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THE MAIN MESSAGE OF THIS TUTORIAL:

• The task of node repair in distributed storage gives rise to a range of new, previously
unrecognized problems in coding theory and related areas of computer science and
discrete mathematics.

• These problems have been actively studied for the past decade and led to the
emergence of new methods and ideas in these areas.

• The goal of this tutorial is to introduce these methods and the associated results as
well as to point out new research directions.
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SERGE VLĂDUŢ (U. Marseille)

Alexander Barg, University of Maryland Erasure coding for storage NASIT 2019 2 / 54



THE MAIN MESSAGE OF THIS TUTORIAL:

• The task of node repair in distributed storage gives rise to a range of new, previously
unrecognized problems in coding theory and related areas of computer science and
discrete mathematics.

• These problems have been actively studied for the past decade and led to the
emergence of new methods and ideas in these areas.

• The goal of this tutorial is to introduce these methods and the associated results as
well as to point out new research directions.

ACKNOWLEDGMENTS:
ITZHAK TAMO (Tel Aviv U.)
MIN YE (Princeton U.)
CHEN ZITAN (UMD)
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Motivation: Distributed Storage Systems (DSS)

• DSS spread data across thousands of storage nodes

• Individual storage nodes fail frequently

• To protect the data we rely on erasure codes
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Replication: large storage overhead

Can tolerate any 2 node failures
Storage overhead “ 3ˆ
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MDS codes: Optimal storage efficiency

Add 2 parity nodes to every 3 data nodes
Form an pn “ 5, k “ 3q MDS code
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MDS codes: Optimal storage efficiency

Block-based system model: Data
blocks are encoded independently
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MDS codes: Optimal storage efficiency

Each node stores l symbols of the block
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Repair Bandwidth

MDS code uses much more network
bandwidth during data regeneration
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Repair degree

A combination of local and global parity checks for single and multiple nodes failures

(C. Huang at al., Erasure coding in Windows Azure Storage, USENIX Conf. 2012)

Other similar constructions (Windows Azure code)

X1 X2 X3 X4 X5 X6 Y1 Y2 Y3 Y4 Y5 Y6 P1 P2

Px Py

Pyramid codes (C. Huang et al., 2007)
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Main ideas

REPAIR DEGREE

‚ P. GOPALAN, C. HUANG, H. SIMITCI, AND S. YEKHANIN, On the locality of
codeword symbols, T-IT, 2012

‚ C. HUANG, M. CHEN, AND J. LI, Pyramid codes, Proc. 6th IEEE Int. Symp. NCA, 2007

REPAIR BANDWIDTH

‚ A.G. DIMAKIS, P.B. GODDFREY, Y. WU, M.J. WAINWRIGHT, AND K.
RAMCHANDRAN, Network coding for distributed storage, T-IT, 2010

REPAIR OF RS CODES

‚ V. GURUSWAMI AND M. WOOTTERS, Repairing Reed-Solomon codes, T-IT, 2017
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Different versions of the repair problem

Figure 1 from ”Erasure coding for distributed storage: An overview”

S.B. BALAJI et al., arXiv:1806.04437

Current literature count is in the hundreds
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Outline of the tutorial

1. Repair degree

1.1 Locally recoverable codes and their parameters
1.2 Constructions for low repair degree
1.3 Related problems:

1.3.1 availability,
1.3.2 repair of several nodes,
1.3.3 hierarchical locality,
1.3.4 sequential recovery

1.4 Open questions: MR codes, maximum length of optimal LRC codes

2. Repair bandwidth
2.1 Information flow graphs and the cutset bound

2.1.1 Regenerating codes
2.1.2 The MSR case
2.1.3 Construction of MSR codes
2.1.4 Multiple erasures: Centralized and cooperative repair
2.1.5 Optimal access and subpacketization
2.1.6 Repair of Reed-Solomon codes

2.2 Heterogeneous storage

3. Looking forward: Storage networks, random failures
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Correcting one erasure

• A linear code C corrects one erasure if and only if it does not contain codewords of
Hamming weight 1.

