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Shannon’s incredible legacy

A mathematical theory of
communication

Channel capacity
Source coding
Channel coding
Cryptography
Sampling theory

(1916-2001)



And many more...

* Boolean logic for switching
circuits (MS thesis 1937)

e Juggling theorem:
H (F+D) =N (V+D)

: the
: the
: the
: the
: the

mZ2<<0H

time a
time a
time a
number
number

ball spends in the air,
ball spends in a hand,
hand is wvacant,

of balls juggled,

of hands.

(1916-2001)




Story: Shannon meets Einstein

As narrated by Arthur Lewbel (2001)

o

The story is that Claude was in the middle of giving a lecture
to mathematicians in Princeton, when the door in the back of
the room opens, and in walks Albert Einstein.

Einstein stands listening for a few minutes, whispers
something in the ear of someone in the back of the room,
and leaves. At the end of the lecture, Claude hurries to the
back of the room to find the person that Einstein had
whispered too, to find out what the great man had to say
about his work.

The answer: Einstein had asked directions to the men’s room.

”




Outline

Five “personal” Shannon-inspired research threads:

Chapter 1: Duality between source coding and channel coding — with
side-information (2003)

Chapter 2: Encryption and Compression — swapping the order (2003)

Chapter 3: Sampling below Nyquist rate and efficient
reconstruction (2014)

Chapter 4: Learning and inference exploiting sparsity — sub-linear
time algorithms (2015-Present)

Chapter 5: Codes for distributed computing & machine learning (2017-
Present)



Chapter 1

Duality

e source & channel
coding

e with side-information

Sandeep Pradhan Jim Chou




Shannon’s celebrated 1948 paper

The Bell System Technical Journal

Vol. XXVII July, 1948 No. 3

A Mathematical Theory of Communication

By C. E. SHANNON general theory of communication

INTRODUCTION

HE recent development of various methods of modulation such as P . . . .
and PPM which exchange bandwidth for signal-to-noise ratipsfas in- commun |Cat Ion Syste M as sou rCE/Ch anne |/d est' n at on
tensified the interest in a general theory of communication. basis for
such a theory is contained in the important papers of Nyquist’ and Hartley?
on this subject. In the present paper we will extend the theory to include a, .
number of new factors, in particular the effect of moise fn the channel, abstraction of the concept of message
the savings possible due to the statistical structure of the original message
and due to the nature of the final destination of the information.
The fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message selected at another
point. Frequently the messages have meaning; that is they refer to or are
correlated according to some system with certain physical or conceptual INFORMATION
entities. These semantic aspects of communication are irrelevant to the SOURCE TRANSMITTER RECEIVER DESTINATION
engineering problem. The significant aspect is that the actual message is M
one selected from a set of possible messages. The system must be designed ] oL > T RECEIVED

to operate for each possible selection, not just the one which will actually SIGNAL
be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any
monotonic function of this number can be regarded as a measure of the in-
formation produced when one message is chosen from the set, all choices
being equally likely. As was pointed out by Hartley the most natural
choice is the logarithmic function. Although this definition must be gen-
eralized copsiderably when we consider the influence of the statistics of the
message and when we have a continuous range of messages, we will in all NOISEE
cases use an essentially logarithmic measure. SOURC

The logarithmic measure is more convenient for various reasons:

1. Tt is practically more useful. Parameters of engineering importance

ME SSAGE MESSAGE

Fig. 1—Schematic diagram of a general communication system.

! Nyquist, H., “*Certain Factors Affecting Telegraph Speed,”” Bell System Technical Jour-
nal, April 1924, p. 324; ““Certain Topics in Telegraph Transmission Theory,” 4. 1. E. E.
Trans., v. 47, April 1928, p. 617.

2 Hartley, R. V. L., ““Transmission of Information,”” Bell Svstem Tec/nical Jowrnal, July
1928, p. §535.
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Source coding

Information X
source
H(X)=Ex

/

Entropy of a random variable

Source
encoder

s (5

= minimum number of bits required to represent the source

)



Rate-distortion theory - 1948

* Trade-off between compression rate and the distortion

PART V: THE RATE FOR A CONTINUOUS SOURCE Mutual information:

27. FipErLity EVALUATION FUNCTIONS H ( X) = H ( X/ y)

In the case of a discrete source of information we were able to determine a
definite rate of generating information, namely the entropy of the under-
lying stochastic process. With a continuous source the situation is con-
siderably more involved. 1In the first place a continuously variable quantity

can assume an infinite number of values and requires, therefore, an infinite R( D) —  min I()(7 Y)

number of binary digits for exact specification. This means that to transmit Py X (y | x)

the output of a continuous source with exact recovery at the receiving point

requires, in general, a channel of infinite capacity (in bits per second). . [ ( )] <
Since, ordinarily, channels have a certain amount of noise, and therefore a SU'b'] ect to E d X7 Y — D

finite capacity, exact transmission is impossible.
This, however, evades the real issue. Practically, we are not interested
in exact transmission when we have a continuous source, but only in trans-
mission to within a certain tolerance. The question is, can we assign a distortion measure
definite rate to a continuous source when we require only a certain fidelity
of recovery, measured in a suitable way. Of course, as the fidelity require-



Channel coding

INFORMATION

SOURCE TRANSMITTER RECEIVER DESTINATION
1
IGNA RECEIVED
S L SIGNAL
ME SSAGE ME SSAGE

NOISE
SOURCE

Fig. 1—Schematic diagram ol a general communication system.

capacity
* Forrates R < (, can achieve d
: C(W) = max I(X:Y)
arbitrary small error Px ()
probabilities subject to  E[w(X)] < W
* Used to be thought one needs /
R -0

cost measure



Shannon’s breakthrough

e Communication before Shannon:

— Linear filtering (Wiener) at receiver to remove noise

* Communication after Shannon:
— Designing codebooks
— Non-linear estimation (MLE) at receiver

N\

Reliable transmission at rates
approaching channel capacity



Shannon (1959)

“There is a curious and provocative duality between the
properties of a source with a distortion measure and those of a
channel. This duality is enhanced if we consider channels in
which there is a cost associated with the different input letters,

and it is desired to find the capacity subject to the constraint that
the expected cost not exceed a certain quantity



Shannon (1959)

...This duality can be pursued further and is
related to a duality between past and future and
the notions of control and knowledge. Thus, we
may have knowledge of the past but cannot
control it; we may control the future but not
have knowledge of it.”



Functional duality

When is the optimal encoder for one problem functionally
identical to the optimal decoder for the dual problem?

source coding
Quantized
Source bits bits Source
> Encoder > Decoder >
channel coding
bits bits
> ~ » Decoder >
input output




Duality example: Channel coding

Binary Erasure Channel
A AN

m m
__, Channel X BEC X Channel BN

R-bit Encoder binary | Channel | binary Decoder | R-bit

message input output estimate

You want to send »~ .age m: how big can you make R?

1
0 » ()
. D
1 > 1 Shannon’s result:

CBEC=(1:}9) bits
per channel use

p =0.2
Cost (0)=1; Cost (1) =1
Total budget < 10,000



What is the Shannon capacity?

3)

v

v

Encoder P—— Decoder

The decoder knows
which bits are erased
(channel output)

v v

/ Suppose the

x X encoder also

knows which bits
W are erased (genie) Cpec < 0.8 bits/ch. use
Number of non-erased bits

Send informationin = 10,000 X (1 — p)
non-erased locations =10,000x 0.8 = 8,000

Surprise: the encoder does not need to know which bits are erased!

v



Shannon’s prescription: random coding

lID random coin-flips:
Bernoulli(1/2) entries 1) Encoder & Decoder agree

10,000
<€ >

\’“ 010101...

~J00110... > —
011100...

238,000

f<?].IOOlO... i

/v Codebook for \

msg. M  channel coding 100011...

on a random codebook
Shannon’s random coding argument

2) Encoder encodes message

Output the codeword corresponding to
the index

3) Decoder decodes message

Output the index corresponding to the
closest codeword



Say sending
m=23

p=0.2
n=10,000

Decoding successful if the non-erased string is unique
Pr.{not unique} < 27 "(1=P)x 2R3 0 if R < (1 — p)
8,000 bits will induce unique match if (random)

lID random

B(1/2) entries

\\‘\f n

2nR

A

—

\1001000010101000...

Why does it work?

input to the channel
» 1110000111001110...

1111011111101110...

1110000111001110...

1101011001010010...

Codebook for
channel coding

codebook size is < 289°9 w.h.p.

2nR

Channel will erase
20% of bits

v %k 3k ok 5k kook

111000011100 irieieGrrre=

n(1-p) np
> <€ >
100100001010
111101111110

111000011100

erased locations

110101100101




Source Coding Dual to the BEC: BEQ

(Binary Erasure Quantization)

X € {0’1}10,000 )2
| Source m - m Source .
Encoder ] Decoder .
01*1*00110...
Compressed bit-stream Want the average
8,000 bits distortion tobe < 0.2

p(0) =p(1) = 0.4;
p(x) = 0.2 0 ifz=uxforze{01}
d(x,2) = qoo if & #x for xz € {0,1}

4 1 ifz=x%
/

x 1 ollx «llo 1 * is like a “don’t care” symbol
(e.g., perceptually masked
symbols). How can we

X: 1 0|1 Of|1 O exploit this for compression?

cost: 0 1 0

- /

Martinian and Yedidia, 2004




Source Coding Dual to the BEC: BEQ

o)

X | Source m m Source X

»
>

v

01*1*00110.. | Encoder Decoder
p(0) =p(1) =04
p(x¥) =0.2
The encoder knows Suppose the decoder
which are the **’ symbols also knows which are
(source attribute) the "*’ symbols (genie)
\v
v
* >k
W Rpg(0.2) = 0.8 bits/symbol
Number of non ‘*’ symbols to send
Send the non-* bits: ~ 10,000 X (1 — p(x))
01100110... =10,000 x 0.8 = 8,000

Surprise: the decoder does not need to know which symbols are “*’!




