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Data Center Equipment

Power backup provided by 1.75 generator capacity being fed from 4000
gallon diesel fuel cells

N+1 redundant HVAC system using multiple units with backup units
standing by

Redundant cable routing system

Anti-static environment

Triple power feeds, UPS

N+1 cooling units

N+1UPS Systems
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Network

* 100 Gigabit Ethernet Core

* All switch based internal network

* 100% network uptime guarantee

® Current generation Terrathon class routers with terrabit routing
capacity.

* Backbone connections from Level 3, MCl, and Time Warner

® Over 300 direct private peering relationships to ensure the best delivery
of your traffic

& Over 77 Gbps in total bandwidth capacity

Rated to withstand Class 3 - 4 hurricane strength @ HOSTWAY. GOM are placed in segmented network

NOC (Network Operations Center) staffed with senior system
technicians 24 x 7x 365

© Up t010000 Mbps port, fully burstable

o ——




Motivation: Distributed Storage Systems (DSS)

o DSS spread data across thousands of storage nodes
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Motivation: Distributed Storage Systems (DSS)

o DSS spread data across thousands of storage nodes
e Individual storage nodes fail frequently

e To protect the data we rely on erasure codes
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Replication: large storage overhead
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MDS codes: Optimal storage efficiency

Parity nodes Parity nodes
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Repair Bandwidth

Replication

Network flow = node size Network flow = 3 x node size
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Repair degree

A combination of local and global parity checks for single and multiple nodes failures

(C. Huang at al., Erasure coding in Windows Azure Storage, USENIX Conf. 2012)
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Repair degree

A combination of local and global parity checks for single and multiple nodes failures

(C. Huang at al., Erasure coding in Windows Azure Storage, USENIX Conf. 2012)

Other similar constructions (Windows Azure code)

Lelle]leJDelPe]le] [ ]Dedlre Do ] e ]

Pyramid codes (C. Huang et al., 2007)
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Main ideas

REPAIR DEGREE
e P. GOPALAN, C. HUANG, H. SIMITCI, AND S. YEKHANIN, On the locality of
codeword symbols, T-IT, 2012
o C. HUANG, M. CHEN, AND J. LI, Pyramid codes, Proc. 6th IEEE Int. Symp. NCA, 2007

REPAIR BANDWIDTH
e A.G. DIMAKIS, P.B. GODDFREY, Y. WU, M.J. WAINWRIGHT, AND K.
RAMCHANDRAN, Network coding for distributed storage, T-IT, 2010

REPAIR OF RS CODES
o V. GURUSWAMI AND M. WOOTTERS, Repairing Reed-Solomon codes, T-1T, 2017
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Different versions of the repair problem

| Codes for distributed storage |

" Minimize repsir bandwidth | { Minimize repair degree ] " Minimize both repalr | e ——
a i [ L bandwidth and repair degree codes
. : . Information |
Regenerating codes | [ Localty Recoverable codes | Locally Regenerating codes | | (o)
& )
. = ; [ Liquid storage
| MSR codes [ MBR codes | Single erasure | Multiple erasures | s

Intei ts Vi @ ¥ h 1
jaetioy POkt [Everatons Sequential I vaerallve‘ | Hierarchical
recovery recovery locality

—T T 1 1

W e Cooperative Parallel (r,6) locality
FR codes | repair RG'? /[ repair | recovery | h
/\ N | Availabiity |
[ &MSR { Piggyback ————

Figure 1 from "Erasure coding for distributed storage: An overview”

S.B. BALAJI et al., arXiv:1806.04437
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j MSR codes | | MBR codes Single erasure | | Multiple erasures BERadEoneed
inerior points | L aons (“Soquential | [ Cosporative | | Hierarica |
| recovery | L mcovery | [ locality
'_1_‘ ( e [ [ l ) (TR Lil ] (r,6) locality
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‘\FR nodes’ | "Drip?f“ ) s;gué J comﬂ (reee ) b
[ e } P{ggybnd(: | Availability 1
Figure 1 from "Erasure coding for distributed storage: An overview”
S.B. BALAJI et al., arXiv:1806.04437
Current literature count is in the hundreds

Alexander Barg, University of Maryland
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Outline of the tutorial

1. Repair degree

1.1 Locally recoverable codes and their parameters
1.2 Constructions for low repair degree
1.3 Related problems:

1.3.1 availability,

1.3.2 repair of several nodes,

1.3.3 hierarchical locality,

1.3.4 sequential recovery

1.4 Open questions: MR codes, maximum length of optimal LRC codes

2. Repair bandwidth
2.1 Information flow graphs and the cutset bound

2.1.1 Regenerating codes

2.1.2 The MSR case

2.1.3 Construction of MSR codes

2.1.4 Multiple erasures: Centralized and cooperative repair
2.1.5 Optimal access and subpacketization

2.1.6 Repair of Reed-Solomon codes

2.2 Heterogeneous storage

3. Looking forward: Storage networks, random failures
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e Alinear code C corrects one erasure if and only if it does not contain codewords of
Hamming weight 1.
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Correcting one erasure

e Alinear code C corrects one erasure if and only if it does not contain codewords of
Hamming weight 1.
o Consider a binary code that encodes 3-bit messages into 7-bit code blocks:

000 1 1 11
(110) x 01100 1 1
1010 101
©O1 11100

Any 4 bits identify the codeword uniquely (in other words, the code can
correct up to 3 erasures)

o At the same time, a single erasure can be recovered from 2 bits: For instance

OX 11100

Cy = €4 D ce
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applications in storage
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Correcting one erasure

o We are interested in efficient implementation of erasure correction motivated by
applications in storage

e Coordinates of the codeword C = (Ci, ..., C,) € C are called nodes; If a node C; is
erased (failed), we look at the other (surviving) coordinates, called helper nodes, and
download their values, or functions of these values.
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Fis = {0,1,2,...,12}

with operations a + b (mod13),a - b (mod13)
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Reminder: Finite fields

o Consider the set of integers modulo 13

Fi3 = {0,1,2,...,12}
with operations a + b (mod13),a - b (mod13)

o |t is possible to subtract and divide:
if6a=2thena=6""'2=11-2=9

o Afield is a set of elements that are closed under addition and multiplication, and
support the inverse operations

o Finite fields exist for any ¢ = p™, where p is a prime and m > 1
e For any given g the field F, is unique

e Polynomials and linear algebra work over I, in many ways as over R
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(Llo, ap, az, 613)