• Consider a binary code that encodes 3-bit messages into 7-bit code blocks:

p110q ˆ

»

—

–

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

fi

ffi

fl

p0 1 1 1 1 0 0q

Any 4 bits identify the codeword uniquely (in other words, the code can
correct up to 3 erasures)

• At the same time, a single erasure can be recovered from 2 bits: For instance

p0 1X 1 1 1 0 0q

c2 “ c4 ‘ c6
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Correcting one erasure

• We are interested in efficient implementation of erasure correction motivated by
applications in storage

• Coordinates of the codeword C “ pC1, . . . ,Cnq P C are called nodes; If a node Ci is
erased (failed), we look at the other (surviving) coordinates, called helper nodes, and
download their values, or functions of these values.
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Reminder: Finite fields

• Consider the set of integers modulo 13

F13 “ t0, 1, 2, . . . , 12u

with operations a ` b pmod13q, a ¨ b pmod13q

• It is possible to subtract and divide:
if 6a “ 2 then a “ 6´1 ¨ 2 “ 11 ¨ 2 “ 9

• A field is a set of elements that are closed under addition and multiplication, and
support the inverse operations

• Finite fields exist for any q “ pm, where p is a prime and m ě 1

• For any given q the field Fq is unique

• Polynomials and linear algebra work over Fq in many ways as over R
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Reminder: Reed-Solomon codes

pa0, a1, a2, a3q Ñ f pxq “ a0 ` a1x ` a2x2 ` a3x3 Ñ f pxq “ pf pP1q, f pP2q, ..., f pPnqq

P1

f pP1q

P2

f pP2q

P3

f pP3q

P4

f pP4q

P5

f pP5q

Pn

f pPnq

At most 3 values f pPiq can be 0; thus the Hamming weight of the codeword evalpf pxqq is n ´ 3.

An RS code is a set of vectors obtained by evaluating all polynomials of degree up to k ´ 1.
The minimum distance of the RS code is n ´ pk ´ 1q; and this is the largest possible value according
to the Singleton bound (MDS code).
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Reed-Solomon codes

An RS code C is a linear code of length n ď q ´ 1 over the field Fq

Given a polynomial f P Fqrxs and a set A “ tP1, . . . ,Pnu Ă Fq define the map

evA : f ÞÑ pf pPiq, i “ 1, . . . , nq

RS code C encodes messages of k symbols.
Let Vkpqq “ tf P Fqrxs : degpf q ď k ´ 1u

C : Vkpqq Ñ Fn
q

f ÞÑ evApf q “ pf pPiq, i “ 1, . . . , nq

Example: Let q “ 8, f pxq “ 1 ` αx ` αx2

f pxq ÞÑ p1, α4, α6, α4, α, α, α6
q
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Limitations of Reed-Solomon codes

Example: r14, 10s RS code

• Loss of a node triggers the repair task

• Need to transmit information from 10 nodes to recover one lost node

• Generates 10x more traffic compared to replication for recovery of one node

• If a large portion of the data is RS-coded ùñ saturation of the network

• Goal: Construct efficient codes with “good” repair process
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Locally Recoverable Codes - Definition

pn, k, rq LRC Code

• Takes k blocks (symbols) Ñ produces n blocks

• An erasure has occurred

• Every symbol i has a recovering set Ri of r other symbols, r ! k

• Clearly 1 ď r ď k

1 k ´ 1 k k ` 1 k ` 2 n

r

k
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Parameters of LRC codes

Let C be an pn, k, rq LRC code

• Assume r|k and pr ` 1q|n
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• Rate?

• Minimum distance?
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Parameters of LRC codes

Let C be an pn, k, rq LRC code

• Assume r|k and pr ` 1q|n

• The rate is bounded by
k
n

ď
r

r ` 1
.
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Parameters of LRC codes

Let C be an pn, k, rq LRC code

• Assume r|k and pr ` 1q|n

• The rate is bounded by
k
n

ď
r

r ` 1
.

Proof:

• There exist at most nr
r`1 coordinates that determine the exact codeword

• This follows since iteratively:

1. Cost: expose the values of the coordinates in a recovering set Ri, |Ri| ď r

2. Free: the value of the i-th coordinate

3. Upon exposing at most nr
r`1 coordinates, we recover the entire codeword
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Parameters of LRC codes

Let C be an pn, k, rq LRC code

• Assume r|k and pr ` 1q|n

• The rate is bounded by
k
n

ď
r

r ` 1
.

• The bound is tight (even over F2)

• Partition the k bits into k{r sets of size r

• Add parity check bit to each set
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Parameters of LRC codes

Let C be an pn, k, rq LRC code

• Assume r|k and pr ` 1q|n

• The minimum distance is bounded by

d ď n ´ k ´

R

k
r

V

` 2

P. GOPALAN, C. HUANG, H. SIMITCI, AND S. YEKHANIN, T-IT 2012
D. PAPAILIOPOULOS AND A. DIMAKIS, ISIT 2012
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P. GOPALAN, C. HUANG, H. SIMITCI, AND S. YEKHANIN, T-IT 2012
D. PAPAILIOPOULOS AND A. DIMAKIS, ISIT 2012