Source Coding Dual to the BEC: BEQ

o)

X | Source m m Source X -
String Length| Encoder c . . Decoder .
ompressed bitstream Want the average
10,000 8,000 bits distortion
2(0) = p(1) = 0.4; tobe <0.2
p(x) = 0.2

How would you do it?

Use channel encoder
as source decoder

Use channel decoder
as source encoder

3)

m | Channel 0.2 " | Channel

|

Encoder 0.2 Decoder

A 4



Shannon’s prescription: random coding

lID random coin-flips:

10.000 Bernoulli(1/2) entries 1) Encoder & Decoder agree

msg. m < > on a random codebook
\"‘ 010101... Shannon’s random coding argument
\ 00110... —
q - 2) Encoder encodes message
011100... Outpt-thecadeword corresperrdimg to
2500 the-imiex -

Output the index corresponding to the
closest codeword

_¢710010.. D+
/V 3) Decoder decodes message

Codebook W
msg. m eword -

100011...
Output the codeword corresponding to
the index




1D randorn Why does it work?

B(1/2) entries
SO —
1'1"1001000010101000...
1111011111101110...
1110000111001110...

ZnR

J 1101011001010010...

Codebook for source coding

p=0.2
n=10,000

Encoding successful if there exists an exact match for the

non-* part of input string

Pr.{no exact match} < (1 — 27 (1=P)) A mR D 0 if R > (1 — p)
8,000 source bits will induce an exact match w.h.p. if random

codebook size is at least 28900

Bitstream of
length n=10,000

p(0) =p(1) = 0.4
l' p(x) = 0.2

111000011100 % 5k
n(1-p) np

|

100100001010
111101111110
111000011100

(%]
C
e
)
M
(®]
o
©
(0]
(%]
(1]
| -
(]

110101100101




Knowledge of the erasure pattern

Channel coding
m X X m
» Encoder Channel » Decoder
The encoder does l l The decoder knows
not need to knoml//\\the erasure pattern
* % * *
Source coding
X m X
Encoder » Decoder >
The encoder knows The decoder does not
the don’t care need to know the
locations don’t care locations




Duality between source and channel coding:

p(X)

—

X

Optimal w (O
Quantizer p*(X)

pr*X|X) | ¥

REVERSAL OF ORDER

p(X)

C—

X

Channel p * ()% )

p*X|X) | ¥

Given a source coding problem with source distr. ﬁ(X ), optimal quantizer p* (X | X)
distortion measure d (x , x) and distortion constraint D, (left) ,

3 a dual channel coding problem with channel p* (x| X), cost measure w(x), and
cost constraint W (right) s.t.:

(1)  R(D)=C(W);

i) p*(x)= arg max I(X;)A(),

where

p(X):X| X~ p*(x|%), EWsW

wE)=¢,D(p* (x| 2) || Bx))+0

and

W=E,wX).




Duality between source and channel coding

REVERSAL OF ORDER

Optimal PN PP
1) | Quantizer p"(0) — 1) Channel p"(%)
X P | X X | pe® | X

Given a source coding problem with source distribution q(x),
optimal quantizer p*(X]x), distortion measure d(x, X) and
distortion constraint D

There is a dual channel coding problem with channel p*(x|X)
cost measure w(X) and cost constraint W such that

R(D) = C(W)

w(X)=c1D (p* (x]%) |[q(x)) + 6 W = E .y W(X).
Pradhan, Chou and Ramchandran, 2003



Interpretation of functional duality

For any given source coding problem, there is a dual channel
coding problem such that:

e both problems induce the same optimal joint distribution

e the optimal encoder for one is functionally identical to the
optimal decoder for the other

e an appropriate channel-cost measure is associated

Key takeaway

Source coding
distortion measure is as important as the source distribution
Channel coding
channel cost measure is as important as the channel conditional distribution



Duality between
source coding with side information
and
channel coding with side information



Source coding with side information (SCSI):

T

R>H(X|S) X
Encoder — — Decoder —
X S

e (Only) decoder has access to side-information S
eStudied by Slepian-Wolf ‘73, Wyner-Ziv '76, Berger '77

e Applications: sensor networks (loT), digital upgrade,
secure compression.

*No performance loss in some important cases




Channel coding with side information (CCSI):

N
m X Y m
—| Encoder Channel [—| Decoder |—

e x—

. (Only) encoder has access to "interfering” side-information S

e Studied by Gelfand-Pinsker ‘81, Costa ‘83, Heegard-El Gamal '85

e Applications: data hiding, watermarking, precoding for known
interference, writing on dirty paper, MIMO broadcast.

e No performance loss in some important cases




Channel coding with side information (CCSI):

7.\

0 U X Y m

—»| Encoder —ﬁ'};'@% Decoder | —
Y4

Y=U+S+Z

. Encoder (only) has access to interfering” side-information S

e Studied by Gelfand-Pinsker ‘81, Costa ‘83, Heegard-El Gamal '85

e Applications: data hiding, watermarking, precoding for known
interference, writing on dirty paper, MIMO broadcast.

e No performance loss in some important cases




SCSI: binary example of noiseless compression

m X and S=> length-3 binary data (equally likely),
m  Correlation: Hamming distance between X and S at most 1
m E.g:whenX=[010], S=>[010],[011],[000],[110].

X -
—* Encoder —* — Decoder X=X

A | T
S

Case 1 (S at both ends)

Encoder computes e=S+X (mod 2) and sends using 2 bits

Decoder outputs X=S+e (mod 2)

00 =>»
01 =>»
10 =>»
11 =>

000
001
010
100

=X+S

32



X

000
111

Coset-1

Coset-1 00
(00) 1 1
Coset-3 01
1 O

(10) -~

Encoder

Decoder

Case 2: S at decoder only

T
S

Coset-2
(01)

Coset-4
(11)

m Transmission at 2 bits/sample achievable
m Encoder => send index of the coset containing X.
m Decoder => find a codeword in given coset closest to S

Example: X=010, S=110 => Encoder sends message 10

33



CCSl: illustrative example (Binary data-embedding/watermarking)

Y=U+s+x

N
m U X Y m
—| Encoder —>?=?=‘ Decoder |—

S

eS: 3-bit (uniformly random) host signal (e.g. binary fax)

°*mM: message bits to be embedded in the host signal

eMax. allowed distortion between S and embedded host X is 1: dg(X,S)< 1
eClean channel (no attack) model: (Z=0); received signal Y=X

Case: 1. Both encoder and decoder have access to host signal 7 U

. 00 =>»| 000
o Q) How many bits can m be? 01 = 001
o A) 2 bits ‘ 10 =»| 010

11 =»|100




m U

—»

X

N
Y m
—

»

Y=U+S+Z

>? -
Z

Case 2: only Encoder has access to S

Q) Can we still embed a 2 bit message
in S while satisfying d,, (S, X)<17?

eCodebook: partition U into 4 cosets
eEach of 4 messages indexes a coset in U.

eEncoder “nudges” S to closest entry X in
desired coset of U: dH (S,X)<1

eDecoder receives Y=X and
declares coset index of Y as message
sent.

Messages index one of 4 cosets of U:

010
101
Coset-4

{100}
011
(11

Example: S=011, m=01;
01 X=001 (offin < 1 bit)

Coset-3
(10)

000
Coset-1 111
00




Toy example of duality between SCSI and CCSI

(010) (10) (10) (010)
X SCSI ML coset index M | SCSI A
— > —> X

source

Encoder Decoder reconst.

T(correlated source)
A (01
10 . X (010)
M ( )—> Data-hiding | "~ & Data-hiding g/g)
Encoder I —

data to be E?Slzedded Eg;iy Decoder recovered
embedded T (host) data




Duality (loose sense)

CCSI

m Side information at
encoder only

m Channel code is
“partitioned” into a bank
of source codes

m No performance loss in
some important cases
w.r.t. presence of side
information at both ends

SCSI

m Side info. at decoder
only

m Source code is
“partitioned” into a bank
of channel codes

m No performance loss in
some important cases
w.r.t. presence of side
information at both ends




Markov chains, duality and rate loss

[
2
E

D

. /.4

no rate loss

.\\\\\\:

SCSI

— Enc.

X

SCSI




Duality between source coding
& channel coding with side information

Source

source coding with side information (SCSI)

A 4

Encoder

bits bits

v

Internet of Things (loT), video s ing,
multiple description coding, secure co essio

Decoder

Quantized
Source

TSide—information

Side—informationT

Decoder

bits

channel coding with side infor n (CCS
bits
> Encoder Channel” Channel
input output

v

Watermarking, data hiding,

multi-antenna wireless broadcast

Pradhan, Chou and Ramchandan, 2003
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Chapter 2

Cryptography
* Compressing
encrypted data

Mark Johnson Prakash Ishwar

. ,
Vinod Prabhakaran




Cryptography — 1949

* Foundations of modern cryptography
* All theoretically unbreakable ciphers must have the properties of one-time pad

Communication Theory of Secrecy Systems*

By C. E. SHANNON

1. INTRODUCTION AND SUMMARY

HE problems of cryptography and secrecy systems furnish an interest-

ing application of communication theory.! In this paper a theory of
secrecy systems is developed. The approach is on a theoretical level and is
intended to complement the treatment found in standard works on cryp-
tography.? There, a detailed study is made of the many standard types of
codes and ciphers, and of the ways of breaking them. We will be more con-
cerned with the general mathematical structure and properties of secrecy
systems.



Compression of Encrypted Data

“Correct” order

H(X) bits H(X) bits
X g Compress 1 g Encrypt g
Compressed Encrypted and Compressed
5 0.5 bits/symbol 0.5 bits/symbol
Source ~iid B(O. 11) K Cryptograhic
Key
Wrong order?
X ‘ Y ‘ H(X) bits
Source g Encrypt 1 > Compress >
Compressed and Encrypted

Cryptograhic ‘ Encrypted and uncompressed 0.5 bits/symbol?
Key 1 bits/symbol

Johnson, Ishwar, Prabhakaran, Schonberg & Ramchandran, 2004



20+

30+

40}

50+

60}

70+

80+

90~

100

Example

Original Image

10,000 bits

L“l

10 20 30 40 50
10,000 bits

Decoding Compressed

0t
ot
wof
s0f
B0t
70t
ot
g0t

100k

60 70 80

90 100

Image

10 20

30 40 50 60 70 80
Iteration 1

S0 100

20+

30+

50+

601

70+

80

90

100 =

Compressed

Final
Reconstructed
Image

Al

10 20 30 40 50 60 70 80 920 100
10,000 bits

5,000 bits




10,000 bits

Original Image

5,000 bits?