4

Reminder: Reed-Solomon codes

- f(x) = a0 + aix + axx* + asx’ — f(x) = (f(P1),f(P2), .../ (Pn))

N
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Reminder: Reed-Solomon codes

(a0, a1,a2,a3) — f(x) = a0 + aix + @xx’ + asx’ — f(x) = (f(P1),f(P2), -...f (Pn))

A

f(Ps) (Pn)

v

|
|
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Reminder: Reed-Solomon codes

(a0, a1,a2,a3) — f(x) = a0 + aix + @xx’ + asx’ — f(x) = (f(P1),f(P2), -...f (Pn))

A

f(Ps) (Pn)

v

[
| |
| |
| |
| |
| |
| |
| |
| |
| |
! !
| |
| |
Ps P

n

At most 3 values f(P;) can be 0; thus the Hamming weight of the codeword eval(f(x)) is n — 3.
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Reminder: Reed-Solomon codes

(a0, a1,a2,a3) — f(x) = a0 + aix + @xx’ + asx’ — f(x) = (f(P1),f(P2), -...f (Pn))

A

f(Ps) L(Pn)

v

|

| |
| |
| |
I I
I I
I I
I I
I I
I I
| |
| |
: :
PS Pn

At most 3 values f(P;) can be 0; thus the Hamming weight of the codeword eval(f(x)) is n — 3.

An RS code is a set of vectors obtained by evaluating all polynomials of degree up to k — 1.
The minimum distance of the RS code is n — (k — 1); and this is the largest possible value according
to the Singleton bound (MDS code).
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Reed-Solomon codes

An RS code C is a linear code of length n < ¢ — 1 over the field F,
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Reed-Solomon codes

An RS code C is a linear code of length n < ¢ — 1 over the field F,

Given a polynomial f € F,[x] and a setA = {Py, ..., P,} c F, define the map

eva 1 f = (f(Pi),i=1,...,n)
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Reed-Solomon codes

An RS code C is a linear code of length n < g — 1 over the field IF,,

Given a polynomial f € F,[x] and a setA = {Py, ..., P,} c F, define the map

eva:f— (f(P),i=1,...,n)

( )
RS code € encodes messages of k symbols.
Let Vi(q) = {f € Fyfx] : deg(f) < k — 1}
(3 a Vk(q) d Fz
f»—>evA(f) = (f(Pi),i= 1,...,71)
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Reed-Solomon codes

An RS code C is a linear code of length n < g — 1 over the field IF,,

Given a polynomial f € F,[x] and a setA = {Py, ..., P,} c F, define the map

eva:f— (f(P),i=1,...,n)

~
RS code € encodes messages of k symbols.
Let Vi(q) = {f € Fy[x] : deg(f) < k— 1}

G:Vk(q)—>IE‘Z
f'—>evA(f)=(f(P,~),i= 1,...,71)

.

Example: Let g = 8, f(x) = 1 + ax + o’
f@) > (1,a",a%,a" 0, 0,0
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Limitations of Reed-Solomon codes
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Limitations of Reed-Solomon codes

Example: [14, 10] RS code

Do odEaoon
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o Loss of a node triggers the repair task
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Limitations of Reed-Solomon codes

Example: [14, 10] RS code
o Loss of a node triggers the repair task

e Need to transmit information from 10 nodes to recover one lost node

4433 $339393
SdddNEoaooaonm
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Limitations of Reed-Solomon codes

Example: [14, 10] RS code
o Loss of a node triggers the repair task
o Need to transmit information from 10 nodes to recover one lost node

e Generates 10x more traffic compared to replication for recovery of one node
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Example: [14, 10] RS code

Loss of a node triggers the repair task
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If a large portion of the data is RS-coded = saturation of the network
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Limitations of Reed-Solomon codes

Example: [14, 10] RS code

Loss of a node triggers the repair task

Need to transmit information from 10 nodes to recover one lost node

e Generates 10x more traffic compared to replication for recovery of one node

If a large portion of the data is RS-coded = saturation of the network

Goal: Construct efficient codes with “good” repair process

43443 333393
SN EoooaEoanm
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Locally Recoverable Codes - Definition

(n,k,r) LRC Code
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Locally Recoverable Codes - Definition

(n,k,r) LRC Code

Takes k blocks (symbols) — produces n blocks

An erasure has occurred

Every symbol i has a recovering set R; of r other symbols, r « k

Clearly 1 <r <k

(X X X ] [ XX N}
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Let C be an (n, k,r) LRC code
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Parameters of LRC codes

Let C be an (n, k,r) LRC code
e Assume rlkand (r + 1)|n
e Rate?
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Parameters of LRC codes

Let C be an (n, k,r) LRC code
e Assume rlkand (r + 1)|n

e The rate is bounded by
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Let C be an (n, k,r) LRC code
e Assume rlkand (r + 1)|n

e The rate is bounded by

ENE
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r+1°

Proof:

e There exist at most ,1—’1 coordinates that determine the exact codeword
e This follows since iteratively:

1. Cost: expose the values of the coordinates in a recovering set R;, |R;| < r
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Let C be an (n, k,r) LRC code
e Assume rlkand (r + 1)|n

e The rate is bounded by

A

S|
~

r+1°

Proof:

e There exist at most ,1—’1 coordinates that determine the exact codeword

e This follows since iteratively:

1. Cost: expose the values of the coordinates in a recovering set R;, |R;| < r

2. Free: the value of the i-th coordinate
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Parameters of LRC codes

Let C be an (n, k,r) LRC code
e Assume rlkand (r + 1)|n

e The rate is bounded by

A

S|
~

r+1°

Proof:

e There exist at most coordinates that determine the exact codeword

r+l
e This follows since iteratively:
1. Cost: expose the values of the coordinates in a recovering set R;, |R;| < r
2. Free: the value of the i-th coordinate

3. Upon exposing at most ;% coordinates, we recover the entire codeword

+
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Let C be an (n, k,r) LRC code
e Assume rlkand (r + 1)|n

e The rate is bounded by
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e The bound is tight (even over [F,)
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Let C be an (n, k,r) LRC code
e Assume rlkand (r + 1)|n

e The rate is bounded by
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e The bound is tight (even over [F,)

o Partition the & bits into k/r sets of size r
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Parameters of LRC codes

Let C be an (n, k,r) LRC code
e Assume rlkand (r + 1)|n

e The rate is bounded by

ENE
N
~

r+1°

e The bound is tight (even over [F,)

o Partition the & bits into k/r sets of size r

e Add parity check bit to each set
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Parameters of LRC codes