Remarks:

• Smaller locality ùñ lower failure resilience

• Generalization of the Singleton bound pr “ kq

• Optimal pn, k, rq LRC code achieves the bound with equality

Alexander Barg, University of Maryland Erasure coding for storage NASIT 2019 20 / 54



Parameters of LRC codes

Let C be an pn, k, rq LRC code

• Assume r|k and pr ` 1q|n

• The minimum distance is bounded by

d ď n ´ k ´

R

k
r

V

` 2

P. GOPALAN, C. HUANG, H. SIMITCI, AND S. YEKHANIN, T-IT 2012
D. PAPAILIOPOULOS AND A. DIMAKIS, ISIT 2012

Remarks:

• Smaller locality ùñ lower failure resilience

• Generalization of the Singleton bound pr “ kq

• Optimal pn, k, rq LRC code achieves the bound with equality

Alexander Barg, University of Maryland Erasure coding for storage NASIT 2019 20 / 54



Parameters of LRC codes

Let C be an pn, k, rq LRC code

• Assume r|k and pr ` 1q|n

• The minimum distance is bounded by

d ď n ´ k ´

R

k
r

V

` 2

P. GOPALAN, C. HUANG, H. SIMITCI, AND S. YEKHANIN, T-IT 2012
D. PAPAILIOPOULOS AND A. DIMAKIS, ISIT 2012

Remarks:

• Smaller locality ùñ lower failure resilience

• Generalization of the Singleton bound pr “ kq

• Optimal pn, k, rq LRC code achieves the bound with equality

Alexander Barg, University of Maryland Erasure coding for storage NASIT 2019 20 / 54



Parameters of LRC codes

Let C be an pn, k, rq LRC code

• Assume r|k and pr ` 1q|n

• The minimum distance is bounded by

d ď n ´ k ´

R

k
r

V

` 2

P. GOPALAN, C. HUANG, H. SIMITCI, AND S. YEKHANIN, T-IT 2012
D. PAPAILIOPOULOS AND A. DIMAKIS, ISIT 2012

Remarks:

• Smaller locality ùñ lower failure resilience

• Generalization of the Singleton bound pr “ kq

• Optimal pn, k, rq LRC code achieves the bound with equality

Alexander Barg, University of Maryland Erasure coding for storage NASIT 2019 20 / 54



The distance bound
Main idea.

Let C be a q-ary code of length n, size qk. The distance dpCq satisfies

dpCq ď n ´ t|S| : |CS| ă qk
u

Details:
• k

n ď r
r`1 ùñ D a set I of t k´1

n u redundant coordinates

• Set R “ YiPIRi. Clearly |R| ď k ´ 1

• If |R| ă k ´ 1 add to it

The Singleton bound (with locality):

Let Ii Ă rns, |Ii| ď r be the recovery set for the symbol ci, i “ 1, ..., n.

Let Jm “ Ym
i“1Ii, where m “ tpk ´ 1q{ru. Clearly |Jm| ď k ´ 1.

Consider the subset J1
m “ Jm Y t1, . . . , mu. We have CJ1

m
ď qk´1.

If |J1
m| ă k ´ 1, add to J1

m any k ´ 1 ´ |Jm| other coordinates to form the set Lm Ă rns.

We have
|CLm | ă qk

|Lm| “ k ´ 1 ` m “ k ´ 1 `
Y k ´ 1

r

]

“ k ´ 2 `
Q k

r

U
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Constructing optimal LRC codes: Early results

• Early constructions:

1. Non explicit

2. Field size is superpolynomial in the length

• Optimal ppr ` 1qr k
r s, k, rq LRC code [PRASANTH, KAMATH, LALITHA, AND KUMAR,2012]

• Explicit constructions [RAWAT, KOYLUOGLU, SILBERSTEIN, VISHWANATH 2014, GOPALAN,
HUANG, JENKINS, YEKHANIN 2014, TAMO, PAPAILIOPOULOS, DIMAKIS 2014]

1. Any n, k, r

2. Field size is superpolynomial

Alexander Barg, University of Maryland Erasure coding for storage NASIT 2019 22 / 54



Constructing optimal LRC codes: Early results

• Early constructions:

1. Non explicit

2. Field size is superpolynomial in the length

• Optimal ppr ` 1qr k
r s, k, rq LRC code [PRASANTH, KAMATH, LALITHA, AND KUMAR,2012]

• Explicit constructions [RAWAT, KOYLUOGLU, SILBERSTEIN, VISHWANATH 2014, GOPALAN,
HUANG, JENKINS, YEKHANIN 2014, TAMO, PAPAILIOPOULOS, DIMAKIS 2014]