Decoded Image

X B [3) >

Key Insight!
Joint Decoder/Decrypter Reconstructed
Source Y U Source
— Encrypter » Encoder » Decoder » Decrypter - >
X Syndrome - - X
IKey
K Key

« Y =X+ Kwhere Xis independent of K

« Slepian-Wolf theorem:
can send X at rate H(Y|K) = H(X)




SCSI: binary example of noiseless compression
(Slepian-Wolf '73)

X is uniformly chosen from {[000], [001], [010], [100]}

K is a length-3 random key (equally likely in {0,1}3)

Correlation: Hamming distance between Y and K at most 1

Example:whenK=[010l. Y=>[0101.10111.10001.11 1 0l

= X+ A
Y=X K—> Encoder — — Decoder X=X
A | T
K Case 1
Encoder computes X=Y+K (mod 2) 00 =] 000
Encoder represents X using 2 bits 0L =>1001 | —y4K

102|010

Decoder outputs X (mod 2) 11| 100




(Slepian-Wolf '73)

Y X=X
Y — Encoder — — Decoder —
[ooo} i
111
K Case 2
Coset-1

Coset-1 [0 0 O Coset-2 [0 O 1
(00) (01) 1 1 0

11 1
nset-3 m Coset-4 [1 0 O]
@) |[To1| @ lo 1 L

Transmission at 2 bits/sample
Encoder => send index of the coset containing X.

Decoder => find a codeword in given coset closest to K

Example: Y=010 (K=110) => Encoder sends message 10



OXOXOXONONORC,

AY (encrypted)

Y=X+K

Geometric illustration

m

~ | Encoder 1t

—>Signal to decoder

m

—»

Decoder

'k

X (unencrypted &
compressible)



Example: geometric illustration

> OOOOOOLG

X
¢ Side information K

Encoder 1M, _ M | Decoder —)(>

'K



Practical Code Constructions

* Use a linear transformation (hash/bin)
* Design cosets to have maximal spacing
— State of the art linear codes (LDPC codes)
* Distributed Source Coding Using Syndromes (DISCUS)*

*Pradhan & Ramchandran, ‘03
Source

Codewords Bin 1 Bin 2 Bin 3

4 1 L 3

gt
hr
gt

T e o e N T L e B o
i
hr
o
hr
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Chapter 3

Sampling theory
 Sample and compute
efficient sampling (and
connections to learning)

Xiao Li




Sampling theorem

Kotelnikov
1915 1933

Communication in the Presence of Noise

CLAUDE E. SHANNON, MEMBER, IRE

Theorem 1: If a function f(¢) contains no frequencies
higher than W ¢ps, it is completely determined by giving

its ordinates at|a series of points spaced 1/2 W |seconds
apart.

pointwise sampling!

Mathematically, this process can be described as follows.

Let x, be the nth sample. Then the function f(¢) is
represented by

B = _ sinT(2Wt —n)
=Y n IO | g

n=—oo

linear interpolation!




Aliasing phenomenon

Time domain

Frequency domain

Input signal

0

|

.
L
A

p—

- Bandwidth of 1 Hz
/\A/\/ : : f
- : + » | - -
3

N 4

: 0 |

Sampling at rate 1 No aliasing

— can recovery by linear filtering

- [

N £

3 0 |

Sampling at rate 1/2

Spectrum is aliased!

? 3

} i I I - |
() 1 2

| |

() 1 2 3




But what if the spectrum is sparsely occupied?

Frequency domain

I LM oA .

o M W Wa Wi Ws 1GH

5
foce =Y Wi = 100MHz

1=1
Henry Landau, 1967
— Know the frequency support
— Sample at rate “occupied bandwidth” focc (Landau rate)

When you do not know the support?

* Feng and Bresler, 1996

* Luand Do, 2008

* Mishali, Eldar, Dounaevsky and Shoshan, 2011
 Lim and Franceschetti, 2017



Filter bank approach

Input in frequency domain

T

?

: ! no aliasing
Know the frequency support, filter and sample thanks to filtering
Sampling
. o -/ .
? ? ?
a1
Filtering » = 7<‘ -
? ? ?
| | 1/ ?
Y I | - : 7<' - u
? ? ? "

Sampling spectrum-blind?

Requires 2focc. Can we design a constructive scheme? |y and Do, 2008



Puzz\ - (5old hlef

One unknown thief

Steals unknown but
fixed amount from

2T T
-
-
=
?)i |
-
23 /“-:._
5:7\“{.\‘!»
@)-
= S

[ ]

o ® © ® ® © each coin
‘ (o (&) (o (o «
W @
@ @ W @ ) (S S S S . .
e  What is min. no. of
@ e e ~ (@ o o o . L
| | weighings needed ?
100 grams o = @ = @
each
0 @ @ @ @ e 2areenough!
Differential weight
1 1 1 1 N S N N R
1 2 3 4 5 -20 y2

Ratio-test identifies the location



A A A 4
b T v D =% 3 A A A) ¢ .
a hooR a0 R @'\« @:s< o B L Keyldeas:
12 4 5 6 7 8 9 10 1 12 1 Randomly group the treasurers.

2. |If there is a single thief problem
v"  Ratio test

v'  Iterate.
singleton
bin-3

A )
1 |
Mérg Questions:
o) 1. How many groups needed?
@J‘ 9 2. How to form groups?

. ) 3. How to identify if a group has a

single thief?




Main result

Any bandlimited signal x(t) € C whose spectrum has occupancy f,..
can be sampled asymptotically at rate fs = 2f,.. by a randomized
“sparse-graph-coded filter bank” with probability 1 using O( focc) Op-
erations per unit time.

Remarks
* Computational cost O(focc) independent of bandwidth

* Requires mild assumptions (genericity)
* Can be made robust to sampling noise

Ocal, Li & Ramchandran, 2016
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Key insight for spectrum-blind sampling

* To reduce sampling rate, subsample judiciously

subsampling ‘ aliasing

“judicious” filtering/subsampling B “good” aliasing

* Introduces aliasing (structured noise)

* Filter bank derived from capacity-achieving codes for the
BEC: (irregular LDPC codes)

* Non-linear recovery instead of linear interpolation



Filter bank for sampling

,\'gulfil.\'[ |f:| e =wa KN :I:_."l
X(f)
M b & ,
0 — Far
B="

 Sample the signal at rate B

B samples /sec X (e277)
x(t) 7<‘ > L1 i f

0 1
- Filter and then sample at rate B
X(f) M‘ h
l bi Y, / |
H® B samples/sec Y (OJ.Z,T j)
r(t) — 7(‘ e f




Filter bank for sampling

X(f) |
e

( I

B samples/sec

| |

\

M-

| |

Y

x(t)

- i— f

|

A 2L 003N

=lf

Aggregate sampling rate: NfTM = fyr = Nyquist rate for x(t)



‘Sparse-graph-coded’ filter bank

XolH)YX0(f) + - cee Xnoa(f)
X( { -
m filters . I‘ h l_,,‘
N bands ( d |
B samples/sec Yo (ei277)
ololololoMoOdal}l 7N wll _ m-,
0Molololol0 00T} A wn _ |-
01000 0f1000]}F 7N - r
pMmormololo 0[] 2N _ %f,
x(t) 010 OL07000 e - -
0 MomMoloddo 7N Ym-aln] _ ﬂf
/ Y1 (e”*™/)
(0 00000 1 1 0 1 0
01 0000O0CO0GO0 1 Xo(f)
e = |50 8080 Sk where X0 -
0011110000 Xn-1(f)

\1 01010010 1)

m x N matrix



Example — sparse graph underlying the measurements

bands
X channels
}7
A
(0000011010\
B 01 00 0O0O0O0O0 1
< gompy L O 0 0 0 0 1 0 0 0
& YE™) =011 01000 1 1 ol XB
— 0 01 1 1.1 0 0 0 0
\1 01010010 1)

Sparse bipartite graph




Example — sparse graph underlying the measurements

bands channels

visual cleaning for presentation:
remove edges that connect to non-active
bands

= ] Bl o] = >




Example — peeling

bands channels

=l

_ A
I

§

Measurement classification
zero-ton: no signal
no aliasing

multi-ton: aliasing



Example — peeling

bands channels

- Measurement classification
<x() ,
X, (f) ~ zero-ton: no signal
Xa(f) no aliasing

o B (Ml -
Xs(f) multi-ton: aliasing
Xa(f) ‘ C
Xs(f) D Assume a mechanism:
Xo(S) " identifies which channels have
X7(f) o no aliasing (here B and F) and
Xs(f) i maps them to which bands they
Xo(f) came from (here 1 and 4 resp.)




m| =] ol o] =] >

Example — peeling

bands channels

mechanism:

identifies which channels
have no aliasing and maps
them to which bands they
came from

output:

channel B: (red, index = 1)
channel F: (blue, index = 4)

§




Example — peeling

bands channels
| mechanism:

Xo(f)

X.(f) . identifies which channels
Al

o A i have no aliasing and maps
X2(/) B i them to which bands they
Xs(f) - came from
Xa(f C

‘(”‘ — output:
Xs(f) D i channel B: (red, index = 1)
Xeo(f) - channel F: (blue, index = 4)
X7(f) E

- peel from channels they alias into!

