks [Dinur Nissim 2003, …]
Ø Membership attacks [Homer et al. 2008, …]
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Cannot release everything 
everyone would want to know



Reconstruction Attacks
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Reconstruction Attacks [Dinur, Nissim 2003]

• If 
Ø Agency publishes “enough” facts
Ø Facts are “sufficiently accurate”

then attacker can reconstruct (part of) the data. 
• Typically: view facts + side information as constraints
• IT angle: view agency as   encoding   +    noise
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Mark Hansen, New York Times, Dec. 5, 2018

In November 2016, the bureau staged something of an attack on itself. 
Using only the summary tables with their eight billion numbers, [they 
would] try to generate a record for every American that would show [their 
Census answers] — a “reconstruction” of the person-level data.

[…] 

[The NYT was] able to perform our own reconstruction experiment on 
Manhattan. Roughly 1.6 million people are divided among 3,950 census 
blocks — which typically correspond to actual city blocks. The summary 
tables we needed came from the census website; we used simple tools like 
R and the Gurobi Optimizer; and within a week we had our first results. 
[…]
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An Abstract Setting: Linear Queries [DN’03]
The following problem arises in several settings:
• Data set has ! people
• Secret vector " ∈ 0,1 '

Ø (1 bit per person, not the same as the data set)

• Attacker sees only

( = 1
!*" + , -ℎ,/, 0* ∈ 0,1 1×'

, 3 ≤ 5
• Under what conditions on *, 5 can 

attacker reconstruct "̂ ∈ 0,1 '

such that 781 9̂,9
' → 0 ?
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( = 1
!*" + ,
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Example 1: Secret Attribute
• Data set is ! = # $ where 
# ∈ 0,1 )×+ is matrix of known attributes, 
$ is secret
Ø Each person’s data is , + 1 bits

Suppose release reveals…
• Pairwise correlations

Ø Attacker learns ./ =
01,2

+
± 4 for each 5

Ø . = #⊺$ + 7 and 8 = ,.
• 3-wise conjunctions

Ø Attacker learns ./,ℓ =
01∗0ℓ , 2

+
± 4

Ø . = # ∗ # ⊺$ + 7 and 8 = ,
2

• Convex optimization 
Ø Example: linear regression
Ø Attacker learns <= = >?@8ABC #= − $ E

E

Ø That is, 2 #= − $ ⊺# ≈ 0
Ø Induces (approximate) linear constraints on $
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. =
1
B
G$ + 7

Hℎ7?7 J
G ∈ 0,1 K×+

7 L ≤ 4

people # $>/

attributes



Example 2: Who’s In, Who’s Out?
• Attacker knows superset of actual data set

Ø! is matrix of superset (rows are potential individuals)
Ø" is indicator vector of actual data

• $ = &'() "*, ",, … , ". !
ØColumn sums of $ are 1⊺$ = !"

• Approximate marginal statistics give 
⇒ approximate linear constraints on "

ØSimilarly with 2-way statistics and convex optimization

• Reconstructing " tells attacker who is in the data set
ØMore about this type of attack later
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3 = 1
4 5" + 7

8ℎ7:7 ;5 ∈ 0,1 >×.

7 @ ≤ B

people !
1
0
1
0
1
0
1
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When can we reconstruct? [DN’03]
• All queries: what if ! contains all possible " ∈ 0,1 '?

Ø( = 2'

Ø We know + − -

'
!.

/
≤ 1

• Attack: Given +, !: Set .̂ = 345(678
-

'
!9 − +

/
• Theorem: :3( .̂, . ≤ 417
• Proof:

Ø :3( .̂, . ≤ 2 max
?∈ @,- A

"B .̂ − . ≤ 417

Ø But max
?∈ @,- A

"B .̂ − . = 7
-

'
! .̂ − .

/

≤
1

7
!.̂ − +

/
+

1

7
!. − +

/
≤ 217

Ø Get 
DEF Ĝ,G

'
→ 0 as long as 1 → 0

• To release anything that allows one to answer all counting 
queries, even approximately, you have to release the data
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1
7
!. + I
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How well can we reconstruct?
• What if ! is close to ", not 2$?
• General strategy

&̂ = ()*"+ ,(-!."/∈ 12,2 4 5 − 2

$
78

9
for a : ∈ [1,∞]

• Rough rule: If ! > @" and 7 is “nice”, then ABC D̂,D

$
≤ F GH"

Ø When G ≪ ", the error goes to 0. 
Ø Beautiful connections to compressed sensing and discrepancy

• What’s “nice”?
Ø Large min eigenvalue [DY]
Ø Bounded “partial discrepancy” [MN]
Ø Restricted isometry properties (beyond ℓK bounds on error) [DMT,De]

• What kinds of matrices?
Ø Random [DiNi,DMT,…]
Ø Random conjunctions [KRSU]
Ø Hadamard [DY]
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5 =
1
"
7& + M

8ℎM(M O
7 ∈ 0,1 C×$

M K ≤ G

# queries ! 2$ F(")

Error   ABC D̂,D

$
4G 2GH"

Running time Ω(2$) F(" log ")



Hadamard Queries [DY08]
• Queries given by rows of ±1 Hadamard matrix:

#$ = 1 #& =
#&/( #&/(
#&/( −#&/(

• Attacks gets * = $

&
#&+ + - where - . ≤ 0

Ø +̃ = 2345678
$

&
#&9 − *

(
= 7#&:$* = + + 7#&:$-

Ø +̂ = 3<=7>(+̃)