1. Any n, k, r

2. Field size is superpolynomial

Alexander Barg, University of Maryland Erasure coding for storage NASIT 2019 22 / 54



Constructing optimal LRC codes: Early results

• Early constructions:

1. Non explicit

2. Field size is superpolynomial in the length

• Optimal ppr ` 1qr k
r s, k, rq LRC code [PRASANTH, KAMATH, LALITHA, AND KUMAR,2012]

• Explicit constructions [RAWAT, KOYLUOGLU, SILBERSTEIN, VISHWANATH 2014, GOPALAN,
HUANG, JENKINS, YEKHANIN 2014, TAMO, PAPAILIOPOULOS, DIMAKIS 2014]

1. Any n, k, r

2. Field size is superpolynomial

Alexander Barg, University of Maryland Erasure coding for storage NASIT 2019 22 / 54



Constructing optimal LRC codes: Early results

• Early constructions:

1. Non explicit

2. Field size is superpolynomial in the length

• Optimal ppr ` 1qr k
r s, k, rq LRC code [PRASANTH, KAMATH, LALITHA, AND KUMAR,2012]

• Explicit constructions [RAWAT, KOYLUOGLU, SILBERSTEIN, VISHWANATH 2014, GOPALAN,
HUANG, JENKINS, YEKHANIN 2014, TAMO, PAPAILIOPOULOS, DIMAKIS 2014]

1. Any n, k, r

2. Field size is superpolynomial

Alexander Barg, University of Maryland Erasure coding for storage NASIT 2019 22 / 54



Constructing optimal LRC codes: Early results

• Early constructions:

1. Non explicit

2. Field size is superpolynomial in the length

• Optimal ppr ` 1qr k
r s, k, rq LRC code [PRASANTH, KAMATH, LALITHA, AND KUMAR,2012]

• Explicit constructions [RAWAT, KOYLUOGLU, SILBERSTEIN, VISHWANATH 2014, GOPALAN,
HUANG, JENKINS, YEKHANIN 2014, TAMO, PAPAILIOPOULOS, DIMAKIS 2014]

1. Any n, k, r

2. Field size is superpolynomial

Alexander Barg, University of Maryland Erasure coding for storage NASIT 2019 22 / 54



Constructing optimal LRC codes: Early results

• Early constructions:

1. Non explicit

2. Field size is superpolynomial in the length

• Optimal ppr ` 1qr k
r s, k, rq LRC code [PRASANTH, KAMATH, LALITHA, AND KUMAR,2012]

• Explicit constructions [RAWAT, KOYLUOGLU, SILBERSTEIN, VISHWANATH 2014, GOPALAN,
HUANG, JENKINS, YEKHANIN 2014, TAMO, PAPAILIOPOULOS, DIMAKIS 2014]

1. Any n, k, r

2. Field size is superpolynomial

Alexander Barg, University of Maryland Erasure coding for storage NASIT 2019 22 / 54



Constructing optimal LRC codes: Early results

• Early constructions:

1. Non explicit

2. Field size is superpolynomial in the length

• Optimal ppr ` 1qr k
r s, k, rq LRC code [PRASANTH, KAMATH, LALITHA, AND KUMAR,2012]

• Explicit constructions [RAWAT, KOYLUOGLU, SILBERSTEIN, VISHWANATH 2014, GOPALAN,
HUANG, JENKINS, YEKHANIN 2014, TAMO, PAPAILIOPOULOS, DIMAKIS 2014]

1. Any n, k, r

2. Field size is superpolynomial

Alexander Barg, University of Maryland Erasure coding for storage NASIT 2019 22 / 54



Constructing optimal LRC codes: Early results

• Early constructions:

1. Non explicit

2. Field size is superpolynomial in the length

• Optimal ppr ` 1qr k
r s, k, rq LRC code [PRASANTH, KAMATH, LALITHA, AND KUMAR,2012]

• Explicit constructions [RAWAT, KOYLUOGLU, SILBERSTEIN, VISHWANATH 2014, GOPALAN,
HUANG, JENKINS, YEKHANIN 2014, TAMO, PAPAILIOPOULOS, DIMAKIS 2014]

1. Any n, k, r

2. Field size is superpolynomial

Alexander Barg, University of Maryland Erasure coding for storage NASIT 2019 22 / 54



Optimal LRC codes - Easy cases

• r “ k

1. d ď n ´ k ` 1

2. An pn, kq RS is an pn, k, kq optimal LRC code

3. |F| “ Opnq

• r “ 1

1. d ď 2p n
2 ´ k ` 1q

2. Duplication of an pn{2, kq RS is an pn, k, 1q optimal LRC code

3. |F| “ Opnq

• Q: What happens for 1 ă r ă k?