Let C be an (n, k,r) LRC code

e Assume rlkand (r + 1)|n
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Parameters of LRC codes
Let C be an (n, k,r) LRC code
e Assume rlkand (r + 1)|n
e The minimum distance is bounded by
d<n—k— P} +2

r

P. GOPALAN, C. HUANG, H. SIMITCI, AND S. YEKHANIN, T-IT 2012
D. PAPAILIOPOULOS AND A. DIMAKIS, ISIT 2012
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e The minimum distance is bounded by
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e Smaller locality = lower failure resilience
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Let C be an (n, k,r) LRC code
e Assume rlkand (r + 1)|n
e The minimum distance is bounded by
d<n—k— P} +2

r

P. GOPALAN, C. HUANG, H. SIMITCI, AND S. YEKHANIN, T-IT 2012
D. PAPAILIOPOULOS AND A. DIMAKIS, ISIT 2012

Remarks:
e Smaller locality = lower failure resilience

o Generalization of the Singleton bound (r = k)
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Parameters of LRC codes
Let C be an (n, k,r) LRC code
e Assume rlkand (r + 1)|n
e The minimum distance is bounded by
d<n—k— P} +2

r

P. GOPALAN, C. HUANG, H. SIMITCI, AND S. YEKHANIN, T-IT 2012
D. PAPAILIOPOULOS AND A. DIMAKIS, ISIT 2012

Remarks:
e Smaller locality = lower failure resilience
o Generalization of the Singleton bound (r = k)

e Optimal (n, k, r) LRC code achieves the bound with equality

Alexander Barg, University of Maryland Erasure coding for storage NASIT 2019 20/54



The distance bound
Main idea.

Let C be a g-ary code of length n, size ¢*. The distance d(C) satisfies

d(C) < n—{IS| : |€s| < ¢}
Details:

o L< -t = Jasetlof | %] redundant coordinates

® SetR = UieiR;. Clearly |R| < k—1

® If |[R| <k—laddtoit
The Singleton bound (with locality):
LetI; < [n], |I;] < r be the recovery set for the symbol ¢;,i = 1, ..., n.
LetJ,, = UL l;, where m = |(k — 1)/r|. Clearly |J,,| < k — 1.
Consider the subset J;, = J,, U {1,...,m}. We have €, < ¢"~".

If |J/| <k —1,addto J, any k — 1 — |J,,| other coordinates to form the set L,, < [n].

We have
k
1CL,| <4
k—1 k
\L,,,\=k71+m=k71+[ J=k72+[—]
r r
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2. Field size is superpolynomial in the length

e Optimal ((r + 1)[%], k, 7) LRC code [PRASANTH, KAMATH, LALITHA, AND KUMAR,2012]

o Explicit constructions [RAWAT, KOYLUOGLU, SILBERSTEIN, VISHWANATH 2014, GOPALAN,
HUANG, JENKINS, YEKHANIN 2014, TAMO, PAPAILIOPOULOS, DIMAKIS 2014]
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Constructing optimal LRC codes: Early results

e Early constructions:

1. Non explicit

2. Field size is superpolynomial in the length

e Optimal ((r + 1)[%], k, 7) LRC code [PRASANTH, KAMATH, LALITHA, AND KUMAR,2012]

o Explicit constructions [RAWAT, KOYLUOGLU, SILBERSTEIN, VISHWANATH 2014, GOPALAN,
HUANG, JENKINS, YEKHANIN 2014, TAMO, PAPAILIOPOULOS, DIMAKIS 2014]

1. Anyn,k,r

2. Field size is superpolynomial
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Optimal LRC codes - Easy cases

e r==%k
1.d<n—k+1

2. An (n,k) RSis an (n, k, k) optimal LRC code
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Optimal LRC codes - Easy cases

e r==%k
1.d<n—k+1
2. An (n,k) RSis an (n, k, k) optimal LRC code

3. [F| = O(n)

e r=1
1. d<2(%—k+1)

2. Duplication of an (n/2,k) RS is an (n, k, 1) optimal LRC code
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Optimal LRC codes - Easy cases

e r==%k
1.d<n—k+1
2. An (n,k) RSis an (n, k, k) optimal LRC code

3. [F| = O(n)

e r=1
1. d<2(%—k+1)

2. Duplication of an (n/2,k) RS is an (n, k, 1) optimal LRC code

3. |F| = O(n)

e Q: What happens for 1 < r < k?
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Optimal LRC codes - Easy cases

e r==%k
1.d<n—k+1
2. An (n,k) RSis an (n, k, k) optimal LRC code

3. [F| = O(n)

e r=1
1.d<2(2—k+1)
2. Duplication of an (n/2,k) RS is an (n, k, 1) optimal LRC code

3. |F| = O(n)

Q: What happens for 1 < r < k?

Q: Generalize the optimal codes for r = 1, k to codes with arbitrary »?

Alexander Barg, University of Maryland Erasure coding for storage NASIT 2019 23/54



Reed-Solomon codes

N
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Reed-Solomon codes

N

To recover one erased value we need to read k other values
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LRC codes: Idea of construction

What if we can interpolate low-degree polynomials?
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LRC codes: Idea of construction

What if we can interpolate low-degree polynomials?

It is possible to construct such codes by carefully choosing subcodes of the RS codes
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Parameters: n =9,k =4,r =2,q = 13;

Set of points: A={1,2,3,4,5,6,9,10,12}
A ={A1={1,3,9}, 42 = {2,6,5},As = {4,12,10}}
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Construction of (n, k, r) LRC codes: Example

Parameters: n =9,k =4,r =2,q = 13;

Set of points: A={1,2,3,4,5,6,9,10,12}
A ={A1={1,3,9}, 42 = {2,6,5},As = {4,12,10}}

. k
Message: a = (ao,0, ao,1,a1,0,a1,1) € F,
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Construction of (n, k, r) LRC codes: Example

Parameters: n =9,k =4,r =2,q = 13;

Set of points: A={1,2,3,4,5,6,9,10,12}
A ={A1={1,3,9}, 42 = {2,6,5},As = {4,12,10}}

Message: a = (ao,0, ao,1,a1,0,a1,1) € Fy
Polynomial space:

Vk(q) = {ao,o + ajox + a0,1x3 + a1,1x4}
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Construction of (n, k, r) LRC codes: Example