• Running time: A(7 log 7) by divide and conquer (FFT)
• Error

Ø
EFG HIJ&K LM ,M

&
≤

(

&
+̃ − + (

( by Markov argument

Ø Eigenvalues of #& are ± 7 since #& ( = 7O
• +̃ − + ( ≤ 7 - ( = 07 since - ( = 0 7

Ø
EFG HIJ&K LM ,M

&
≤ 20(7
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Membership Testing Attacks
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A Few Membership Attacks
• [Homer et al. 2008]

Exact high-dimensional summaries 
allow an attacker 
to test membership in a data set

Ø Caused US NIH to change data sharing practices

• [Dwork, S, Steinke, Ullman, Vadhan, FOCS ‘15] 
Distorted high-dimensional summaries
allow an attacker 
to test membership in a data set

• [Shokri, Stronati, Song, Shmatikov, Oakland 2017]
Membership inference using ML as a service 
(from exact answers)
Ø Several follow-up papers in the security literature
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! attributes

"
people

Membership Attacks
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0 1 1 0 1 0 0 0 1

0 1 0 1 0 1 0 0 1

1 0 1 1 1 1 0 1 0

1 1 0 0 1 0 1 0 0

data

Population

Suppose 
• We have a data set in which membership is sensitive

ØParticipants in clinical trial
ØTargeted ad audience

• Data has many binary attributes for each person
ØGenome-wide association studies 
# = 1 000 000 (“SNPs”), ' < 2000



! attributes

"
people

Membership Attacks
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0 1 1 0 1 0 0 0 1

0 1 0 1 0 1 0 0 1

1 0 1 1 1 1 0 1 0

1 1 0 0 1 0 1 0 0

1 0 1 1 1 1 0 1 0data

Alice’s data

.50 .75 .50 .50 .75 .50 .25 .25 .50#$ Attacker

Population

“In”

“Out”

“In”/
“Out”

• Release exact column averages
• Attacker succeeds with high probability when 

there are more attributes than people and % ≪ '/)



• Release exact distorted column averages (± ")
• Attacker succeeds with high probability when 

there are more attributes than people and " ≪ %/'

( attributes

)
people

Membership Attacks
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0 1 1 0 1 0 0 0 1

0 1 0 1 0 1 0 0 1

1 0 1 1 1 1 0 1 0

1 1 0 0 1 0 1 0 0

1 0 1 1 1 1 0 1 0data

Alice’s data

.50 .75 .50 .50 .75 .50 .25 .25 .50*+ Attacker

“In”

“Out”
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“Out”

.4 .7 .6 .5 .8 .4 .2 .3 .6

± " in each coordinate

No matter how 
distortion performed

Population



• Release exact distorted column averages (± ")
• Attacker succeeds with high probability when 

there are more attributes than people and " ≪ %/'

( attributes

)
people

Membership Attacks
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0 1 1 0 1 0 0 0 1

0 1 0 1 0 1 0 0 1

1 0 1 1 1 1 0 1 0

1 1 0 0 1 0 1 0 0

1 0 1 1 1 1 0 1 0data

Alice’s data

.50 .75 .50 .50 .75 .50 .25 .25 .50*+ Attacker

“In”

“Out”

“In”/
“Out”

.4 .7 .6 .5 .8 .4 .2 .3 .6

± " in each coordinate

Population

Key technical idea [DSSUV]: 
• Rows of data base form 

(random) fingerprinting code
[Boneh Shaw ’97,Tardos ’03, Bun Ullman 
Vadhan’14]

• Decoder only needs statistical 
summaries

• Analysis is subtle



Robustness to perturbation 
• " = 100
• & = 200
• ( = 5,000
• Two tests

ØLR [Sankararam et al’09]
Ø IP [DSSUV’15]

• Two publication mechanisms
ØRounded to nearest multiple of 0.1 (red / green)
ØExact statistics (yellow / blue)

Conclusion: IP test is robust. 
Calibrating LR test seems difficult
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Machine Learning as a Service
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Model

Training API

DATA

Prediction API 

Input from 
users, apps …

Classification

Sensitive!
Transactions, preferences, 
online and offline behavior



Exploiting Trained Models
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Model

Training API

DATA

Prediction API

Input from 
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Input not from 
the training set

Classification

Classification

recognize the difference



Exploiting Trained Models
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Model

Training API

DATA

Prediction API 

Input from 
the training set

Input not from 
the training set

Classification

Classification

recognize the differenceTrain a model to…

… without knowing the
specifics of the actual model!



Lessons

1. “Too many, too accurate” statistics allow 
one to reconstruct the data

2. “Aggregate” is hard to pin down 
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• Episode III: Attack of the Codes
Ø Reconstruction attacks
Ø Membership attacks

• Episode IV: A New Hope
Ø Differential privacy

• Episode VI: Return of the Algorithms
Ø Algorithms for counting queries
Ø Optimization and learning

• Episode VII: The Connections Awaken
Ø Learning and adaptive data analysis
Ø Statistics
Ø Game theory
Ø Law and policy
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• Several current deployments

• Burgeoning field of research
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Apple Google US Census

Algorithms Crypto,
security

Statistics,
learning

Game theory,
economics

Databases,
programming

languages

Law,
policy

Differential Privacy

In the works: Uber, Yahoo, Microsoft, LinkedIn, … 



Differential Privacy

• Data set  !
ØDomain D can be numbers, categories, tax forms
ØThink of x as fixed (not random)

• A = probabilistic procedure
ØA(x) is a random variable
ØRandomness might come from adding noise, resampling, etc.