• Q: Generalize the optimal codes for r “ 1, k to codes with arbitrary r?
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Reed-Solomon codes
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To recover one erased value we need to read k other values
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LRC codes: Idea of construction

What if we can interpolate low-degree polynomials?
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It is possible to construct such codes by carefully choosing subcodes of the RS codes
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Construction of pn, k, rq LRC codes: Example

Parameters: n “ 9, k “ 4, r “ 2, q “ 13;

Set of points: A={1,2,3,4,5,6,9,10,12}
A “ tA1 “ t1, 3, 9u,A2 “ t2, 6, 5u,A3 “ t4, 12, 10uu

Message: a “ pa0,0, a0,1, a1,0, a1,1q P Fk
q

Polynomial space:

Vkpqq :“ ta0,0 ` a1,0x ` a0,1x3
` a1,1x4

u

E.g., a “ p1, 1, 1, 1q, fapxq “ 1 ` x ` x3 ` x4; evApf q “ p4, 8, 7, 1, 11, 2, 0, 0, 0q

Say c1 “ fap1q is erased. We access the recovering set A1 to construct a line δpxq “ 2x ` 2
such that δp3q “ 8, δp9q “ 7.

Compute c1 as δp1q “ 4
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Construction of pn, k, rq LRC codes

Assume that q ě n, pr ` 1q|n, r|k
Let A Ď Fq, |A| “ n

Suppose there exists a polynomial gpxq P Frxs such that

1. deg g “ r ` 1,

2. There exists a partition A “ tA1, ...,A n
r`1

u of A into sets of size r ` 1, such that g is
constant on each set Ai in the partition. For all i “ 1, . . . , n{pr ` 1q, and any α, β P Ai,

gpαq “ gpβq.

E.g., n “ 9, r “ 2, q “ 13;

A “ tA1 “ t1, 3, 9u,A2 “ t2, 6, 5u,A3 “ t4, 12, 10uu,

Then gpxq “ x3 is constant on each of the Ai’s
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Construction of pn, k, rq LRC codes

Given A Ă F, partition A into pr ` 1q-subsets.

To encode the message a P Fk, write a “ paij, i “ 0, . . . , r ´ 1; j “ 0, ..., k
r ´ 1q

Define the encoding polynomial

fapxq “

r´1
ÿ

i“0

xi

k
r ´1
ÿ

j“0

aijgpxq
j

A linear code C is constructed as follows:

Ev :Fk
Ñ Fn

a ÞÑ pfapβq, β P Aq

It is easy to show that the parameters of the constructed codes meet the Gopalan et al.
bound with equality

I. Tamo and A.B., A family of optimal locally recoverable codes, T-IT August 2014
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Constructing gpxq

Proposition

Let H be a subgroup of F˚
q or F`

q . The annihilator polynomial of H

gpxq “
ź

hPH

px ´ hq

is constant on each coset of H.

Further constructions:
J. LIU, S. MESNAGER AND L. CHEN, New constructions of optimal locally recoverable codes via good polynomials,

T-IT 2018
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Summary of the construction

The optimal RS-like LRC codes are constructed as follows:

1. Take an RS code over Fq of length n and dimension r`1
r k ´ 2

2. Isolate a carefully chosen k-dimensional subcode such the the polynomials become
degree r ´ 1 when restricted to recovering sets of size r ` 1.

These codes are studied outside the storage context:
L. HOLZBAUR AND A. WACHTER-ZEH, List decoding of locally repairable codes, arXiv:1801.04229

A. MAZUMDAR, Caoacity of locally repairable codes, arXiv:1801.04229

S. KADHE AND R. CALDERBANK, LRC codes with small availability, arXiv:1701.02456
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S. KADHE AND R. CALDERBANK, LRC codes with small availability, arXiv:1701.02456

Alexander Barg, University of Maryland Erasure coding for storage NASIT 2019 30 / 54



Generalization of the main construction

• The length of the constructed codes is limited to n ď q

• To construct longer codes, we take a geometric point of view.

• Replace RS codes with codes on algebraic curves; it is possible to construct LRC
codes of large n for a fixed q.

• Consider the set of pairs px, yq P F9 that satisfy the equation x3 ` x “ y4. There are 27
solutions, which give the evaluation set of points of size n “ 27

• We evaluate bivariate polynomials spanned by the monomials V :“ x1, y, y2, x, xy, xy2y

• We obtain a 6-dimensional code with locality r “ 2

C : V Ñ Fn
9

• E.g., message p1, α, α2, α3, α4, α5q

Fpx, yq “ 1 ` αy ` α2y2
` α3x ` α4xy ` α5xy2

Fp0, 0q “ 1 etc.