Parameters: n =9,k =4,r =2,q = 13;

Set of points: A={1,2,3,4,5,6,9,10,12}
A ={A1={1,3,9}, 42 = {2,6,5},As = {4,12,10}}

Message: a = (ao,0, ao,1,a1,0,a1,1) € Fy
Polynomial space:
3 4
Vi(g) := {ao,0 + a1,0x + a0,1x” + a1,1x"}

Eg.,a= (1,1,1,1),f,(x) = 1 +x+° +x* eva(f) = (4,8,7,1,11,2,0,0,0)
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Construction of (n, k, r) LRC codes: Example

Parameters: n =9,k =4,r =2,q = 13;

Set of points: A={1,2,3,4,5,6,9,10,12}
A ={Ar={1,3,9},A, = {2,6,5},A; = {4,12,10}}

Message: a = (ao,0, ao,1,a1,0,a1,1) € Fy
Polynomial space:

Vi(q) := {aoo + a1 ox + ao X’ + ai1x*}
Eg.a=(1,1,1,1), fu(x) = 1 + x+ x* + x* eva(f) = (4,8,7,1,11,2,0,0,0)

Say ¢i = f4(1) is erased. We access the recovering set A; to construct a line §(x) = 2x + 2
such that 6(3) = 8,4(9) = 7.
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Construction of (n, k, r) LRC codes: Example

Parameters: n =9,k =4,r =2,q = 13;

Set of points: A={1,2,3,4,5,6,9,10,12}
A ={Ar={1,3,9},A, = {2,6,5},A; = {4,12,10}}

Message: a = (ao,0, ao,1,a1,0,a1,1) € Fy
Polynomial space:

Vi(q) := {aoo + a1 ox + ao X’ + ai1x*}
Eg.a=(L,1,1,1),fu(x) = 1+ x+x" +x* eva(f) = (4,8,7,1,11,2,0,0,0)

Say ¢i = f4(1) is erased. We access the recovering set A; to construct a line §(x) = 2x + 2
such that 6(3) = 8,4(9) = 7.

Compute ¢y as §(1) = 4
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Construction of (n, k, r) LRC codes

Assume that ¢ = n, (r + 1)|n, r|k
LetAC F,, |A| = n
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Construction of (n, k,r) LRC codes

Assume that ¢ = n, (r + 1)|n, r|k

LetAC F,, |A| = n

Suppose there exists a polynomial g(x) € F[x] such that
1. degg=r+1,

2. There exists a partition A = {A,, ...,AanTl} of A into sets of size r + 1, such that g is
constant on each set A; in the partition. Foralli = 1,...,n/(r + 1), and any «, 8 € A,
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Construction of (n, k,r) LRC codes

Assume that ¢ = n, (r + 1)|n, r|k

LetAC F,, |A| = n

Suppose there exists a polynomial g(x) € F[x] such that
1. degg=r+1,

2. There exists a partition A = {A,, ...,AanTl} of A into sets of size r + 1, such that g is
constant on each set A; in the partition. Foralli = 1,...,n/(r + 1), and any «, 8 € A,

Eg,.n=9r=249=13;
A= {Al = {17379}7142 = {27675}7A3 = {47 12, 10}}7

Then g(x) = x* is constant on each of the A;’s
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Construction of (n, k,r) LRC codes

Given A c F, partition A into (r + 1)-subsets.
To encode the message a € F*, write a = (ay,i = 0,...,r — 1;j =0, ,% —-1)

Define the encoding polynomial
r—1 o )
fal) = D04 D agg(xy
=0 j=0
A linear code C is constructed as follows:
Ev :F* "
a (fa(B),B € A)
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Construction of (n, k,r) LRC codes

Given A c F, partition A into (r + 1)-subsets.
To encode the message a € F*, write a = (ay,i = 0,...,r — 1;j =0, ,% —-1)

Define the encoding polynomial

A linear code C is constructed as follows:
Ev :F* "
a (fu(B),B € A)

It is easy to show that the parameters of the constructed codes meet the Gopalan et al.

bound with equality
|. Tamo and A.B., A family of optimal locally recoverable codes, T-IT August 2014
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Constructing g(x)

Proposition
Let H be a subgroup of F¥ or F;} . The annihilator polynomial of H
g() = [Jr—n)
heH

is constant on each coset of H.
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Constructing g(x)

Proposition
Let H be a subgroup of F¥ or F;} . The annihilator polynomial of H
g() = [Jr—n)
heH

is constant on each coset of H.

Further constructions:

J. LIu, S. MESNAGER AND L. CHEN, New constructions of optimal locally recoverable codes via good polynomials,

T-IT 2018
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Summary of the construction

The optimal RS-like LRC codes are constructed as follows:

1. Take an RS code over I, of length n and dimension “1k — 2

2. Isolate a carefully chosen k-dimensional subcode such the the polynomials become
degree r — 1 when restricted to recovering sets of size r + 1.
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Summary of the construction

The optimal RS-like LRC codes are constructed as follows:
1. Take an RS code over I, of length n and dimension “1k — 2

2. Isolate a carefully chosen k-dimensional subcode such the the polynomials become
degree r — 1 when restricted to recovering sets of size r + 1.

These codes are studied outside the storage context:
L. HoLzBAUR AND A. WACHTER-ZEH, List decoding of locally repairable codes, arXiv:1801.04229
A. MAZUMDAR, Caoacity of locally repairable codes, arXiv:1801.04229

S. KADHE AND R. CALDERBANK, LRC codes with small availability, arXiv:1701.02456
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Generalization of the main construction

e The length of the constructed codes is limited to n < ¢
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o Replace RS codes with codes on algebraic curves; it is possible to construct LRC
codes of large n for a fixed q.
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e The length of the constructed codes is limited to n < ¢
o To construct longer codes, we take a geometric point of view.

o Replace RS codes with codes on algebraic curves; it is possible to construct LRC
codes of large n for a fixed q.

o Consider the set of pairs (x,y) € Fo that satisfy the equation x4+ x =y*. There are 27
solutions, which give the evaluation set of points of size n = 27
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Generalization of the main construction

e The length of the constructed codes is limited to n < ¢
o To construct longer codes, we take a geometric point of view.

o Replace RS codes with codes on algebraic curves; it is possible to construct LRC
codes of large n for a fixed q.

o Consider the set of pairs (x,y) € Fo that satisfy the equation x4+ x =y*. There are 27
solutions, which give the evaluation set of points of size n = 27

o We evaluate bivariate polynomials spanned by the monomials V := <l,y,y27x,xy7xy2>

o We obtain a 6-dimensional code with locality » = 2

C:V T
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Generalization of the main construction

e The length of the constructed codes is limited to n < ¢
o To construct longer codes, we take a geometric point of view.

o Replace RS codes with codes on algebraic curves; it is possible to construct LRC
codes of large n for a fixed q.

o Consider the set of pairs (x,y) € Fo that satisfy the equation x4+ x =y*. There are 27
solutions, which give the evaluation set of points of size n = 27

o We evaluate bivariate polynomials spanned by the monomials V := <l,y,y27x,xy7xy2>

o We obtain a 6-dimensional code with locality » = 2

C:V T

e E.g., message (1,a,0”, o, a?, o)

F(x,y) = 1 + ay + o’y + &’x + o*xy + o'xy?
F(0,0) = 1 etc.