37

random 
bits

A A(x)



• A thought experiment
ØChange one person’s data (or add or remove them)
ØWill the probabilities of outcomes change?
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A A(x’)A A(x)

For any set of 
outcomes, 
(e.g. I get denied 
health insurance)
about the same 
probability in 
both worlds

Differential Privacy

random 
bits

random 
bits
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local random 
coins

A A(x’)

!’ is a neighbor of !
if they differ in one data point

local random 
coins

A A(x)

Definition:  A is #-differentially private if, 
for all neighbors $, $’, 
for all subsets S of outputs

Pr ' $ ∈ ) ≤ +, Pr ' $- ∈ )

Neighboring databases 
induce close distributions 
on outputs

Differential Privacy

# is a leakage measure

1 + #



Randomized Response [Warner 1965]
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!"" # = %&,… , %)
%&
%*

%)

• Want to release the fraction of 
students who’ve cheated on a test
ØEach person’s data is a bit: #+ = 0 or #+ = 1

• Randomized Response:
ØEach individual rolls a die

• 1, 2, 3 or 4: Report %+ = true value #+
• 5 or 6: Report %+ = opposite value 1 − #+

ØOutput = list of reported values %&,… , %)

A



Randomized Response [Warner 1965]

• Why is it “private”?
ØThought experiment: Change !"#$% from 0 to 1

• ("#$% = 1 happens with probability 
*
+

instead of 
,
+

∴ Plausible deniability

ØSatisfies .-DP with . ≈ 0.7
• Why is it “useful”?

ØCan estimate fraction of !3’s that are 1

ØExercise: Find 4 such that E 4 677(!⃗) − ,
<
∑3 !3 = Θ( ,

? <
)
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677 ! = (,,… , (<
(,
(*

(< A

Each individual rolls a die
• 1, 2, 3 DE 4: 

Report true value !3
• 5 DE 6: 

Report opposite value I!3



Laplace Mechanism

• Say we want to release a summary ! " ∈ ℝ%
Øe.g., proportion of cheaters: "& ∈ 0,1 and ! " = +

,∑& "&

• Simple approach: add noise to !(")
ØHow much noise is needed?
Ø Idea: Calibrate noise to some measure of !’s volatility
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local random 
coins

A

function f

0 " = ! " + 23456



Laplace Mechanism

• Global Sensitivity: 

Ø Example:   
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local random 
coins

A

function f

x

x’

f(x)

f(x’)

! " = $ " + &'()*



Laplace Mechanism

• Global Sensitivity: 

Ø Example:   

ØRequires noise from Laplace distribution

ℎ " = 1
2& '

( ) /+

ØChanging one value translates curve
45

local random 
coins

A

function f

Theorem: A-./ 0 = 1 0 + 345 678
9 is :-DP.

; 0 = 1 0 + <=>?'



Laplace Mechanism

• Example: proportion of diabetics
Ø
ØRelease 

• Is this a lot?
Ø If x is a random sample from a large underlying population, 

then sampling noise
ØA(x) “as good as” real proportion
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local random 
coins

A

function f

proportion

! " = $ " + &'()*



Differential Privacy
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local random 
coins

A A(x’)

x’ is a neighbor of x 
if they differ in one data point

local random 
coins

A A(x)

Definition:  A is (", $)-differentially private if, 
for all neighbors x, x’, 
for all subsets S of outputs

Neighboring databases 
induce close distributions 
on outputs



Gaussian Noise
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local random 
coins

A

function f

Gaussian noise addition satisfies !, # -DP 
with Euclidean sensitivity $%&,ℓ( = max

-./012345 6,67
8 9 − 8 9; <

= 9 = 8 9 + ?@ABC

1/ ?
Reconstruction
attacks F/G

Differential
privacy

Tracing attacks
[BUV14,DSSUV16]



Useful Properties
• Composition: If !", !$,…!& are ((, ))-differentially private,

then joint output !"(+), !$(+),… , !&(+) is 
Ø (,(, ,))- differentially private [JL09,MM09], and 

Ø ≈ ( , ln 1/) , ,) -differentially private [DRV10]

• Post-processing: If ! is (-differentially private, 
then so is 2(!) for any function 2

Consequence 1: Modular design!

Consequence 2: Privacy is a consumable resource
• ( measures leakage 
• can be treated as a “privacy budget” 
• Each analysis consumes some

49Slide idea from Kobbi Nissim



Interpreting Differential Privacy
• A naïve hope:

Your beliefs about me are the same 
after you see the output as they were before 

• Impossible
Ø Suppose you know that I smoke
Ø Clinical study: “smoking and cancer correlated”
Ø You learn something about me

• Whether or not my data were used

• Differential privacy implies:
No matter what you know ahead of time,

You learn (almost) the same things about me 
whether or not my data are used

Ø Provably resists attacks mentioned earlier
50



Bayesian Interpretation [KS08]
• Suppose you are an attacker

Ø “Background knowledge” = prior distribution ! " =⋅
Ø “Conclusions about % on output a” = ! "& =⋅ ' " = (

ØExperiment 0: Run ' "

ØExperiment %: Run ' ")& with *
)&
= (*

,
, … , *

&),
, 0, *

&0,
, … , *

1
)

• Theorem: If ' is (3, 4)-DP with 4 ≪ ,

1
, then for all %, 

"& 6
7 8 9:

≈
<
=
,>
= "& 6

7 8?@ 9:

A%Bℎ !DEF.≥ 1 − 4K

51

Prior ! " =⋅
Output L

Bayes’ rule with 
Pr L * = Pr ' * = L

Bayes’ rule with 
Pr L * = Pr ' *_ = L

!P("& =⋅)

!&("& =⋅)

Close
w.h.p.