Xs(f) F
Xo(f)




Xo(f)

Example — peeling

mechanism:

identifies which channels
have no aliasing and maps
them to which bands they
came from

bands channels

A

B

c
b R

E
S ¥




Xo(f)
X1(f)
Xa(f)
Xs(f)

Xa(f):

Xs(f)
Xe(f)
X7(f)
Xs(f)
Xo(f)

Example — peeling

bands channels

=] =] el o] =]

mechanism:

identifies which channels
have no aliasing and maps
them to which bands they
came from

output:

channel D: (green, index = 8)
channel E: (cyan, index = 5)




bands

Example — peeling

channels

=] =] el o] =]

mechanism:

identifies which channels
have no aliasing and maps
them to which bands they
came from

output:

channel D: (green, index = 8)
channel E: (cyan, index = 5)

peel from channels they alias into!



Xo(f)
X1(f)
Xa(f)
Xs(f)

Xalf)

Xs5(f)
Xe(f)
X7(f)
Xs(f)
Xo(f)

Example — peeling

bands channels

A

=] =] ol o] =

mechanism:

identifies which channels
have no aliasing and maps
them to which bands they

came from
signal is completely recovered!




Realizing the mechanism

Identify which channels have no aliasing and map them to bands

same magnitude response
‘stairs’ phase response

Hy(f) | h

magnitude

phase

fm

T~

/\

A

phase sta

e

irs

1

0

fm

/

identifies dark blue band as a singleton

Hsy(f)



Construction of the sparse-graph code

bands

P(degree =j) o
D> 1/e

-1

S
:

channels

,forj=2,..,D +

Luby et al. 2001

1

e Designed through capacity-
approaching sparse-graph codes

e Connect each band to channels at
random according to a carefully
chosen degree distribution.

e Asymptotically, number of channels
is (1 + €) times the number of
active bands

Degree distribution fore = 1/20
®

o
I

0.0 TT?”—'—‘-‘-‘-‘-‘J—.—.—.—.—.—.—.—.—
0 2 4 6 8 10 12 14 16 18 20 22
degree

Fraction of bands



Construction of the sparse-graph code

bands channels Variable nodes Check nodes

S
3 3

O
O

Regular graph construction:
Connect every variable node to
d check nodes chosen uniformly
at random




Density evolution

Active
bands

K

“example: d=4

Regular graph construction:
Connect every variable node to
d check nodes chosen uniformly
at random



Density evolution

example: d =4

e Pick an arbitrary edge in the graph (c,v). /

Regular graph construction:
Connect every variable node to
d check nodes chosen uniformly
at random



Density evolution

e Examine its directed neighborhood at depth-2¢

example: d =4



Density evolution

example: d

e Examine its directed neighborhood at depth-2¢



Density evolution

C
pﬁ Probability of being present at depth 2¢
(V)
The variable node v can be resolved if any
- N / of these check nodes can be resolved

A check node is resolved from below if all
of the variable nodes connected to it
from below are resolved




Density evolution

C
pﬁ Probability of being present at depth 2¢
(V)
The variable node v can be resolved if any
- N / of these check nodes can be resolved

A check node is resolved from below if all
of the variable nodes connected to it
from below are resolved

Pe =



Density evolution

pﬁ Probability of being present at depth 2¢

The variable node v can be resolved if any

]/ AN / of these check nodes can be resolved

A check node is resolved from below if all
of the variable nodes connected to it
from below are resolved

Power 3 is because the check node has 3
variable nodes as children



Density evolution

C
pﬁ Probability of being present at depth 2¢
(V)
The variable node v can be resolved if any
- N / of these check nodes can be resolved

A check node is resolved from below if all
of the variable nodes connected to it
from below are resolved




Density evolution

C
pﬁ Probability of being present at depth 2¢
(V)
The variable node v can be resolved if any
- N / of these check nodes can be resolved

A check node is resolved from below if all
f the variable nodes connected to it
oW are resolved

Pe = [1 — (1 —W—1)3] X [1 —(1 —p£—1)2] X [1 - (1 —pe_1)2}




Density evolution




Density evolution

example: d =4

pe=[1-0=-pe i f1- 0 —@\x/p— (-

Regular graph construction:
Connect every variable node to . Number of children of check

d check nodes chosen uniformly nodes has Poisson distribution
at random with mea /M

(kdy’ 3

M ~Epp-

] (1- P€—1@: e MPi1

Kd
Pr{a check node is resolved} =2 e M
c



Density evolution

example: d =4

pe=[1= (1= pea)?] % [1= (L= pe1)?] % [1= (L= prr)?]

_ —K—dp{;_l)d_l  Needp, P 0ast = .
pp=1l—-e M e Choose K M and d so that
p, goes to zero!




Density evolution

EXIT Chart

0.9
d=3
l M = 1.23K

0.7F

EEEEE®m po — ]_

0.6}
EEEEEEER

f(p)

0.4F
0.3}

0.2

01F

| | 1 1 |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

e K=# of active bands
( _Ka )d—l e M= # of channels
Stephan ten Brink ‘99 pp=\1—e M"" * d=left degree (# of edges

Richardson & Urbanke ‘08
ichards from bands to channels)




Density evolution

Set:

e M=(1+¢e)K

 D>1/e

* Node degree distribution P(degree = j) = %j(jl—l)’ forj=2,..,D+1
D+1 .

1 1 d
=—— ) — \1— e TFeP oes to zero!
Dy H(D)sz—l(l e 1+e ) Pr g

]:




Pr+1

1.0 -

0.8 -

0.6 -

0.4 -

0.2 -

0.0 -

Density evolution

EXIT chart

0.0 0.2 0.4 0.6 0.8 1.0
Ds




Pr+1

Density evolution

EXIT chart

1.0 -

0.8 -

0.6 -

0.4 -

0.2 -

0.0 -

0.0

0.2

0.4

D¢

0.6

0.8

1.0




Algorithm analysis

e Density Evolution

— assumes that the directed neighborhood is a tree

— tree-based average analysis

Density evolution equations

pp can be made arbitrarily small with O(1) number of iterations




Algorithm analysis

e Density Evolution

— assumes that the directed neighborhood is a tree

— tree-based average analysis

Density evolution equations

pp can be made arbitrarily small with O(1) number of iterations

"

Kd(1 — p;) edges removed A




Algorithm analysis

Performance concentration:
* Actual performance concentrated around the density evolution
» P(|#of actual remaining edges — Kdp,| > €,) - 0, Ve, > 0

Kd(1 — p;) edges removed A




Algorithm analysis

?

®
o ) Kd(1 —p;) edges removed (& Kdp, edges remain
’ S—

Kd edges to be rem



Algorithm analysis

e Expander Graph

— the remaining Kdp, edges form an expander graph

— expander graphs guarantee steady supplies of single-tons

ALL non-zero coefficients recovered w.h.p.

Kd(1 — p;) edges removed ! *

Kdp, edges remain




Back to sub-Nyquist sampling: Numerical experiment

Input spectrum and time domain signal Output from two sample channels
100 T T T T
8 S 0.05 —
2 s |
€ 50 o 0 I [
© Q
§ : |
0 : ! : . Il 1 1 1 1
0 0.2 0.4 0.6 0.8 1 2008 -500 0 500 1000
frequency sampling instant [Nyquist rate]
g 2 o 0.15
= >
g 1 3T o
% 0 % 0.05 +
&1 E 0 |
® -2 ; : : : » -0.05 — ' : : :
-1000 -500 0 500 1000 -1000 -500 0 500 1000

sampling instant [Nyquist rate] sampling instant [Nyquist rate]

I true signal O estimates

D

Sl T Tﬂ T???T?%?m@
4

Number of channels M = 284 s l L (l;l{i
e Sampling rate fg = 0.284 h

-0.6

LD
T

e Lebesgue measure fr = 0.1

Number of slices N = 1000

[}
sample value
o
! \.4

o
=N

_08 1 1 1 1 1 1 1
-40 30 20 10 0 10 20 30 40
sampling instant [Nyquist rate]



Interesting connection

Coding theory Sampling theory

Sparse-graph coded filter bank
* Minimum-rate spectrum-blind sampling

* Coding theory and sampling theory
— Capacity-approaching codes for erasure channels

— Filter banks that approach Landau rate for
sampling

97
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-+

“Peeling-based”

+ >

turbo engine

-+

Sparse-Graph Code \

Divide

“Solve-if-trivial”
Concur sub-engine



Broad scope of
applications

Pedarsani, Lee, R., 2014

Compressive
phase
retrieval

Sparse
mixed linear
regression

Yin, Pedarsani, Chen, R., 2016

Sub-Nyquist
sampling
theory

Sparse-graph

codes

Compressed
sensing

Ocal, Li, R., 2016

Pawar, R., 2013
Li, Pawar, R., 2014

Sparse
Spectrum
(DFT/WHT)

Fast
neighbor
discovery for
loT (group
testing)

Lee, Pedarsani, R., 2015

Li, Pawar, R., 2014



Broad scope of Ocal, Li, R., 2016

applications

pp Sub-Nyquist

Pedarsani, Lee, R., 2014 sampling Pawar, R., 2013
theory

Li, Pawar, R., 2014

. Sparse
Compressive
e Spectrum
retrieval (DFT/WHT)
Sparse-graph
codes
Fast
Sparse neighbor
mixed linear discovery for
regression loT (group
testing)
. . Compressed _
Yin, Pedarsani, Chen, R., 2016 . Lee, Pedarsani, R., 2015
sensing

Li, Pawar, R., 2014
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Speeding up learning
and sparse recovery
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Motivation

e Given training data points (z,y), our goal is to learn

(z : feature,y : label)

Dataset



Motivation

¢ Given training data points (z,y), our goal is to learn

— a certain rule f that explains the label y based on features z:

(x : feature, y : label)

X ) y = f(x)

Dataset



Motivation

¢ Given training data points (z,y), our goal is to learn

— a certain rule f that explains the label y based on features z:

(x : feature, y : label)

i

' (e.g. area, bedrooms)

y = f(x)

(e.g. house prices)

Dataset



Motivation

e Given training data points (z,y), our goal is to learn

— a certain rule f that explains the label y based on features z:

(z : feature,y : label)

ﬁx

(e.g. area, bedrooms)

y = f(x)

(e.g. house prices)

Dataset

e Questions of interest

— Sample complexity: how many data points do we need?
— Computational complexity: how much time does it take?