A.B., I. Tamo, and S. Vlăduţ, LRC codes on algebraic curves, T-IT, Aug. 2017
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Random LRC codes and a Gilbert-Varshamov type bound
Let Mpn, r, δnq be the max size of a code of length n, distance d, locality r

Rpr, δq :“ lim sup
nÑ8

1
n

log Mpn, r, δnq

GV-type bound:

Rpr, δq ě 1 ´ min
0ăsď1

! 1
r ` 1

log2pp1 ` sq
r`1

` p1 ´ sq
r`1

q ´ δ log2 s
)

.

Proof by random coding: Estimate the average weight enumerator for the ensemble given
by

H “

»

—

—

—

—

—

—

—

—

—

–

11 . . . 1

11 . . . 1
. . .

11 . . . 1
HL

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

PrptdpCq ă δnuq

ď δnq´np r
r`1 ´Rq min

0ăsď1

bpsq
n

r`1

sδn

HL is a matrix with independent uniformly chosen elements of Fq

V. CADAMBE AND A. MAZUMDAR, T-IT 2015; I. TAMO, A.B., AND A. FROLOV, T-IT, June 2016
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Improving GV bound using LRC codes on curves

Locality r “ 2, q “ 210

A.B., I. TAMO, AND S. VLĂDUŢ, LRC codes on algebraic curves, T-IT, Aug. 2017

More on bounds:

A. AGARWAL ET AL., Combinatorial alphabet-dependent bounds for locally recoverable codes, T-IT 2018
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Extensions

• Codes with availability

• Correcting 2, 3, . . . erasures locally

• Hierarchical locality

• Maximally recoverable codes

• Maximum length of optimal LRC codes

• Cyclic LRC codes
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Availability

• “Hot data” accessed simultaneously by a very large number of users

• Recovering an erasure from several disjoint repair groups increases the availability of
the data.

• Every coordinate is recoverable from the codeword symbols in several recovering sets:
i

• A code C is called an LRCp2q code if every coordinate i has 2 disjoint recovering sets
R1,i, |R1,i| ď r1; R2,i, |R2,i| ď r2
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Multiple recovery sets: Idea of construction

æ

æ

æ æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

ææ

faHxL

Γ

∆1HxL

∆2HxL

fapγq can be found
by interpolating δ1pxq

as well as δ2pxq
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Multiple recovery sets: Example
Take F “ F13; G,H ď F˚; G “ x5y,H “ x3y

AG “ tt1, 5, 12, 8u, t2, 10, 11, 3u, t4, 7, 9, 6uu

AH “ tt1, 3, 9u, t2, 6, 5u, t4, 12, 10u, t7, 8, 11uu

Let
FAG rxs “ tf P Frxs : f is constant on Ai, i “ 1, 2, 3; deg f ă |F˚

|u

FAG rxs “ x1, x4, x8y, FAH rxs “ x1, x3, x6, x9y

We construct an LRC p12, 4, t2, 3uq, distance ě 6, code C : F4 Ñ F12

a “ pa0, a1, a2, a3q ÞÑ fapxq “ a0 ` a1x ` a2x4
` a3x6

fapxq “

2
ÿ

i“0

fipxqxi, where f0pxq “ a0 ` a2x4, f1pxq “ a1, f2pxq “ a3x4; fi P FArxs

fapxq “

1
ÿ

j“0

gjpxqxj where g0pxq “ a0 ` a3x6, g1pxq “ a1 ` a2x3; gj P FAH rxs

E.g., fap1q can be recovered by computing δ1pxq, x P t5, 12, 8u OR δ2pxq, x P t3, 9u
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Other constructions

• Product codes

• Codes on bipartite graphs

• Direct-sum codes
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Open problem: Bounds on codes with availability

• Known bounds:
Let C be an pn, k, r, tq LRC code with t disjoint recovering sets of size r. Then the rate
of C satisfies

k
n

ď
1

śt
j“1p1 ` 1

jr q

The minimum distance of C is bounded above as follows:

d ď n ´

t
ÿ

i“0

Y k ´ 1
ri

]

.