What can we compute privately?

• “Privacy” = change in one input leads to small change in 
output distribution

What computational tasks can we achieve privately?

• Lots of recent work, interesting questions
ØAcross different fields: statistics, data mining, machine 

learning, cryptography, algorithmic game theory, networking, 
information theory

local random 
coins

A A(x’)

local random 
coins

A A(x)



A Broad, Active Field of Science
• Algorithmic tools and techniques
• Theoretical foundations

Ø Feasibility results: Learning, 
optimization, synthetic data, statistics

Ø Variations on the definition

• Design tools
Ø Programming/query languages, logics, 

evaluation platforms

• Domain-specific algorithms
Ø Networking, clinical data, social networks, 

geographic data, mobile traces …

• Connections to other areas
Ø Law and policy
Ø “Adaptive” generalization bounds 
Ø Game theory

54

Google Scholar: 
1,000+ articles with 
“differential privacy” 

in the title

13,000+ articles with 
“differential privacy” 

in text



• Episode III: Attack of the Codes
Ø Reconstruction attacks
Ø Membership attacks

• Episode IV: A New Hope
Ø Differential privacy

• Episode VI: Return of the Algorithms
Ø Algorithms for counting queries
Ø Optimization and learning

• Episode VII: The Connections Awaken
Ø Learning and adaptive data analysis
Ø Statistics
Ø Game theory
Ø Law and policy
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Basic Technique 1: 
Noise Addition

2



Laplace + Gaussian Mechanisms

• Global Sensitivity:

Ø Example:   

3

local random 
coins

A

function f

Theorem: 

• !"#$ % = ' % + )*+
,-.,0

1
is 2-DP.

• !3#455 % = ' % +6 0, 29:;,< log 1/B /2
<

is (2, B)-DP.

! % = ' % + EFGHI

9:;,J = max
N,NOPQRSTUVW5

' % − ' %Y J



Example: Histograms
• Say !", … , !% in domain D

ØPartition D into d disjoint bins
Ø & ! = (",… , () where (* = # ,: !. in 1−th bin
Ø678," = 678,9 = 1
ØSufficient to add noise  ;<= "

> to each count

• Examples
ØHistogram on the line
ØPopulations of 50 states
ØMarginal tables

• bins = possible combinations of attributes
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Global versus local [NRS07]

• Global sensitivity is worst case over inputs
• Local sensitivity: 

• Reminder: 
• [NRS’07,DL’09, ...] Techniques with error ≈ local sensitivity 

Ø Basis of best algorithms for graph data
6

x
x’ adding 

noise

y
y’

f(y)

f(x’)

f(x)

f(y’)



Basic Technique 2:
Exponential Sampling

7



Exponential Sampling [McSherry, Talwar ‘07]

• Sometimes noise addition makes no sense
Ømode of a discrete distribution
Øminimum cut in a graph
Øclassification rule

• [MT07] Motivation: auction design

• Subsequently applied very broadly

8



Exponential Sampling
• Data: !" = {websites visited by student i today}
• Range:  # = {website names}
• “Score” of y:      $(&; !) = | {, ∶ & ⊆ !"} |
• Goal: output a site with $(&; !) ≈ max4 $(&; !)
• ExpMech: Given x,

Output website & with probability 56 & ∝ 89: 4;6

• Utility: Popular sites exponentially 
more likely than rare ones

• Privacy: One person changes 
websites’ scores by ≤1

9



Analysis
• Lemma: ExpMech is (2#, 0)-differentially private.
• Proof:

ØLook at ratio '( )
'(* )

= ,-. /0 );2
,-. /0 );2*

⋅
4(*
4(

where 52 = ∑) exp #: ;; <
ØEach term contributes at most =/ to ratio.

• Prop: Let >?@2 = max
)

:(;; <). For all C > 0, E; =

F<GH=Iℎ(<) satisfies : E;; < ≥ >?@2 − ln
O
P

/#
with probability ≥ 1 − C.

• Proof: Let ST = {; ∈ W: : ;; < ≥ >?@2 − Y}
ØConsider the ratio [\ ]^

[\ ]^
≤ W =`/T.

10



Exponential Sampling, in General
Ingredients:
• Set of outputs Y with prior distribution p(y)
• Score function !(#; %) such that 

for all #, neighbors %, %’: |! #; % − !(#; %’)| ≤ Δ
ExpMech: Given %,
• Output # from . with probability 

/0 # ∝ 2 # 3
45 6;7

8

• Prop: Let 9:;0 = max
@

!(#; %). For all A > 0, D# = E%2F3Gℎ(%)

satisfies ! D#; % ≥ 9:;0 − Δ
JK L

M
N with probability 1 − A.



Using Exponential Sampling
• Mechanism above very general

ØEvery differentially private mechanism is an instance!
ØStill a useful design perspective

• Perspective used explicitly for
ØLearning discrete classifiers [KLNRS’08]
ØSynthetic data generation [BLR’08,...,HLM’10]
ØConvex Optimization [CM’08,CMS’10]
ØFrequent Pattern Mining [BLST’10]
ØGenome-wide association studies [FUS’11]
ØHigh-dimensional sparse regression [KST’12]
Ø ...
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About the Exponential Mechanism
• ExpMech is “Gibbs sampling”

ØMaximizes expected score subject to entropy constraint
• Alternative Implementation: “Report Noisy Max”

ØAdd noise !"# $
% to each score

ØReport argmax of noisy scores
• Basically the same distribution as Gibbs! 