Motivation

e Given training data points (z,y), our goal is to learn

— a certain rule f that explains the label y based on features z:

(z : feature,y : label)

ﬁx

(e.g. area, bedrooms)

y=f(x)+e

(e.g. house prices)

Dataset

e Questions of interest

— Sample complexity: how many data points do we need?
— Computational complexity: how much time does it take?
— Robustness: how accurate and stable is it?



Motivation

¢ Given training data points (z,y), our goal is to learn

— a certain rule f that explains the label y based on features z:

(x : feature, y : label)

i

' (e.g. area, bedrooms)

y=fx)+e

(e.g. house prices)

Dataset
e.g. f(z1,22) = a1z +asxa + b

Problem Dimension N = 3



Motivation

¢ Given training data points (z,y), our goal is to learn

— a certain rule f that explains the label y based on features z:

(z : feature,y : label)

' (e.g. area, bedrooms)

y=fx)+e

(e.g. house prices)

Dataset
e.g. f(.']:l, CBQ) =a12T1 + asxy + b

EASY! Problem Dimension N = 3



Motivation

¢ Given training data points (z,y), our goal is to learn

— a certain rule f that explains the label y based on features x:

(z : feature,y : label)

' (e.g. area, bedrooms)

y=fx)+e

(e.g. house prices)

Dataset
e.g. f(.']:l, CBQ) =a12T1 + asxy + b

However... Problem Dimension N = 3



Motivation

¢ Given training data points (z,y), our goal is to learn

— a certain rule f that explains the label y based on features x:

(z : feature,y : label)

' (e.g. area, bedrooms)

y=fx)+e

(e.g. house prices)

Dataset
e.g. f(.']:l, CBQ) =a12T1 + asxy + b

In reality... Problem Dimension N = 3



Motivation

¢ Given training data points (z,y), our goal is to learn

— a certain rule f that explains the label y based on features z:

(z : feature,y : label)

) y=f(x)+e€

Dataset

e'g' f(x) %WTJ”“”V WY, — (qwi?+qﬁ><vq>+ll);:)

1 — —
+ = V,[pu*w'w? + (g"w7 + g*w)P — w'ieu) — wig™(u')]
p

In reality... VL - T <
D (T'\? T\* T 1 T'\? l+e, (T
1 +ey) > <?> —2f(t)<?> —2w* Ed D, + W V1|:(1 + e,)2C2pw' (?) :|+ pe <T> V.(pu'®)
2

il =

T DP; )
7C7[PVW V(Pw)——:lprc?[ P Wouy — V. F] = —e,
R
1 ! 1+ 1
+p—C,, [(1+ 4)C, P ’17:] E —V(p )+T—CW|:PV * — V(Pyw )—%]

Problem Dimension N — oo

— [0 W)V, W + ")V, w'] = —€f,



Motivation

¢ Given training data points (z,y), our goal is to learn

— a certain rule f that explains the label y based on features z:

(z : feature,y : label)

) y=f(x)+e€

Dataset
e'g' f(x) = DBWWJrwwv WY, *(qwi:+qﬁ><v¢+iz)
po ly (N) 42 VLA 4 G WP~ W) — W)
L ) — PGV F gV = — + [V + PV, W = el
sample cost ’ ;
[ . +e4)2@_2ﬂ0@_2w LD* ;—sz[“*’e )Zczp@}rlqu
run-tlme Dt \T T T (1 + e)pC T 5
%%[PVW V(PW)—E:I,I)TC?[ W,y — V,F] = —e,
(1+e4)[ ( > w ( ) ( )} f(ew" —_w‘ WiwD,
+p% [(1+ 4)C, P 7;] 1+ » —V(p )+%CW[PV * V(P w )_%]

Broblem Dimension N Problem Dimension N — oo



Motivation

e Given training data points (z,y), our goal is to learn

— a certain rule f that explains the label y based on features z:

(z : feature,y : label)

Dataset

poly(IV)
sample cost
run-time

Problem Dimension N




Motivation

e Given training data points (z,y), our goal is to learn

— a certain rule f that explains the label y based on features z:

(z : feature,y : label)

Dataset
oly(IN
poly(N) What if
sample cost — we can actively choose training data
run-time

— the model has sublinear d.o.f

Problem Dimension N



Motivation

e Given training data points (z,y), our goal is to learn

— a certain rule f that explains the label y based on features z:

(z : feature,y : label)

oly(N
poly(NV) What if
sample cost — we can actively choose training data
run-time — the model has sublinear d.o.f.
Sub-linear Cost Can we achieve fast & robust learning

with active sampling + coding theory?

Problem Dimension N



Applications

®—— Digital Samples

NTERNET ™
T S[HNGS

Machine Learning Computational Imaging loT



Sparse
Spectrum
(DFT/WHT)

Sparse-graph

codes

Sameer Pawar
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Learning polynomials: HS algebra edition

— f(z) >f(7;)

Q.How many evaluations do we need?

A.N evaluations

y
| ’ y=x?
y = a+bx+ex?pdx +ex* +x +gx®+hx”
Roots
. ‘af& T /— (or Zeros)




Recovering the coefficients

N-1
e Given f(x) = Z F,x"
n=0

e Find coeflicients {Fn ﬁ;ol

YI f(Xo) 1 Xo
o f(X7) 1 X,

f(CIZ) :F19£U19—|—F183718—|—'°'—|—F0 f(X2) — 1 X2
f(Xq9) I Xig

inverse Discrete Fourier Transform (DFT)

. . 27
if X, =e'v™m




What if only K of N coeffs. non-zero?

ri——s f(z) ——f(z;) Ksublinearin N (K/N=>0)

Yl

fx)=Fyn_12" "+ Fy_oz" 7+ 4+ K

T Ty Ty Tpy-1 X

Example:
Degree N= 1 million
Sparsity K =200

(spoiler alert)
# evalulations = 616 (= 3K)
computations = O(K log K)



Discrete Fourier Transform (DFT)

Compute the DFT of z € CV:

N—1
1
\/—_ X
N k=0
?
® * * ®
TLN [ TL { Hr%
FFT Algorithm
Sample complexity: N

Computational cost: O(N log N)

What if only K out of N Fourier
coefficients are non-zero?

Example:

Length N = 1 million
Sparsity K =200

(spoiler alert)

# evalulations = 616 (= 3K)
computations = O(K logK)




Problem Formulation / Results

Compute the K-sparse DFT of z € CV with K < N:

1 :
xin| = —— Xlkle' ¥ " n=0,---,N—1
)= 5 DXk

Support K chosen from [N| uniformly at random

FFAST (Fast Fourier Aliasing-Based Sparse Transform)
* Noiseless: For K sublinear in N
* Uses fewer than 4K samples
* O(Klog K) computation time
e Robust to noise: O(K log®? N) samples in O(K log”/3 N) time

Sub-linear time recovery when d.o.f. sublinear!

Pawar, R, I[EEE Trans. Inf. Theory, 2018



Aliasing

Signal and its spectrum X
(j) t Wy W)y

Sampling

X
/// \\\ //YZ\ ~ / xpt jf
A1 e YAVAVAVAVAN
[ |
0 =y, 11 @ T
(c) (w, — wy)
Sub-sampling
0
P 1] SO x(M) 1
/// \\\ //YZ\\\ / Xo(t) T
/1‘ § f Ry —/\M\J\N\/
i 1 L /I /'\‘. ;')‘\ 1‘.\\ 1).\ | /'A\ .'/.\ /'A\
0 t 0 \ W
\‘l



Insights

Aliasing in the
frequency domain

Sub-sampling
below Nyquist rate

Good “alias” code

Clever sub-sampling ‘

(for sparse case)

Chinese-Remainder-Theorem

Sparse graph codes
guided subsampling

We use coding-theoretic tools

Design:

 Randomized constructions of good sparse-graph codes
Analysis:

* Density evolution, Martingales, Expander graph theory...



Main idea

time-domain x[n], length N = 20 frequency-domain X[ k], sparsity K = 5
X[13] =7
i °
o ! ? . X[3] =4
X[10] =3

T Th [ T I HT T X[l]T=1X[5T]:1
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i °
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T Th [ T I HT T X[l]T=1X[5T]:1
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(length = 20)
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Main idea

time-domain x[n], length N = 20 frequency-domain X[ k|, sparsity K = 5
X[13] =7
' .
e ! T oo X[3] =4

T TN [ JT I HT T X“}le[?]:l

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 <:DFT:> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
(length = 20)

15

subsample by 5

I { Our Measurements

Crrorr e SEDRLSY U0) U] U2] U3



time-domain x[n], length N = 20

Main idea

frequency-domain X[ k]|, sparsity K = 5

X[13] =7

T *

o ! ? ’ X3 =4

X[10] = 3
il { 1] [ |
s Tl il It
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 <:DFT:> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
(length = 20)

15

subsample by 5

]

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Temsn=ay U[0] U] U2l U3



Main idea

time-domain x[n], length N = 20 frequency-domain X[ k], sparsity K = 5
X[13] =7
T °
o ! ? ’ X[3] =4

T TN | TL [ Hv T XMT{X[STHX“T

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 <:DFT:> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
(length = 20) \

1) =

15

subsample by 5
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Main idea

time-domain x[n], length N = 20 frequency-domain X[ k], sparsity K = 5
X[13] =7
? °
e ! ? . X[3] =4
{ X[10] = 3
T J I [ 1)1 [ | [ 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 <:DFT:> 11 12 13 14 15
(length = 20) /

15

subsample by 5




Main idea

time-domain x[n], length N = 20 frequency-domain X[ k], sparsity K = 5
. X[13] =7
e ! * X[3] =4
X[10] = 3
il { I {
Ll ULl ] ] e ]] R
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 <:DFT:> 000000000000 11 12 13 14 15 16 17 18 19

(length = 20) \ |
¢5 N /

subsample by 5

I{N = .
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zero-ton



Main idea

time-domain x[n], length N = 20 frequency-domain X[ k], sparsity K = 5
X[13] =7
’ K
o ! I X[3] =4
X[10] = 3
il { I {
Ll ULl ] ] e ]] R
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 <:DFT:> 000000000000 11 12 13 14 15 16 17 18 19

(length = 20) \ |
¢5 N /

subsample by 5

W{I = .