I.TAMO, A.B., AND A FROLOV, Bounds on the Parameters of Locally Recoverable Codes, T-IT 2016

d ď n ´ k ` 2 ´

Q tpk ´ 1q ` 1
tpr ´ 1q ` 1

U

A. WANG AND Z. ZHANG, Repair locality with multiple erasure tolerance, T-IT 2014

More on bounds:

N. PRAKASH, V. LALITHA, AND P. V. KUMAR, Codes with locality for two erasures, ISIT 2014
S. B. BALAJI AND P. V. KUMAR, Bounds on ... codes with availability, ISIT 2017 (improved results for linear codes)

• The RS-like construction can be extended to t ě 2 recovering sets, but the resulting codes are
not known to be optimal
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Remarks on the bounds, and Graph-theoretic connections

• The bound on the rate of codes with availability t can be simplified:

k
n

ď
1

r
?

t ` 1

• Tighter bounds are available in some cases (BALAJI-KUMAR, arXiv1611.00159)

Rpr, 2q ď
r

r ` 2
, Rpr, 3q ď

r2

pr ` 1q2

• Problems related to multiplicities, e.g., availability or sequential repair, often can be
interpreted in terms of graph theory or matroid theory.

• To derive the bounds, we note that multiple repair groups create dependence relations
on the set of coordinates; we analyze the “expansion” of dependencies in the
recovering graph as we add vertices successively.

M. GRETZEL AND C. HOLLANTI, The complete hierarchical locality of the punctured simplex code, arXiv:1901.03149

R. FREIJ-HOLLANTI, C. HOLLANTI, AND T. WESTERBCK, Matroid theory and storage codes, arXiv:1704.04007
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Correcting ě 2 erasures locally

In the event that more than one node in the encoding have failed, we need to correct more
than one erasure locally

A code C is said to have the pρ, rq locality property if each coordinate i is contained in a
subset Ai Ă rns, |Ai| ď r ` ρ ´ 1 such that the restriction CAi forms a code of distance ě ρ.

The distance of the code C satisfies the bound

d ď n ´ k ` 1 ´

´Q k
r

U

´ 1
¯

pρ ´ 1q

G.M. Kamath et al., Codes with local regeneration and erasure correction, T-IT. Aug. 2014

The RS-like construction can be extended to this case, the parameters of the resulting
codes meet this bound
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Hierarchical locality

r2 ` 1

Cipν, r1q

i

Every coordinate i is in a code Ci that
‚ corrects several erasures (distance ě ρ1)
‚ is LRC B. SASIDHARAN ET AL., Codes with hierarchical locality, ISIT 2015

The Gopalan et al. bound can be extended to local codes
with hierarchy (Sasidharan e.a.)

Constructions of optimal RS-type codes and of codes on algebraic curves
S. BALLENTINE ET AL., Codes with hierarchical locality from covering maps of curves, T-IT 2019
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Open problem: Maximally recoverable codes
Locality and efficient data retrieval

• A code is MDS if any k symbols suffice to recover the data

• LRC codes are not MDS because k symbols that contain a recovering set cannot be
used to recover the data

• Problem: Construct LRC codes that are as close to MDS as possible

•

A code is called maximally recoverable if any k-tuple of coordinates that does
not contain a local constraint, has full rank.
M. CHEN, C. HUANG, AND J. LI, ISIT 2007; P. GOPALAN ET AL., T-IT 2010; 2014

• Rephrased, if B Ă rns is a subset such that |B| ě k and B does not contain a local
constraint, the restriction C|B is an MDS code

• It is not difficult to prove that MR codes exist, but the underlying finite field is of large
size q ě

`n
k

˘

.

• Construction of MR codes over small fields and bounds on the field size form a difficult
open problem

• Partial MDS codes - array configuration
M. BLAUM ET AL.,Partial MDS codes and their application to RAID type of architectures, T-IT 2013
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MR codes are optimal

Lemma
MR codes are optimal LRC codes

Proof:

• Assume r divides k

• MR code is an Optimal LRC code

ô d “ n ´ k ´ k
r ` 2

ô any d ´ 1 “ n ´ k ´ k
r ` 1 erasures are recoverable

ô any n ´ pd ´ 1q “ k ` k
r ´ 1 coordinates suffice for decoding

• Any k ` k
r ´ 1 coordinates contain a subset S s.t.

1. |S| “ k

2. @i,Ri Ę S

• By the MR property, S suffices for decoding
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MR codes are optimal

Lemma
MR codes are optimal LRC codes

Q: MR codes = Optimal LRC codes ? Ans: No
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MR codes through linearized polynomials

A. S. RAWAT ET AL.,,Optimal locally repairable and secure codes for distributed storage systems, T-IT 2014

• Flexible set of parameters n, k, r ✓

• Need m “ nr
r`1 linearly independent elements over F2 ùñ |F| “ 2

nr
r`1

• Field size is exponential in n ˆ

• Can we do better?