A.B., |. Tamo, and S. VIadut, LRC codes on algebraic curves, T-IT, Aug. 2017
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Random LRC codes and a Gilbert-Varshamov type bound
Let M(n, r, 6n) be the max size of a code of length n, distance d, locality r

R(r,6) := limsup 1 logM(n, r,dn)
n

n—0o0

GV-type bound:

3 1 rl oty
R(r,6) > 1— [min, {r 1 log,((1+9)™" +(1—9)"") 6log2s}.
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Random LRC codes and a Gilbert-Varshamov type bound
Let M(n, r, 6n) be the max size of a code of length n, distance d, locality r

R(r,6) := limsup 1 logM(n, r,dn)
n

n—0o0

GV-type bound:

3 1 rl rl
R(r,6) > 1— [min, {r 1 log,((1+9)" +(1—5)"")— (510g2s}.

Proof by random coding: Estimate the average weight enumerator for the ensemble given
by

11...1
11...1

11...1

Hy,
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Random LRC codes and a Gilbert-Varshamov type bound
Let M(n, r, 6n) be the max size of a code of length n, distance d, locality r

R(r,6) := limsup 1 logM(n, r,dn)
n

n—0o0

GV-type bound:

3 1 rl oty
R(r,6) > 1— oglslgl{r 1 log,((1+9)™" +(1—9)"") 610g2s}.

Proof by random coding: Estimate the average weight enumerator for the ensemble given
by

1.1
1n...1 Pr({d(€) < én})

", (T . b(s)rHT
H= : < 6ng "1 min (s)
0<s<l o1

Hy,

H; is a matrix with independent uniformly chosen elements of I,
V. CADAMBE AND A. MAZUMDAR, T-IT 2015; |. TAMO, A.B., AND A. FROLOV, T-IT, June 2016
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Improving GV bound using LRC codes on curves

R
0.6r-Ng---pennn-- LRLEELE SILTERE R
! : 'LRC codes
----------- 1------1on curves ------

P EEEL) AL LI T

heeeabaaaal

Locality r = 2, g = 2°

A.B., |I. TAMO, AND S. VLADUT, LRC codes on algebraic curves, T-IT, Aug. 2017

More on bounds:

A. AGARWAL ET AL., Combinatorial alphabet-dependent bounds for locally recoverable codes, T-IT 2018
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Extensions

Codes with availability

Correcting 2,3, ... erasures locally

Hierarchical locality

Maximally recoverable codes

Maximum length of optimal LRC codes
Cyclic LRC codes
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Availability

e “Hot data” accessed simultaneously by a very large number of users
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Availability

“Hot data” accessed simultaneously by a very large number of users

Recovering an erasure from several disjoint repair groups increases the availability of
the data.

Every coordinate is recoverable from the codeword symbols in several recovering sets:
|
[ T

A code C is called an LRC(2) code if every coordinate i has 2 disjoint recovering sets
Ry, |Ri;i| <115 Ry |Rai| < 12
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Multiple recovery sets: Idea of construction

o
1 Ja(7y) can be found
by interpolating d; (x)
as well as d(x)
y /
fa(®
62(%)
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Multiple recovery sets: Example
Take F = Fi3; G,H < F*; G = (5),H = (3)

Acq = {{1,5,12,8},{2,10,11,3},{4,7,9,6}}
Aun = {{1,3,9},{2,6,5},{4,12,10},{7,8,11}}

Let
Fa,[x] = {f € F[x] : f is constanton A;,i = 1,2,3; degf < |F*[}

Fﬂc[x] = <17x47x8>7 FAH[X] = <17x37x6:x9>
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Multiple recovery sets: Example
Take F = Fi3; G,H < F*; G = (5),H = (3)

Acq = {{1,5,12,8},{2,10,11,3},{4,7,9,6}}
Aun = {{1,3,9},{2,6,5},{4,12,10},{7,8,11}}
Let
Fa,[x] = {f € F[x] : f is constanton A;,i = 1,2,3; degf < |F*[}

Faglx] = <17x47x8>7 Fa,[x] = <17x37x6:x9>
We construct an LRC (12,4, {2, 3}), distance > 6, code € : F* — F'?

a = (ao,ar,az,a3) — fu(x) = ao + arx + ax* + azx®
2

fulx) = D fi(x)x', where fo(x) = a0 + ax', fi(x) = a1, H(x) = asx’;f; € Falx]

i=0

1
falx) = Zgj(x)xj where go(x) = ao + asx’, g1 (x) = a1 + axx’; g € F o, [x]
=0

E.g., fa(1) can be recovered by computing d;(x),x € {5, 12,8} OR d2(x),x € {3,9}

Alexander Barg, University of Maryland Erasure coding for storage NASIT 2019
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Other constructions

e Product codes
o Codes on bipartite graphs

e Direct-sum codes
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Open problem: Bounds on codes with availability

Known bounds:
LetC be an (n,k,r,t) LRC code with t disjoint recovering sets of size r. Then the rate
of C satisfies

>~

1
— S til
no Lo+ 5)
The minimum distance of C is bounded above as follows:

t

d<n—2{k;]J.

i=

|.TAMO, A.B., AND A FROLOV, Bounds on the Parameters of Locally Recoverable Codes, T-IT 2016

zm—n+w

<n— _
d<n—k+2 [r(r71)+1

A. WANG AND Z. ZHANG, Repair locality with multiple erasure tolerance, T-IT 2014

More on bounds:

N. PRAKASH, V. LALITHA, AND P. V. KUMAR, Codes with locality for two erasures, ISIT 2014
S. B. BALAJI AND P. V. KUMAR, Bounds on ... codes with availability, 1ISIT 2017 (improved results for linear codes)

The RS-like construction can be extended to r > 2 recovering sets, but the resulting codes are
not known to be optimal
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Remarks on the bounds, and Graph-theoretic connections

e The bound on the rate of codes with availability ¢ can be simplified:
k 1
- <

n Nt+1

e Tighter bounds are available in some cases (BaLasi-Kumar, arXivi611.00159
Tighter bound labl

rZ

(r+1)?
e Problems related to multiplicities, e.g., availability or sequential repair, often can be
interpreted in terms of graph theory or matroid theory.

r

R(r2) < ——.
(r2) r+2

R(r,3) <

o To derive the bounds, we note that multiple repair groups create dependence relations
on the set of coordinates; we analyze the “expansion” of dependencies in the
recovering graph as we add vertices successively.