T el DEL S gl U] U] U3

zero-ton multi-ton



Main idea

time-domain x[n], length N = 20 frequency-domain X[ k], sparsity K = 5
X[13] =7
’ .
o ! T X[3] =4
X[10] =3

T Th [ T I HT T X[l]TZIX[5T]:1

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 <:DFT:> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(length = 20) \ |
" N /

subsample by 5

| | = .
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zero-ton multi-ton single-ton singl]e-ton



Main idea

time-domain x[n], length N = 20 frequency-domain X[ k], sparsity K = 5
X[13] =7
’ .
o ! oo X[3] =4
X[10] = 3

T Th [ T I HT T X[l]TZIX[5T]:1

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 <:DFT:> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
(length = 20)

$5 X[1] X[3] X[5] X[10] X[13]

subsample by 5

| | =

S e DR o i U Ul U3

zero-ton multi-ton single-ton singl]e-ton



Main idea

time-domain x[n], length N = 20 frequency-domain X[ k|, sparsity K = 5
X[13] =7
' .
e ! T oo X[3] =4
X[10] =3

T Th [ T I HT T X[l]TZIX[5T]:1

001 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 <:DFT:> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
(length = 20)

$5 X[1] X[3] X[5] X[10] X[13]

shift and subsample by 5

x ’ Our Measurements

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ls 16 17 18 19 DFT
<Tength :Tf Us [O] Us[l] Us [2] Us [3]
subscript Ug suggests shift



T

time-domain x[n], length N = 20

Main idea

frequency-domain X[ k], sparsity K = 5

X[13] =7

o ! T X[3] =4
X[10] = 3

T Th [ T I HT T X[l]TZIX[5T]:1

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 <:DFT:> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(length = 20)
495 WX[1] wPX[3] WX[5] w°X[10] w'3X[13]
shift and subsample by 5
w = €—j§—§

T

r B

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 DFT
<Tength :Tf US[O] Us[l] US[2] US[?’]

zero-ton multi-ton single-ton single-ton



Stage 1
downsample by 5

Main Idea




Main Idea

Stage 1 Ulo] |Us|0]
downsample by 5 DFT
_ U] |\Us[1]
X[13 B
U[2]|Us(2]
X[10
B v s




Main Idea

single-ton

Stage 1
downsample by 5

single-ton

X[13
multi-ton
X10
sero-ton
X 5]
X0 sero-ton
. [1] multi-ton
sero-ton
Stage 2 single-ton

downsample by 4

multi-ton

DFT

DFT




Main Idea

single-ton

Stage 1
downsample by 5

single-ton

X[13
multi-ton
X10
sero-ton
X 5]
X0 sero-ton
. [1] multi-ton
sero-ton
Stage 2 single-ton

downsample by 4

multi-ton

DFT

DFT




Main Idea

single-ton

Stage 1
downsample by 5
single-ton
X[13
multi-ton
X[10
zero-ton
X[5] multi-ton ==
zero-ton
X3
multi-ton decoder
X 1] —]
zero-ton
Stage 2 single-ton T
downsample by 4

multi-ton




Main Idea

single-ton

Stage 1
downsample by 5

single-ton

X[13
multi-ton
X[10
zero-ton
X15]
zero-ton
X3
multi-ton
X 1]
zero-ton
Stage 2 single-ton

downsample by 4

multi-ton

decoder




Main Idea

single-ton

Stage 1
downsample by 5

single-ton

X[13
multi-ton
X[10
zero-ton
X15]
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zero-ton
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downsample by 4
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Main Idea

single-ton

Stage 1
downsample by 5

X[13
multi-ton
X[10
zero-ton
X[5]
zero-ton
X3
multi-ton decoder
X 1]
zero-ton
Stage 2 single-ton

downsample by 4
single-ton



Main Idea

Stage 1
downsample by 5

X[13] &

sindletiton

zero-ton

multi-ton decoder

Stage 2
downsample by 4

_
_
_
. zero-ton pee]ing
l
l
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Main Idea

Stage 1
downsample by 5

\. single-ton

X[10

zero-ton
X|5]

zero-ton
X (3]

single-ton
x{1] g

zero-ton

Stage 2
downsample by 4

peeling
decoder




Stage 1
downsample by 5

Main Idea

zero-ton

zero-ton

zero-ton

zero-ton

zero-ton

zero-ton

zero-ton

peeling
decoder

zero-ton



Sparse DFT Computation = Decoding over Sparse Graphs

erasure#1
erasure#2 .
erasure##3
erasure#£4

erasure#o

erased parity
symbols/packets checks

non — zero DFT #1
non — zero DFT #2 .
non — zero DFT #3 :
non — zero DFT #4

non — zero DF'T #b5

NoN-zero
DFT Coefficients

aliased
frequency bins



CRT-guided Subsampling Induces Good Graphs

L] [] 0
1

L 1 5 mod 4
5) 5 .
0
1

; ] 3 > mod>5
Balls-and-Bins Model Chinesg-Remainder-Theorem 3
in Sparse-Graph Codes ] induced graph 4

LDPC codes

Density evolution, Martingales, Expander graph theory

Chinese-Remainder-Theorem:
A number between 0-19 is uniquely represented by its remainders modulo (4,5)

> The two graph ensembles are identical.




N =100x103x107; K= 200; M = 600

Shift & Subsample by DFT
100x103 107-length

Subsample by | a DFT a
100x103 107-length
é

|

Peeling
Decoder




N =100x103x107; K= 200; M = 600

Subsample by | a DFT a

100x103 107-length

Shift & Subsample by DFT

100x103 =>(107-length  [~T>

Sub leb DFT Peeling
ubsample by .

100x107 > 103-length > Decoder

Shift & Subsample by DFT

100x107 =>|103-length |~

Subsample by . a DFT a

103x107 100-length

Shift & Subsample by DFT

103x107 =>(100-length =




Sparse polynomial learning

E.g. deg. N=1 million
Sparsity K= 200

Hevals. VI = 616

N=100x103x107
K= N1/3
=2*(100+103+107)-4

What if only (very few) K of the N .
polynomial coeffs.{F, } are non-zero?




Noiseless setting: Theory vs. practice

"| theory [ practice N=7.7 million
| Kk=s0

|’ +++++ © M=128samples -
ool 4 S R R R N

o
2

I
'S

Probability of success

o©
)

o
o

J' ;;;;;;; ;;;;;;; _______ ______

o

Samples/Sparsity

Il Il L L L L L L L L L
2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

0.75
Pt+1 0.50
0.25

0.00

1.00 =—— 1.0
—— 1.23 ‘Ll
— 1.5

Pt+1 = (1 - e_gpt/#)z

0.00 0.25 0.50 0.75 1.00

Pt
Fraction of non-zero
coefficients not recovered
at time t

Theory is by using density evolution equations



From Noiseless to Noisy

® \ ® \ ®
2> >
& &
e
©°

Noisy - R-FFAST

Use
more
shifts




Magnetic resonance imaging

Fourier Transform

FFT/IFFT



Numerical Phantoms for Cardiovascular MR

ETH Littp://www.biomed.ce.ethz.ch/research/bioimaging/cardiac/mrxcat

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich 336 = 16 x 21

323 =17 x 19



Numerical Phantoms for Cardiovascular MR

temporal difference across different frames of the phantom



Real Time Reconstruction in MATLAB on a Macbook

Q Search Docum

JL B New Variable < Analyze Code O
4 [JFindFiles %) Llg ‘ ‘L—\‘
[» Open Variable = i~ Run and Time
en | | Compare Import Save 2 P < Simulink =~ ENVIRONM|

Data Workspace [, Clear Workspace = |° Clear Commands = Library

E VARIABLE CODE SIMULINK
./ » Users » frankong » Documents » MATLAB » FFAST »
® Command Window

@) Workspace

fx >> heart_test Name & Value
1 Bins [9177,¢
1 C 1
ay.eps HHD 2
ay.mat N 2
FFT1Dtest.m 1 SNRdB 100
it i bininds <1x69
st.m 1 binSig... <2x30
(- brain 1
.eps
fig Command History
kav.mat T T
v clc
clear
clcl
clc
heart_test
clc
ile to view details eleaxr
clc
heart_test
clc

Measurements: 35.33% of Nyquist rate



MRI Viewfinder

Canon, 2000

\ Real-time MRI with viewfinder




Sameer Pawar

Orhan Ocal

Simon Li

Chapter 4
(part 2)

Speeding up learning
and recovery of
pseudo-Boolean
functions




Walsh-Hadamard Transform (WHT)

* N- pomt Dlscrete Fourier Transform (DFT)

ZF R =0, N — 1

* N- point Walsh-Hadamard (WHT) with N = 2™

Z F <k m> m < {()7 1}” Equivalent to a high-dim. DFT
ke{0,1}n over the hyper-cube

* F[k] is sparse in many machine learning applications:
— Decision tree and regression tree
— Evolutionary biology
— Hypergraph sketching




WHT: polynomial interpretation

Z FIK](—=1)%™  m e {0,1}"

ke{0,1}"
« Set x; = (—1)™ to get a multlinear polynomial f:{—1,1}" - R
l

Ex. n = 2:
f(xl,xz ) = F01 r F1X1 + F2X2 o F3X1X2

Ex.n = 3:
f(x1,%0,%3) = Fogl + Fyx; + Fox, + F3xyx, + Fyxgs + Fexix3 + Fgxox3 + F7x1X5%3

1-1 mapping between WHT coeffs. F;’s and the evaluations
of f(xq, x5, x3) atx; = (—1)™u