• Lower bound
ØEvery (', ))-DP algorithm, in worst case, outputs +, with 
- +,; / ≤ 1234 − Ω $ 78 9

% .

• Generalizations
Ø “Online” version (“sparse vector technique”)
ØVariants do much better on specific classes of inputs
ØCan handle scores with different sensitivities smoothly

13



Sparse Vector Technique [RR’10, HR’10]
• “Online” variant of exponential mechanism
• Input: 

ØData set !
ØPublic score "(⋅;⋅), threshold '
ØSet ( arrives as a public sequence )*, ),,…

with private scores "().; !)
• Goal: 

ØOutput the first item with score (significantly) above T
• Algorithm

Ø /' ← ' + 234 56
7

ØFor 8 = 1,2,… , |(| :
• >"? ← " )?; ! + 234 ,6

7
• If >"? > /', stop and output )?

14

Items

Scores

'
/'

Stop and 
output )A

)* ), )B )A )C)5 )D



Linear Queries

Case Study

15



Collections of linear queries
• Data is a multi-set in domain !
• Represented as a histogram #⃗ ∈ ℕ &

where # ' = # occurrences of ' in #
• Linear query is given by a function 3:! → [0,1],

ØAnswer to 3 on # is ∑< <= > 3 ' = ⟨3, #⟩

• Goal: Given a workload of queries 3A, … , 3C,
release D3A, … , D3C to minimize E = A

=
max
I

D3I − 3I, #

ØCaptures releasing collections of contingency tables, means, 
covariance matrices, etc

• How low can the error be 
Ø in terms of K,L, |!|?
Ø for a particular collection of queries?

16

Could also 
look at ℓA or 
ℓO errors



Error bounds for linear queries
• Goal: Given !", … , !%, minimize &' = max, -!, − !,, /

ØAlternately, find ' necessary for given error &
• Laplace mechanism + composition results

ØRequire ' ≥ 1 % 234%
56 or ' ≥ 17 % 234%

5 6
ØBest possible when ' ≫ 9
ØTime 1(9')

• “Learn the data” paradigm [BLR’08, DNNRV’09, RR’10,HR’10,HLM’11]

Ø' ≥ 1 234<(%⋅|?|)
65< or ' ≥ 17 234%⋅234 |?|

5@ 6
• Allows exponentially many queries J

ØTime 1(9' A )
• Can be exponential L

17



Idea: “Learn the data” [DNNRV’09, HR’10]

Release mechanism learns a “model” of ! through DP interface
• Search for "! to minimize #$$%$ "! = max* +*, "! − +*, !

(Generally do not get "! ≈ !)

• Learner computes a sequence of estimates "!/, "!0, "!1,…
• Gradient:  ∇#$$%$ "!4 = ±+*∗

where 7∗ = 8$9:8!* +*, "!4 − +*, !
18

!
Exp. Mech 

+ 
Laplace Mech

Learning 
Algorithm

(maintains "!) "!
A

Traditional learning “Learn for privacy”
Parameters of classifier Data model "!
Training data User’s queries +*
Gradient computations Actual data access

+0, +1,… , +;



“Learn the data” as a game

• Can think of this as a two-player game
ØLearner plays generative model !"
ØData holder uses DP algorithm to find query that 

distinguishes !" from real data "
• Similar to generative adversarial networks (GANs)
• Game perspective leads to current best algorithms for 

creating synthetic data, e.g. 
ØE.g. [Gaboardi, Arias, Su, Roth, Wu 2014, Beaulieu-Jones, Wu, Williams, Greene, 2017, Boob, 

Cummings, Kimpara, Tantipongpipat, Waites, Zimmerman, 2019, McKenna, Sheldon, Miklau 2019, Jordon, 
Yoon, van der Schaar, 2019]

19
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“Geometric” approaches I
• Consider matrix ! with columns "#, … , "&

Ø Goal: find '( such that ‖'( −!+‖ is small

• Define sensitivity polytope [Hardt Talwar 10]
, = ./01(±"#,… ,±"&)

• Observe:
Ø Sensitivity: for +, +′ neighbors, !+ −!+6 ∈ ,
Ø Range: if + has 0 records, then !+ ∈ 0 ⋅ ,

• This suggests two general approaches
Ø [HT’10] Release noise scaled to ,-norm: 9 + = !+ + ; where 
<= > ∝ exp(−C > D) and > D = min{I ≥ 0: > ∈ I ⋅ ,}

Ø Projection [Nikolov Talwar Zhang ’13]:
9 + = NI/OPD !+ + 0/QRS

where NI/OPD T = UIVWQ0 > − T X: > ∈ 0 ⋅ ,
• Variations on these are known to be (close to) optimal in 

several settings [HT’10,BDKT’12,NTZ’13]
20



“Geometric” approaches II
• Given !, “matrix mechanism” [Li, Miklau, Hay, 

McGregor, Rastogi, 10] and follow-ups have 3 stages:
ØSelect “good” "×|%| matrices & and ' such that ! = '&
ØMeasure ) = &* + , where , is Laplace/Gaussian 
Ø “Reconstruct” -w = ')
ØOutput projected value /w = 012345(-7)