M. GRETZEL AND C. HOLLANTI, The complete hierarchical locality of the punctured simplex code, arXiv:1901.03149
R. FREIJ-HOLLANTI, C. HOLLANTI, AND T. WESTERBCK, Matroid theory and storage codes, arXiv:1704.04007
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Correcting > 2 erasures locally

In the event that more than one node in the encoding have failed, we need to correct more
than one erasure locally

A code C is said to have the (p, r) locality property if each coordinate i is contained in a
subset A; < [n], |Ai| < r + p — 1 such that the restriction C,, forms a code of distance > p.

The distance of the code C satisfies the bound
k
d<n—k+1—(|=|=1)(p—1)
r
G.M. Kamath et al., Codes with local regeneration and erasure correction, T-IT. Aug. 2014

The RS-like construction can be extended to this case, the parameters of the resulting
codes meet this bound
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Hierarchical locality

Ci(v, )

Alexander Barg, University of Maryland

r+1
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Hierarchical locality

Ci(v, )

L L T

i

r+1

Every coordinate i is in a code C; that
e corrects several erasures (distance = p1)

e is LRC B. SASIDHARAN ET AL., Codes with hierarchical locality, ISIT 2015
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Hierarchical locality

Ci(v, 1)

L L T

i

r+1

Every coordinate i is in a code C; that
e corrects several erasures (distance = p1)

e is LRC B. SASIDHARAN ET AL., Codes with hierarchical locality, ISIT 2015

The Gopalan et al. bound can be extended to local codes
with hierarchy (Sasidharan e.a.)
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Hierarchical locality

el(”ﬁrl)

||

i

r+1

Every coordinate i is in a code C; that
e corrects several erasures (distance = p1)
e is LRC B. SASIDHARAN ET AL., Codes with hierarchical locality, ISIT 2015

The Gopalan et al. bound can be extended to local codes
with hierarchy (Sasidharan e.a.)

Constructions of optimal RS-type codes and of codes on algebraic curves

S. BALLENTINE ET AL., Codes with hierarchical locality from covering maps of curves, T-IT 2019
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Open problem: Maximally recoverable codes

Locality and efficient data retrieval

e A code is MDS if any k symbols suffice to recover the data

Alexander Barg, University of Maryland Erasure coding for storage NASIT 2019 43 /54



Open problem: Maximally recoverable codes

Locality and efficient data retrieval

e A code is MDS if any k symbols suffice to recover the data

e LRC codes are not MDS because k symbols that contain a recovering set cannot be
used to recover the data

Alexander Barg, University of Maryland Erasure coding for storage NASIT 2019 43 /54



Open problem: Maximally recoverable codes

Locality and efficient data retrieval

e A code is MDS if any k symbols suffice to recover the data

e LRC codes are not MDS because k symbols that contain a recovering set cannot be
used to recover the data

e Problem: Construct LRC codes that are as close to MDS as possible

Alexander Barg, University of Maryland Erasure coding for storage NASIT 2019 43 /54



Open problem: Maximally recoverable codes

Locality and efficient data retrieval

A code is MDS if any k symbols suffice to recover the data

LRC codes are not MDS because k symbols that contain a recovering set cannot be
used to recover the data

Problem: Construct LRC codes that are as close to MDS as possible

A code is called maximally recoverable if any k-tuple of coordinates that does
not contain a local constraint, has full rank.

° M. CHEN, C. HUANG, AND J. LI, ISIT 2007, P. GOPALAN ET AL., T-IT 2010; 2014
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Rephrased, if B  [n] is a subset such that |B| = k and B does not contain a local
constraint, the restriction C|s is an MDS code
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Open problem: Maximally recoverable codes

Locality and efficient data retrieval

e A code is MDS if any k symbols suffice to recover the data

e LRC codes are not MDS because k symbols that contain a recovering set cannot be
used to recover the data

e Problem: Construct LRC codes that are as close to MDS as possible
A code is called maximally recoverable if any k-tuple of coordinates that does

not contain a local constraint, has full rank.

M. CHEN, C. HUANG, AND J. LI, ISIT 2007, P. GOPALAN ET AL., T-IT 2010; 2014
e Rephrased, if B  [n] is a subset such that |B| = k and B does not contain a local
constraint, the restriction C|s is an MDS code

o |t is not difficult to prove that MR codes exist, but the underlying finite field is of large
size g > (Z)
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Open problem: Maximally recoverable codes

Locality and efficient data retrieval

e A code is MDS if any k symbols suffice to recover the data

e LRC codes are not MDS because k symbols that contain a recovering set cannot be
used to recover the data

e Problem: Construct LRC codes that are as close to MDS as possible

A code is called maximally recoverable if any k-tuple of coordinates that does
not contain a local constraint, has full rank.