Recovering the function

f(1,1) 1 1 1 1]|[ Fy ]
Example for f(—l, 1) . 1 —1 1 —1 F{l}
F{-1,1¥* SR f(1,-1) 1 1 -1 -1 Fia
f(—1, —1)_ 1 -1 -1 1] [Fp2)




Polynomial recovery
Recover the polynomial f: {—1,1}"* > R

Example forn = 3:
f(x1,%9,%3) = Fgl + Fyxy + Fox, + F3xyx, + Fyxg + Foxix3 + Fgxox3 + Fpx1x,X3

What if only K out of N WHT coeffs.

input f
(1,1,...,1) a1, .. 1) are non-zero?
(1,1,...,-1) f(1,1,...,—1) Ex:  No. of variables n=30
No. of input combinations N= 1 billion
Sparsity K =64

Evaluate the function at every point

Sample complexity: N = 2" # evalulations =2600 (= 1.23Kn)




Main Result

Example forn = 3:

f(xl,xz,xg) = F01 + lel + szz + F3X1X2 + F4X3 + F5X1X3 + F6X2x3 + F7X1X2X3

We can learn f:{—1,1}" —» R whose spectrum is K-sparse:
* with a sample complexity of O0(nK)

* with a computational complexity of 0(nK logK)
e can be made robust to noise

n = log(N)

Insights:
Aliasing in the

) li
Sub-sampling ‘ WHT domain
Clever sub-sampling ‘

Good “alias” code
(for sparse case)

(Sparse graph codes)

Li, Pawar, Bradley, Ramchandran, 2015 165



Walsh-Hadamard Transform

Equivalent to a high-dim. DFT
over the hyper-cube

WH domain

“time” domain




Walsh-Hadamard Transform

“time” domain WH domain




Walsh-Hadamard Transform

“time” domain WH domain




Walsh-Hadamard Transform

“time” domain WH domain




ergraph Sketching
n = # of books

s = # of sale patterns

~
O

Frequently Bought Together
Price for all three: $31.75
to C: I
to Wish List
Show availability and shipping details
¥ This item: Twilight (The Twilight Saga, Book 1) by Stephenie Meyer Paperback
$10.29
& New Moo n (The Twilight Saga) by Stephenie Meyer Paperback $10.07
¥ Ec clipse (The Twilight Saga, Book 3) by Stephenie Meyer Paperback $11.39

AR

2"~ 107 possible hyperedges
if n =30

e recover all sale patterns (hyperedges) without logging every transaction?

e sketch the cuts of the graph instead!



WHT — Hypergraph Sketching
n = # of books

=1 s = 4 of sale patterns

Frequently Bought Together

MSIDE INSIDE
¥
Yy A

& This item: Twilight (The Twilight Saga, Book 1) by Stephenie Meyer Paperback
$10.29

& New Moon (The Twilight Saga) by Stephenie Meyer Paperback $10.07

Price for all three: $31.75

a

Show availability and shipping details

4 Eclipse (The Twilight Saga, Book 3) by Stephenie Meyer Paperback $11.39

2" ~ 10" possible hyperedges
if n =30

e recover all sale patterns (hyperedges) without logging every transaction?

e sketch the cuts of the graph instead!

consider a cut :

Tr=e = s = A — cut value f(x) =0

Te = -+ =T5 = —1
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ergraph Sketching

n = # of books

s = # of sale patterns

Frequently Bought Together

Price for all three: $31.75

a

Show availability and shipping details

¥ This item: Twilight (The Twilight Saga, Book 1) by Stephenie Meyer Paperback

$10.29

& New Moo n (The Twilight Saga) by Stephenie Meyer Paperback $10.07
¥ Ec clipse (The Twilight Saga, Book 3) by Stephenie Meyer Paperback $11.39

2"~ 107 possible hyperedges
if n =30

e recover all sale patterns (hyperedges) without logging every transaction?

e sketch the cuts of the graph instead!

consider a cut :

ajll_...

=210 = +1

— cut value f(x) =1




=
I
—]
|
N
~<
©
(D
=

graph Sketching
9 n = # of books

s = # of sale patterns

Frequently Bought Together

MSIDE INSIDE
¥
Yy A

& This item: Twilight (The Twilight Saga, Book 1) by Stephenie Meyer Paperback
$10.29

& New Moon (The Twilight Saga) by Stephenie Meyer Paperback $10.07

Price for all three: $31.75

a

Show availability and shipping details

4 Eclipse (The Twilight Saga, Book 3) by Stephenie Meyer Paperback $11.39
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V9944

2" ~ 10" possible hyperedges
if n =30

e recover all sale patterns (hyperedges) without logging every transaction?

e sketch the cuts of the graph instead!



ergraph Sketching
n = # of books

s = # of sale patterns

~
O

Frequently Bought Together

& !!
& A

& This item: Twilight (The Twilight Saga, Book 1) by Stephenie Meyer Paperback
$10.29

& New Moon (The Twilight Saga) by Stephenie Meyer Paperback $10.07

Price for all three: $31.75

Add all three to Cart |

Add all three to Wish List

Show availability and shipping details

4 Eclipse (The Twilight Saga, Book 3) by Stephenie Meyer Paperback $11.39

2" ~ 10" possible hyperedges
if n =30

AR

e recover all sale patterns (hyperedges) without logging every transaction?

e sketch the cuts of the graph instead!

e Generally speaking, we have the cut function

(z) 3 1 1 1
L) = — — —T1Tg — =T9T14 — =T22T
5 — g¥1l2 T 5¥oTia — 5dL22da3

~~



ergraph Sketching
n = # of books

s = # of sale patterns

~
O

Frequently Bought Together

& ’l
& A

& This item: Twilight (The Twilight Saga, Book 1) by Stephenie Meyer Paperback
$10.29

& New Moon (The Twilight Saga) by Stephenie Meyer Paperback $10.07

Price for all three: $31.75

Add all three to Cart |

Add all three to Wish List

Show availability and shipping details

4 Eclipse (The Twilight Saga, Book 3) by Stephenie Meyer Paperback $11.39

2" ~ 10" possible hyperedges
if n =30

R L CKN
V9944

e small # of sale patterns s < n

> e K-sparse polynomial

e small # of items per sale d < n o K < 520-1

e Generally speaking, we have the cut function

() 3 1 1 1
T) = — — —XT1Tg — =T9T14 — =T22T
5 ¥l T 5¥oTia — 52223

~~



ergraph Sketching
n = # of books

s = # of sale patterns

~
O

Frequently Bought Together
Price for all three: $31.75
to C: I
to Wish List
Show availability and shipping details
¥ This item: Twilight (The Twilight Saga, Book 1) by Stephenie Meyer Paperback
$10.29
& New Moo n (The Twilight Saga) by Stephenie Meyer Paperback $10.07
¥ Ec clipse (The Twilight Saga, Book 3) by Stephenie Meyer Paperback $11.39

2"~ 107 possible hyperedges
if n =30

A K

sub-sample cuts recover hyperedges

e Generally speaking, we have the cut function

() 3 1 1 1
T) = — — —XT1Tg — =T9T14 — =T22T
5 ¥l T 5¥oTia — 52223

~~



WHT — Hypergraph Sketching
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n = 50 books
d = 2 items/sale

s = 250 sale patterns

e total cut values 2" = 2°0

e sparsity K < 52971 = 500

e # of cut queries O(Kn) ~ 25000




WHT — Hypergraph Sketching
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n = 50 books e total cut values 2" = 2°0
d=2 items/sale e sparsity K < 52971 = 500

s = 250 sale patterns e # of cut queries O(Kn) =~ 25000



WHT — Hypergraph Sketching

Hyperedge at iteration 1

AR R \Z:

A'\ BN S LY >
AArS 4 )
IS N
XAL AR YT

2 WAL X AP

»

& u

Al
\
AN

> V)

e total cut values 2" = 2°0

n = 50 books

e sparsity K < 52971 = 500

2 items/sale

d —

e # of cut queries O(Kn) ~ 25000

s = 250 sale patterns



WHT — Hypergraph Sketching

Hyperedge at iteration 2

¥
I

50 books
2 items/sale

250 sale patterns

oN

ND YN
) A\ %,
FUNS ‘5':" TAN

St N ‘ a
SN

Y
|
Av'?

S T
.

e total cut values 2" = 2°0
e sparsity K < 52971 = 500

e # of cut queries O(Kn) ~ 25000




WHT — Hypergraph Sketching

Hyperedge at iteration 2

50 books
2 items/sale
250 sale patterns

19 T eas
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s BT
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PRV AN Y
NN
SEOIRSTIFTN W 71 A
VS
y VL — ’?//-’

N 7,"—»“
\\} -
A\avg v

— 250

e total cut values 2"

e sparsity K < 52971 = 500
e # of cut queries O(Kn) ~ 25000



WHT — Hypergraph Sketching

Hyperedge at iteration 2
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50 books
2 items/sale

250 sale patterns

e total cut values 2" = 2°0

e sparsity K < 52971 = 500

e # of cut queries O(Kn) ~ 25000




Open source implementations
* Sparse FFT and Sparse WHT implemented in C++

* Publicly available on GitHub
nttps://github.com/ucbasics

 Hardware implementation of sparse FFT ﬂ'

Subsampling
ADCs n, n; ~0(k)

—o -b* n —
- l il FFAST

I

I

I

I

I ~

"— - .