• Selection of &, ' depends on kind of noise and error 
goal
ØFor Gaussian noise and ℓ; error, objective is ' <= ⋅ & ?→;

• ' <= is sum of squared entries
• & ?→; is maximum norm of columns in &

• Basis of current Census implementations
21



• Episode III: Attack of the Codes
Ø Reconstruction attacks
Ø Membership attacks

• Episode IV: A New Hope
Ø Differential privacy

• Episode VI: Return of the Algorithms
Ø Algorithms for counting queries
Ø Optimization and learning

• Episode VII: The Connections Awaken
Ø Learning and adaptive data analysis
Ø Statistics
Ø Game theory
Ø Law and policy

1
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The Local Model for Differential 
Privacy

3



Local Model for Privacy

• “Local” model
Ø Person ! randomizes their own data
Ø Attacker sees everything except player !’s local state

• Definition: A is "-locally differentially private if for all !:
Ø for all neighbors #, #’, 
Ø for all local coins %&' of all other parties,
Ø for all transcripts (: 

Pr+,-./ 01
2 #, 4&5 = ( ≤ 89 ⋅ Pr+,-./ 01

2 #;, 4&5 = (
4

local random 
coins

A Untrusted 
aggregator

A

<=
<>

<?

@ = 0
w.l.o.g.

[BNS17]

Equivalent to [Efvimievski, 
Gehrke, Srikant ‘03]



Local Model for Privacy

• Pros
ØNo trusted curator
ØNo single point of failure
ØHighly distributed

• Cons
ØLower accuracy

5

local random 
coins

A Untrusted 
aggregator

A

!"
!#

!$



Local Model for Privacy

What can and can’t we do 
in the local model?

6

local random 
coins

A Untrusted 
aggregator

A

!"
!#
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Example: Randomized response
• Each person has data !" ∈ $

Ø Analyst wants to know average of %:$ → −1,1 over +
Ø E.g. “what is the fraction of diabetics”?

• Randomization operator takes , ∈ {−1,1}:

/ , = 1
+, 3. 5. 67

6789
−, 3. 5. 9

6789

• Observe: 

Ø If :; = 6789
67<9, then = :; ⋅ / , = ,

• How can we estimate a proportion?
Ø ? !9, … . , !A = 9

A ∑" :; ⋅ / % !"

• Proposition: = ? + − 9
A∑" % !" ≤ D7

E A ≈
9
; A .

7

Contrast with 
9
A;

in central model 
(via Laplace noise)

ratio is G;



What can we do using noisy averages?
• An SQ algorithm interacts with a data set by asking a 

series of “statistical queries”
ØQuery:   !:# → [−1,1]
ØResponse:  *+ ∈ -

.∑0 !(20) ± 5 where 5 is the tolerance

• Huge fraction of basic learning/optimization algorithms 
can be expressed in SQ form [Kearns 93] 

• Theorem (follows [Blum Dwork McSherry Nissim ‘05]): 
Every 6-query SQ algorithm with tolerance 5 can be 
simulated by 7-LDP protocol when 8 ≥ : ;< :

=>?> .

8

Central model:    8 ≈ : ;< :
=?



Histograms
• Every participant has 

!" ∈ {1,2, … , )}.
• Histogram is ℎ ! = -., -/, … , -0

where -1 = # 3: !" = 5
• Straightforward protocol: Map each !"

to indicator vector 678
ØSo ℎ ! = ∑" 678
Ø:; <= : Apply > ⋅ to each 

entry of 678.
• Proposition: >′(⋅) is 2C-LDP and 

D E
"

>; !" − ℎ !
G

≤
- log )
C

9

678 = (0,0,… , 0,1,0,… , 0)

!"

Central:

M
log 1/O

C

>′(678) = (>(0), … , >(1), … , >(0))

optimal

[Mishra Sandler 2006, Hsu Khanna Roth 2012, 
Erlingsson, Pihur, Korolova 2014, Bassily Smith 2015, …]



Succinctness
• Randomized response has optimal error 

! "#$ %
&

Ø Problem: Communication, time, and server memory Ω())
Ø How much is really needed?

• Theorem [Bassily, Nissim, Stemmer, Thakurta ‘17, Bun, Nelson, Stemmer ‘18]: 
Protocol with 
Ø optimal error, 
Ø +, - . log ) space, 
Ø +,(.) total time

• Upper bound idea:
Ø Connection to “heavy hitters” algorithms from streaming

[Hsu, Khanna, Roth ‘12]
Ø Two data structures: 

• estimate individual frequencies
• Identify heavy hitters

• Experimental evaluation [cites above + Wang, Li, Jha ‘18]
10



Vector averages [Duchi Jordan Wainright ‘13]

• Suppose each input is a vector !" ∈ ℝ% with !" & ≤ 1

Ø How can we estimate 
)

*
∑" !"?

• Use rand. response for each of the , coordinates?
Ø Use 

-

%
players to estimate each coordinate. 

Ø Error ,//0& per coordinate. 

Ø Total ℓ& error 2 3 ! −
)

-
∑" !"

&
≤ ,/ /0&

• Theorem [DJW’13]: Can estimate to error ,//0&.
• Idea: Let 5% = unit ball in ℝ%

Ø 7(9) samples uniformly from either
• {= ∈ 5%: =, 9 ≥ 0} w.p. CD/(1 + CD), or
• {= ∈ 5%: =, 9 < 0} w.p. 1/(1 + CD).