M. CHEN, C. HUANG, AND J. LI, ISIT 2007, P. GOPALAN ET AL., T-IT 2010; 2014

e Rephrased, if B  [n] is a subset such that |B| = k and B does not contain a local
constraint, the restriction C|s is an MDS code

o |t is not difficult to prove that MR codes exist, but the underlying finite field is of large
size g = (Z)

e Construction of MR codes over small fields and bounds on the field size form a difficult
open problem

o Partial MDS codes - array configuration
M. BLAUM ET AL.,Partial MDS codes and their application to RAID type of architectures, T-IT 2013
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MR codes are optimal

Lemma
MR codes are optimal LRC codes J
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MR codes are optimal

Lemma
MR codes are optimal LRC codes J

Proof:

e Assume r divides k

e MR code is an Optimal LRC code

©d=n—k—§+2
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MR codes are optimal

Lemma
MR codes are optimal LRC codes

Proof:

e Assume r divides k
e MR code is an Optimal LRC code
ed=n—k—%+2

<anyd—1=n—k—*%+ 1 erasures are recoverable
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Lemma
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MR codes are optimal

Lemma
MR codes are optimal LRC codes

Proof:

e Assume r divides k

e MR code is an Optimal LRC code
ed=n—k—%+2
sanyd—1=n—k— é + 1 erasures are recoverable
<anyn— (d—1) =k+ * — 1 coordinates suffice for decoding

o Any k + é — 1 coordinates contain a subset S s.t.
1. 18] =k

2. Vi, Ri & S
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MR codes are optimal

Lemma
MR codes are optimal LRC codes J

Proof:

e Assume r divides k

e MR code is an Optimal LRC code
ed=n—k—%+2
sanyd—1=n—k— é + 1 erasures are recoverable
<anyn— (d—1) =k+ * — 1 coordinates suffice for decoding

o Any k + é — 1 coordinates contain a subset S s.t.
1. 18] =k

2. Vi, Ri & S

o By the MR property, S suffices for decoding
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MR codes are optimal

Lemma
MR codes are optimal LRC codes J

MR Codes

Q: MR codes = Optimal LRC codes ?
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MR codes are optimal

Lemma
MR codes are optimal LRC codes J

MR Codes

Q: MR codes = Optimal LRC codes ? Ans: No

Alexander Barg, University of Maryland Erasure coding for storage NASIT 2019 45/54



MR codes through linearized polynomials

A. S. RAWAT ET AL.,,Optimal locally repairable and secure codes for distributed storage systems, T-IT 2014
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MR codes through linearized polynomials

A. S. RAWAT ET AL.,,Optimal locally repairable and secure codes for distributed storage systems, T-IT 2014

e Flexible set of parameters n, k, r
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MR codes through linearized polynomials
A. S. RAWAT ET AL.,,Optimal locally repairable and secure codes for distributed storage systems, T-IT 2014
o Flexible set of parameters n, k,r v/

nr

e Need m = ;7 linearly independent elements over F, = |F| = 27+

o Field size is exponential in n X

e Can we do better?

U. MARTINEZ-PENAS AND F. KSCHISCHANG, Universal and dynamic locally repairable codes with maximal recoverability via
sum-rank codes, arXiv:1809.11158
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Open problem: Maximal length of Opt-LRC codes
e A code is called Opt-LRC if its distance d is maximum possible:

d=n—k—[5]+2

r
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Open problem: Maximal length of Opt-LRC codes

e A code is called Opt-LRC if its distance d is maximum possible:

d=n—k— m +2
o Without locality:

Every code has locality k (Exercise: why?), and thend < n —k + 1. If =, then the code
is called MDS. The maximum length of a g-ary MDS code is conjectured to be g + 2.

The MDS conjecture is a famous open problem (latest advances by SiMEON BALL, 2012)
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Open problem: Maximal length of Opt-LRC codes

e A code is called Opt-LRC if its distance d is maximum possible:

k
d=n—k— H +2
e Without locality:

Every code has locality k (EXErcISE: why?), and then d < n— k + 1. If =, then the code
is called MDS. The maximum length of a g-ary MDS code is conjectured to be g + 2.

The MDS conjecture is a famous open problem (latest advances by SiMEON BALL, 2012)

o With locality: The length of an Opt-LRC code withd > 5 is

d—1 41 r+1
< d .
" 2q72q + r

V. GURUSWAMI ET AL., How long can optimal locally recoverable codes be?, T-IT 2019
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Open problem: Maximal length of Opt-LRC codes

A code is called Opt-LRC if its distance d is maximum possible:

d=n—k—m+2

Without locality:

Every code has locality k (EXErcISE: why?), and then d < n— k + 1. If =, then the code
is called MDS. The maximum length of a g-ary MDS code is conjectured to be g + 2.

The MDS conjecture is a famous open problem (latest advances by SiMEON BALL, 2012)

With locality: The length of an Opt-LRC code withd > 5 is

d—1 41 r+1
< d .
" 2q72q + r

V. GURUSWAMI ET AL., How long can optimal locally recoverable codes be?, T-IT 2019

Luo-XING-YuaN, T-IT 2019: Opt-LRC codes of distance 3,4 and unbounded length
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Open problem: Maximal length of Opt-LRC codes

A code is called Opt-LRC if its distance d is maximum possible:

d=n—k—m+2

Without locality:

Every code has locality k (EXErcISE: why?), and then d < n— k + 1. If =, then the code
is called MDS. The maximum length of a g-ary MDS code is conjectured to be g + 2.

The MDS conjecture is a famous open problem (latest advances by SiMEON BALL, 2012)

With locality: The length of an Opt-LRC code withd > 5 is

d—1 41 r+1
< d .
" 2q72q + r

V. GURUSWAMI ET AL., How long can optimal locally recoverable codes be?, T-IT 2019
Luo-XING-YuaN, T-IT 2019: Opt-LRC codes of distance 3,4 and unbounded length
L.JIN, T-IT 2019: Opt-LRC codes of length ¢* and distance 5,6
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Further variants of the repair problem

e Sequential repair: For a subset ¢;, .. ., ¢;, of t erased nodes, it is possible to find a
repair group of size < r to recover ¢;,, then a repair group of size < r (possibly
including c¢;,) that recovers c;,, then another repair group of size < r for ¢;,, etc.

N. PRAKASH, V. LALITHA, AND P. V. KUMAR, Codes with locality for two erasures, 1SIT2014
S. B. BALAJI, G. R. KINI AND P. V. KUMAR, A tight lower bound..., arXiv:1812.02501
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Further variants of the repair problem

e Sequential repair: For a subset ¢;, .. ., ¢;, of t erased nodes, it is possible to find a
repair group of size < r to recover ¢;,, then a repair group of size < r (possibly
including c¢;,) that recovers c;,, then another repair group of size < r for ¢;,, etc.

N. PRAKASH, V. LALITHA, AND P. V. KUMAR, Codes with locality for two erasures, 1SIT2014
S. B. BALAJI, G. R. KINI AND P. V. KUMAR, A tight lower bound..., arXiv:1812.02501

o Parallel repair: Same as sequential, but the repaired symbols are not used to recover
subsequent erasures
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repair group of size < r to recover ¢;,, then a repair group of size < r (possibly
including c¢;,) that recovers c;,, then another repair group of size < r for ¢;,, etc.