U. MARTINEZ-PEÑAS AND F. KSCHISCHANG, Universal and dynamic locally repairable codes with maximal recoverability via
sum-rank codes, arXiv:1809.11158
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Open problem: Maximal length of Opt-LRC codes

• A code is called Opt-LRC if its distance d is maximum possible:

d “ n ´ k ´

Q k
r

U

` 2

• Without locality:

Every code has locality k (EXERCISE: why?), and then d ď n ´ k ` 1. If “, then the code
is called MDS. The maximum length of a q-ary MDS code is conjectured to be q ` 2.

The MDS conjecture is a famous open problem (latest advances by SIMEON BALL, 2012)

• With locality: The length of an Opt-LRC code with d ě 5 is

n ď
d ´ 1
2q ´ 2

q4` 1
d `

r ` 1
r

.

V. GURUSWAMI ET AL., How long can optimal locally recoverable codes be?, T-IT 2019

• LUO-XING-YUAN, T-IT 2019: Opt-LRC codes of distance 3, 4 and unbounded length

• L.JIN, T-IT 2019: Opt-LRC codes of length q2 and distance 5, 6
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Further variants of the repair problem

• Sequential repair: For a subset ci1 , . . . , cit of t erased nodes, it is possible to find a
repair group of size ď r to recover ci1 , then a repair group of size ď r (possibly
including ci1 ) that recovers ci2 , then another repair group of size ď r for ci3 , etc.
N. PRAKASH, V. LALITHA, AND P. V. KUMAR, Codes with locality for two erasures, ISIT2014

S. B. BALAJI, G. R. KINI AND P. V. KUMAR, A tight lower bound..., arXiv:1812.02501

• Parallel repair: Same as sequential, but the repaired symbols are not used to recover
subsequent erasures

• Cooperative repair
S. KADHE ET AL., On an Equivalence Between Single-Server PIR with Side Information and Locally

Recoverable Codes, arXiv:1907.00598

S.B. BALAJI et al., Erasure coding for distributed storage: An overview, arXiv:1806.04437
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Different versions of the repair problem
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LRC codes on graphs [Mazumdar 2014, Shanmugam and Dimakis 2014]

1

2 3

• Storage recovery graph G
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• Each node can recover its content from its incoming neighbors
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Storage Capacity

• The network is modeled by a (directed) graph G “ pV,Eq, |V| “ n

• Each node (vertex) stores a symbol from Fq

• Storage code:

1. A set of vectors C Ď Fn
q

2. n recovery functions fi, s.t. for any px1, ..., xnq P C

fipxj : j P Npiqq “ xi

• The storage capacity of G over Fq

CapqpGq “ max
CĎFn

q is a
storage code for G

logq |C|

ď n

• The storage capacity of G is

CappGq “ sup
q

CapqpGq

“ lim
qÑ8

CapqpGq (Fekete’s lemma)
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LRC codes on graphs - Example
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LRC codes on graphs - Example

X1

X2

X3

• Each node stores a single bit

• Two bits of information b1, b2 can be stored pCap2pGq “ 2q

• Store:
• X1 “ b1
• X2 “ b2
• X3 “ b1 ` b2

• CappGq “ supq CapqpGq

“ 2
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LRC codes on graphs - Example

X1

X2

X3

X4

X5

• C “ tp0, 0, 0, 0, 0q, p0, 1, 1, 0, 0q, p0, 0, 0, 1, 1q, p1, 1, 0, 1, 1q, p1, 1, 1, 0, 1qu

• X1 “ X2 ^ X5,

X2 “ X1 _ X3,X3 “ X2 ^ X4,X4 “ X3 ^ X5,X5 “ X1 _ X4

• Cap2pGq ě log2p5q “ 2.32...

• In fact Cap2pGq “ log2p5q “ 2.32...

• However CappGq “ Cap4pGq “ 2.5 [Blasiak, Kleinberg, Lubetzky 13, Christofides, Markstrom 11]
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Storage Capacity

Generally
|Maximum matching| ď CappGq ď |Vertex cover|

The bounds are separated by a factor of 2.
For planar graphs there is a 1.5 approximation

‚ A. MAZUMDAR ET AL.Storage capacity as an information-theoretic vertex cover and the index coding
rate, T-IT 2019
Results for planar graphs and cycles with chords
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Duality between Storage Capacity and Index Coding

Theorem [MAZUMDAR 14, SHANMUGAM AND DIMAKIS 14]

Let G “ pV,Eq, |V| “ n, then

CappGq ` IndexpGq “ n

Many open problems
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