Ø If ! & = 1, then 2 7 ! = GD,% ⋅ !

where GD,% = Θ 0/ , .
11
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1
1+eα
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v
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(a) (b)

Figure 2. Private sampling strategies. (a) Strategy (26a) for the ℓ2-ball. Outer boundary of
highlighted region sampled uniformly with probability eα/(eα+1). (b) Strategy (26b) for the ℓ∞-ball.
Circled point set sampled uniformly with probability eα/(eα + 1).

Strategy A: Given a vector v with ∥v∥2 ≤ r, set ṽ = rv/ ∥v∥2 with probability 1
2 + ∥v∥2 /2r and

ṽ = −rv/ ∥v∥2 with probability 1
2 − ∥v∥2 /2r. Then sample T ∼ Bernoulli(πα) and set

Z ∼

{
Uniform(z ∈ Rd : ⟨z, ṽ⟩ > 0, ∥z∥2 = B) if T = 1

Uniform(z ∈ Rd : ⟨z, ṽ⟩ ≤ 0, ∥z∥2 = B) if T = 0.
(26a)

Strategy B: Given a vector v with ∥v∥∞ ≤ r, construct ṽ ∈ Rd with coordinates ṽj sampled
independently from {−r, r} with probabilities 1/2 − vj/(2r) and 1/2 + vj/(2r). Then sample
T ∼ Bernoulli(πα) and set

Z ∼

{
Uniform(z ∈ {−B,B}d : ⟨z, ṽ⟩ > 0) if T = 1

Uniform(z ∈ {−B,B}d : ⟨z, ṽ⟩ ≤ 0) if T = 0.
(26b)

See Figure 2 for visualizations of these sampling strategies. By inspection, each is α-differentially
private for any vector satisfying ∥v∥2 ≤ r or ∥v∥∞ ≤ r for Strategy A or B, respectively. Moreover,
each strategy is efficiently implementable: Strategy A by normalizing a sample from the N(0, Id×d)
distribution, and Strategy B by rejection sampling over the scaled hypercube {−B,B}d.

Given these sampling strategies, we study the d-dimensional problem of estimating the mean
θ(P ) := EP [X] of a random vector. We consider a few different metrics for the error of an estimator
of the mean to flesh out the testing reduction in Section 2. Due to the difficulties associated with
differential privacy on non-compact spaces (recall Section 3.3.1), we focus on distributions with
compact support. We defer all proofs to Appendix A; they use a combination of Theorem 2 with
Fano’s method.

14



Limitations of Local Algorithms
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SQ algorithms and Local Privacy [KLNRS’08]
• Every SQ algorithm can be simulated by a LDP protocol. 

• Theorem: Every LDP algorithm that assumes i.i.d. data can be 
simulated by SQ with ! ≈ # and $ ≈ 1/#

• Corollary (via [Kearns’93]): No LDP algorithm can learn parity 
with polynomially many samples (# = 2) * ).

• “Learn parity” ≈ distinguish between # samples from either
Ø Uniform on 0,1 * , or
Ø Uniform on {. ∈ 0,1 *: . ⊙ 2 = 0 345 2}

where 2 is a secret in 0,1 *.

• Theorem: Centralized DP can learn 
parity with # = 8 *

9 samples.
Ø “Simpler” exponential separation now known 

[Duchi, Jordan, Wainright’13, Ullman’17]
13



SQ Algorithms simulate LDP protocols
• Roughly: 

Every LDP algorithm with ! data points can be 
simulated by an "(!)-query SQ algorithm with 
ØActually a distributional statement: assume that data drawn 

i.i.d from some distribution %

• Key piece: Transform the randomizer so only 1 bit is 
sent to aggregator by each participant
ØUse rejection sampling to get right distribution

• Corollary [Bun, Nelson, Stemmer’18]: In the local model,    
&, 0 -DP ≈ &, * -DP

14



Information-theoretic lower bounds
• For local DP algorithms, easiest arguments use 

information-theoretic framework 
[Beimel,Nissim,Omri’10, Chan,Shi,Song’12, Duchi,Jordan,Wainwright’13]

ØTight lower bounds for many basic estimation tasks

• Theorem: If ! is (#, %)-locally DP, then 

' ! ( − *
+∑- . /- = 1 2/4 5

• Idea:
ØSuppose 6*,… , 6+ ∼ 9 i.i.d., where 9 is randomly chosen 
ØShow that protocol leaks little information about 9

18
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Main Lemmas
• Lemma: If ! is "-DP, then # $; ! $ ≤ '("))

• Stronger Lemma: If ! is "-DP, and 

+ , = ., /. 1. 2
0. /. 1. 1 − 2 ,

then # $; ! +($) ≤ ' 2)") .

• To prove 1/" 8 lower bound for counting query: 
ØShow that algorithm with error 2 leaks ≤ 82)") bits
ØTo estimate 9, need to learn at least one bit
ØSo error 2 ≥ 1/" 8

19



Selection Lower Bounds [DJW’13, Ullman ‘17]

• Suppose each person has ! binary attributes
• Goal: Find index " with highest count (±%)

• Central model: ' = ) log(!)/.% suffices 
[McSherry Talwar ‘07]

• Local model: Any noninteractive local DP protocol 
with nontrivial error requires 

' = Ω(! log(!) /.0)
Ø [DJW’13, Ullman ‘17]
Ø (No lower bound known for interactive protocols)

20
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2
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0 1 1 0 1 0 0 0 1

0 1 0 1 0 1 0 0 1
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What about interaction?
• Simplest protocols have

just 1 message
Ø!" is known to player #

at start of protocol
ØCalled “noninteractive”