N. PRAKASH, V. LALITHA, AND P. V. KUMAR, Codes with locality for two erasures, 1SIT2014
S. B. BALAJI, G. R. KINI AND P. V. KUMAR, A tight lower bound..., arXiv:1812.02501

o Parallel repair: Same as sequential, but the repaired symbols are not used to recover
subsequent erasures

o Cooperative repair
S. KADHE ET AL., On an Equivalence Between Single-Server PIR with Side Information and Locally
Recoverable Codes, arXiv:1907.00598

S.B. BALAJI et al., Erasure coding for distributed storage: An overview, arXiv:1806.04437
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Different versions of the repair problem
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LRC codes on graphs [Mazumdar 2014, Shanmugam and Dimakis 2014]
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LRC codes on graphs [Mazumdar 2014, Shanmugam and Dimakis 2014]

(1]
e Storage recovery graph G
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e Each node can recover its content from its incoming neighbors

Alexander Barg, University of Maryland Erasure coding for storage NASIT 2019 50 /54



LRC codes on graphs [Mazumdar 2014, Shanmugam and Dimakis 2014]

(1]
e Storage recovery graph G
|| 1

lmN
A

e Each node can recover its content from its incoming neighbors

e Recovery sets:

Alexander Barg, University of Maryland Erasure coding for storage NASIT 2019

50/54



LRC codes on graphs [Mazumdar 2014, Shanmugam and Dimakis 2014]

(1]
e Storage recovery graph G
|| 1

lmN
A

e Each node can recover its content from its incoming neighbors

e Recovery sets: A; = {2},

Alexander Barg, University of Maryland Erasure coding for storage NASIT 2019

50/54



LRC codes on graphs [Mazumdar 2014, Shanmugam and Dimakis 2014]

(1]
e Storage recovery graph G
|| 1

lmN
A

e Each node can recover its content from its incoming neighbors

e Recovery sets: A; = {2}, A, = {1,3}, A3 = {1}

Alexander Barg, University of Maryland Erasure coding for storage NASIT 2019 50 /54



LRC codes on graphs [Mazumdar 2014, Shanmugam and Dimakis 2014]

(1]
e Storage recovery graph G
|| 1

lmN
|5

e Each node can recover its content from its incoming neighbors
e Recovery sets: A; = {2}, A, = {1,3}, A3 = {1}

e How much data can be stored?
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LRC codes on graphs [Mazumdar 2014, Shanmugam and Dimakis 2014]

(1]
e Storage recovery graph G
|| 1

lmN
|5

Each node can recover its content from its incoming neighbors

Recovery sets: A; = {2}, A, = {1,3}, A3 = {1}

How much data can be stored?

Which coding scheme achieves the limit?
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Storage Capacity

e The network is modeled by a (directed) graph G = (V,E), |V| = n

Each node (vertex) stores a symbol from I,

Storage code:
1. Aset of vectors C < I}

2. nrecovery functions f;, s.t. for any (xy, ..., x,) € C
Jilxj :j € N(@)) = x;

The storage capacity of G over F,

Cap,(G) = max log_ |C
pq( ) CCFyisa gq ‘ ’
storage code for G
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Storage code:
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Each node (vertex) stores a symbol from I,

Storage code:
1. Aset of vectors C < I}

2. nrecovery functions f;, s.t. for any (xy, ..., x,) € C
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Storage Capacity

e The network is modeled by a (directed) graph G = (V,E), |V| = n

Each node (vertex) stores a symbol from I,

Storage code:
1. Aset of vectors C < I}

2. nrecovery functions f;, s.t. for any (xy, ..., x,) € C
filxj 1 jeN()) = xi

The storage capacity of G over F,

Cap,(G) = max  log, [C] <n
GQJFZ is a
storage code for G

The storage capacity of G is

Cap(G) = supCap,(G) = lim Cap,(G) (Fekete’s lemma)
q 9=
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o Store:
o X = b
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L

e C={(0,0,0,0,0),(0,1,1,0,0),(0,0,0,1,1),(1,1,0,1,1),(1,1,1,0, 1)}
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L

e € ={(0,0,0,0,0),(0,1,1,0,0),(0,0,0,1,1),(1,1,0,1,1),(1,1,1,0, 1)}
e X1 =X A X5, X0 =X1 v X3,X3=X> /\X747X4:X73/\X5,X5:X1 v X,
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LRC codes on graphs - Example

L

e C={(0,0,0,0,0),(0,1,1,0,0),(0,0,0,1,1),(1,1,0,1,1),(1,1,1,0, 1)}

e X1 =XoAXs, X0 =Xi v X3, Xs =Xo AXg,Xe = X3 A X5, X5 = X1 v Xy

Cap,(G) = log,(5) = 2.32...

In fact Cap,(G) = log,(5) = 2.32...

However Cap(G) = Cap4 (G) = 2.5 [Blasiak, Kieinberg, Lubetzky 13, Christofides, Markstrom 11]
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Storage Capacity

Generally
|[Maximum matching| < Cap(G) < |Vertex cover

The bounds are separated by a factor of 2.
For planar graphs there is a 1.5 approximation

o A. MAZUMDAR ET AL.Storage capacity as an information-theoretic vertex cover and the index coding
rate, T-IT 2019
Results for planar graphs and cycles with chords
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Duality between Storage Capacity and Index Coding

Theorem [Mazumbar 14, SHANMUGAM AND DimAKIS 14]
Let G = (V,E),|V| = n, then

Cap(G) + Index(G) = n

Recent works
e A. MAZUMDAR ET AL.Storage capacity as an information-theoretic vertex cover and the index coding
rate, T-1IT 2019
Approximated index coding capacity for planar graphs; found exactly for cycles with chords

e A. GOLOVNEV, O. REGEV, AND O. WEINSTEIN, The minrank of random graphs, T-IT 2019
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Duality between Storage Capacity and Index Coding

Theorem [Mazumbar 14, SHANMUGAM AND DimAKIS 14]
Let G = (V,E),|V| = n, then

Cap(G) + Index(G) = n

Recent works
e A. MAZUMDAR ET AL.Storage capacity as an information-theoretic vertex cover and the index coding
rate, T-1IT 2019
Approximated index coding capacity for planar graphs; found exactly for cycles with chords

e A. GOLOVNEV, O. REGEV, AND O. WEINSTEIN, The minrank of random graphs, T-IT 2019

Many open problems
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