• But some protocols are interactive
ØServer might talk to each player several times
ØServer may choose !$ based on !%('%)

• Interaction is expensive
ØLatency
ØAggregator must be online

21
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Interaction is necessary for LDP
• [KLNRS08] 

For “hidden parity” problem, 
noninteractive LDP requires 
exponentially more data 
than 2-round LPD
ØProof by separating adaptive SQ from nonadaptive SQ
ØStronger separations now known 

[Feldman 2019, Joseph-Mao-Roth 2019]

• Is interaction useful in practice?
ØKnown protocols for convex optimization use lots of 

interaction [DJW’13,STU ‘17]
ØLower bounds known for a subclass of protocols

[STU’17, McMahan, Srebro, S. ,Wang, Woodward’18]
22
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Differential Privacy and Game Theory
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Game-theoretic interpretation of DP
• Suppose that person ! is deciding whether to 

contribute data to a data set
• Different outputs of A have

different utility to !
Ø"# = %# & '

• If A is (, * -differentially private, then 
+ "# person !2s data is used
≤ 9:;+ "# person !2s data is <=> used − *

• Implications
ØParticipating in a study costs me little
Ø [McSherry-Talwar ’07] Every differentially private algorithm is

approximately truthful
• Little incentive to misreport values 

24
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Digital Good Auction [MT ’07]

• 1 seller with a digital good

• n potential buyers
ØEach has a secret value !" in [0,1] for song
ØSetting price p will get revenue #$!(&) = &|{+: !+ ≥ &}|
ØHow can seller set p to get revenue ≈ /01 = max #$!(&)?

• Straightforward bidding mechanism
ØEach player reports !"5 = 0
ØLying can drastically change best price

• Instead, sample &∗ from # & ∝ exp(; ⋅ #$!(&))
ØApproximately truthful

ØExpected revenue ≥ /01 − / >? @A
@

25
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Economic Theory & Differential Privacy
• Mechanism Design

Ø Twin goals
• Incentive-compatibility via privacy
• Incentive-compatibility and privacy

Ø Exactly truthful mechanisms [Xiao’12, Nissim, Smorodinsky, Tennenholtz ’12, Nissim, 
Orlandi, Smorodinsky ’12, Chen, Chong, Kash, Moran, Vadhan’13, Huang, Kannan’12]

• “Pricing” privacy [Ghosh, Roth’12, Fleischer, Lyu’12, Ligett, Roth’13]

Ø Can we reward survey participants who have different values for privacy?
Ø Can we use prices to elicit values for privacy?
Ø “Endogenize” ε?

• How can private information change games?
Ø Equilibrium selection [Kearns, Pai, Roth, Ullman ’14, Rogers Roth ‘14]

• Sensitive information as a public good
Ø How can we decide how to use the privacy budget? 

26

See videos of tutorials by 
• Katrina Ligett at Simons Institute January 

2019 “bootcamp”
• Aaron Roth at 2012 DIMACS Workshop 

on Differential Privacy



Law, Policy and Differential Privacy
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From Law to Technical Definitions
Two central challenges

1. Given a body of law and regulation, what technical definitions 
comply with that law?
Ø E.g., GDPR

2. How should we write laws and regulations so they make sense 
given evolving technology?
Ø E.g., Surveillance ≠ physical wiretaps

• Technical research must inform these questions
Ø E.g. “personally identifiable information” is meaningless

• [Nissim et al. 2016] Mathematical formulations play an 
important role
Ø E.g. formal interpretation of FERPA (a US law) mirrors DP
Ø “Singling out” in GDPR is challenging to make sense of

28



Adaptive Data Analysis
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Overfitting

• Inference: Draw conclusions about ! based on "

• Overfitting / false discovery:
Conclusions that hold for " but not for !

31
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Overfitting

• Decades of work on preventing overfitting
ØCross-validation, bootstrap, 

multiple hypothesis testing, FDR control, …

• Designed for static data analysis
ØAssumes method selected independently of data

32
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Overfitting
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Adaptivity is common

How can we provide statistically valid answers 
to adaptively selected analyses?

34
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Getting a Baseline

• Goal: Relate adaptive setting to statistical ideal worlds
• Understand how properties of algorithms !", !$, …

affect that relationship
35
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Privacy and overfitting
Folklore: Differential privacy 
don’t  overfit
• Recent discovery: DP prevents adaptive overfitting

[Dwork Feldman Hardt Pitassi Reingold Roth ‘15]

• Recent developments (my work and others…)
ØTight connection between DP and overfitting

• Best known bounds on accuracy

ØGeneral information-theoretic framework
• Unifies & generalizes known results
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A few things I didn’t tell you about
• Other algorithmic techniques

Ø Local sensitivity, smoothed sensitivity, and Lipschitz extensions
Ø Subsample and aggregate

• PAC learning
• Different access models

Ø Continual release
Ø Local privacy
Ø Pan-privacy

• Computational notions
• Lower bounds

Ø Accuracy (sometimes via information theory)
Ø Computation time

• Programming tools
Ø New developments in type theory

• DP in practice
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Conclusions
• Define privacy in terms of my effect on output

ØMeaningful despite arbitrary external information
Ø I should participate if I get benefit

• Rigorous framework for private data analysis
ØRich algorithmic literature (theoretical and applied)
ØThere is no competing theory

• What computations can we secure?
ØDifferential privacy provided a surprising formalization for a 

previously ad hoc area
ØWhat other areas need formalization?

38