12 z Bandwidth 2GHz
x_| . Peeling | >

: ’ Stage | Decoder -

l T~

I

I

I

I

I

Analysis time 0.02ms

I
I
I
o S I TR ! Technology 16nm FinFET
:
|

O(k) =)

~
VIia

: Sfoleg 1 [Comp}éséed)
______ | B T

BAG ADC Generator: | Chisel FFT Generator: | Custom Chisel Spectrum
SAR Slices =18 Sub-FFTs x18 Reconstruction Backend

I
| Rock .
—+ n, DFT | Chio_ Compression 65%
| "
I
I

IEEE JSSC, 2019 A Real-Time, 1.89-GHz Bandwidth, 175-kHz Resolution Sparse Spectral Analysis RISC-V SoC in 16-nm FinFET
A. Wang, W. Bae, J. Han, S. Bailey, O. Ocal, P. Rigge , Z. Wang , K. Ramchandran , E. Alon, B. Nikolic
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“Peeling-based”
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turbo engine
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Sparse-Graph Code \

Divide

“Solve-if-trivial”
Concur sub-engine



Broad scope of
applications

Pedarsani, Lee, R., 2014

Compressive
phase
retrieval

Sparse
mixed linear
regression

Yin, Pedarsani, Chen, R., 2016

Sparse
Spectrum
(DFT/WHT)

Sparse-graph

codes

Compressed
sensing

Pawar, R., 2013
Li, Pawar, R., 2014

Lee, Pedarsani, R., 2015

Fast
neighbor
discovery for
loT (group
testing)

Sub-Nyquist
sampling
theory

Ocal, Li, R., 2016

~

Li, Pawar, R., 2014



Compressed sensing

Estimate the K-sparse signal £ € C¥, which has only K < N non-zero
coefficients, from linear measurements in the presence of noise

y=Ax+w

Methods based on convex relaxation

* Measurement matrix A has random design A
(e.g., random Gaussian matrix)

* Solve the the convex optimization problem
Minimize ||Ax — y|| + A|[x]|;

* Measurements: 0 (K log%)

« Computatigfs: O(poly(N))

Candes 2006, Donoho 2006

HEE EEEEE EECEEEES




Compressed sensing

Estimate the K-sparse signal & € CV, which has only K < N non-zero
coefficients, from linear measurements in the presence of noise

y=Ax+w

Sensing Matrix S

Coding Matrix H

Measurement Matrix A

Recovery w.h.p. using

Noiseless: O(K) sampleomputations
Noisy: O (K log N) samples®CO (K log N) dpbmputations

Li, Pawar, R., 2014 —Yin et al., 2019



Generic method to make algorithm robust to noise

Recall how we find locations and values of singletons in the noiseless setting.
Ex.: asingleton with non-zero element b at index 4

Ts Te L Tg ]

Ty
] [ rZW 1'3W2 rsW* rgW?® r,Wé rW’? _[r4W3b

:oooovooo:

* What if we have y; =14, + wy
and y, = r,W3b + wy?

Location information is encoded
in the relative phase between

Yo and y;. - A(ﬁ) =7?




Generic method to make algorithm robust to noise

It is not robust to encode the location information in the relative phase! Alt. choice?

Represent each element by its binary index string: (log N)
. Encode it using an error correcting code matched to the noise
Y1 0 00O of the channel: (C; log N)
L ] - [g (1) (1) i Add a unique random signature vector to each column to
identify the element the column represents: (C, log N).

Total cost (per measurement bin) is O(log N).
No. of measurement bins is O(K) (using sparse graph codes).
Total measurement cost is O(K log N).

Guess-and-check algorithm:

A. Guess that a received bin measurement corresponds to a singleton.

B. Find ML estimate of singleton value and location index (using coded representation).

C. Verify using signature vector if singleton hypothesis is correct.

D. If yes, “peel” singleton node from the other measurement bins it belongs to, and continue.

E. If no, continue to next measurement bin.
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Compressive Phase Retrieval (CPR)

Recover a K-sparse signal x € C™ from m magnitude measurements:
y = |Ax| + w,
where A € C™*" is the measurement matrix

Ax

x —s A >|| Decoder — X

e

Nonlinearity makes peeling challenging

X4 . X4 X1 . | X1]
x, O X, + X, x, O X1 + X, |




Main Results

* Sparse-graph codes for Compressive Phase Retrieval: PhaseCode

* Fast & efficient: first ‘capacity-approaching’ results

Sample Computational
complexity compIeX|ty

Noiseless 4K (or 14K)

Noisy (almost-linear) O(K logn) O(Nlogn)

Noisy (sub-linear) 0(K log3 n) 0(Klog3n

* Design can be made ‘Optics-Friendly’

e Extensive simulations validate close tie between theory & practice

Pedarsani, Yin, Lee, R., 2014



Simulation Results

x = 2D FFT coefficients of

Ax

Decoder




Simulation Results

Ilteration O

RED = Not colored

IFFT of recovered FFT Color of balls
coefficients



Simulation Results

Ilteration 1

Some balls are colored!



Simulation Results

Ilteration 2

More balls are colored!



Simulation Results

Ilteration 3




Simulation Results

Ilteration 4




Simulation Results

lteration 5




Simulation Results

Ilteration 6




Simulation Results

Ilteration 7




Simulation Results

teration 8




Simulation Results

teration 9




Simulation Results

Ilteration 10

GREEN becomes dominant?



Simulation Results

Ilteration 11

Most balls are GREEN



Simulation Results

lteration 12

All but 1 ball are GREEN



Simulation Results

Ilteration 13

All balls are GREEN!
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Group testing

Find K defective from
n items using ‘group’
measurements

Y
Jack Keil Wolf

[85] Principles of group testing and an application of the design
and analysis of multi-access protocols

[85] Born again group testing: multi-access communications
[84] Random multiple-access communications and group testing
[81] An Application of Group Testing to the Design of Multi-User
Protocols




Group testing

Find K defective from n items using ‘group’ measurements

228 2
) () (TR (R




Group Testing for Neighbor Discovery

nodel

node2




Group Testing for Neighbor Discovery

nodel nodel |1 | O 110 O * 0.5

node2

node2 11 | 0| 1|0 0O *o09

nodke3 O O |10/ 1 *0.1




nodel

Group Testing for Neighbor Discovery

node2

nodel | 1 0 110 O * 0.5

node2 11 | 0| 1|0 0O *o09

nodke3 O O |10/ 1 *0.1

Energy detection

1 0 1 0 1



nodel

Group Testing for Neighbor Discovery

node2

nodel | 1 0 110 O * 0.5

node2 11 | 0| 1|0 0O *o09

nodke3 O O |10/ 1 *0.1

Energy detection

1 0 1 0 1

Group testing

Nodel, Node2, and Node3 are neighbors!



SAFFRON
(Sparse-grAph codes Framework For gROup testiNg)

Thm: With 6C(¢)K log, n tests, SAFFRON recovers at least
(1 — €)K defective items with probability 1 — O (%) by
performing O (K logn) computations.

Example:  SAFFRON (e = 107°,C(¢) = 11.3)

With 68K log, n tests, SAFFRON recovers at least (1 — 107 °)K
defective items with probability 1 — O (%) with a decoding time
complexity of O(K logn).

Lee, Pedarsani, Chandrasekher, R., 2015



Average runtime of SAFFRON (seconds)

SAFFRON

(Sparse-grAph codes Framework For gROup testiNg)

o
~
|

o
w
|

o
(V)
|

o
1

o

1 | —==—Average runtime of SAFFRON
4 | = — Linear fit
Simulation done
on a regular
MacBook Air
laptop
20 2I8 21I6 254 2(;2 24I10 248
Number of items, n Finding 32 defective items from a population
. . __ n5 . . egge R
Run-time with K = 2° and varying n. of size 1 trillion can be done with SAFFRON

using 87,000 tests in 0.3 second ona
regular MacBook Air laptop!



Peeling with OR operation

Under field arithmetic Under OR

1 O. _____ /7|:| 2 1 O. _____ 7|:| 10R1=1

/
/ /
/



Challenge: Peeling with OR operation

Under field arithmetic Under OR
L O O
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /

: @ = - : @ -

Find singleton measurement/test and recover the value




Peeling with OR operation

Under field arithmetic Under OR
1 ' 5_1=1 1 O _____ 10R1=1
?
depends on

other neighbors

1 m: o

Nonlinearity makes peeling challenging



Solution — high level idea

Binary expansion of

subject index \
0
subject 2 = (10)2 OD

1

1
subject 3 = (11), O ..................... D



Solution — high level idea

Binary expansion of

subject index \
subject 2 = (10),

/

O

Complement

subject 3 = (11),

Q
L] .0
. .
[ ] *
[ *
[ *
- .Q
[ *
[ ] *
. .
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. *
.
.
.
.
.
.
.
.
.
.



Solution — high level idea

Binary expansion of

subject index \
subject 2 = (10),

/

— OO0 K-
_ O R

Complement

subject 3 = (11),

O Ok Bk
O O kFr K
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Motivation

» Compressive sensing: a powerful tool for sparse recovery.
» What if we have a mixture of sparse signals?

» Applications: Neuroscience, experiment design in biology...




Problem Formulation

» L-class mixture of sparse linear regressions. o g2 gd)

> Sparse parameter vectors f(I, g . g e c” ﬁ
NG /

» Total number of non-zero elements K (< Ln)

» Design query vectors x4, x5, ..., X, € C™. % +w
X S
> Obtain measurements y; = (x;, ) + w; with probability g,.

> No knowledge of which ) is associated with each measurement.

Simultaneous de-mixing and sparse parameter estimation problem!



Problem Formulation
y A




Problem Formulation
y A

*—k o

query vectors



Problem Formulation
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Problem Formulation
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Problem Formulation

Goal:
» Output accurate estimates SV, 3@, ..., gL,
» Minimize sample and time complexities.




Related Work (incomplete list)

» Tensor decomposing: Chaganty, and Liang. "Spectral Experts for Estimating

Mixtures of Linear Regressions." ICML 2013.

» Convex relaxation: Chen, Yi, and Caramanis. "A Convex Formulation for Mixed

Regression with Two Components: Minimax Optimal Rates." COLT. 2014.

> Alternating minimization (EM): Yi, Caramanis, and Sanghavi. "Alternating
Minimization for Mixed Linear Regression." ICML. 2014.
Stadler, Buhimann, and van de Geer. “L_1 Penalization for Mixture Regression
Models.” TEST, 2012.



Sparse mixed linear regression: main results

Mixed-Coloring algorithm

For any fixed p* € (0,1), for m = O(K), the Mixed-Coloring
algorithm satisfies these properties for each £ € [L]:

* No false discovery

* Recover 1 — p™ fraction of the support of each ,8(3) w.p. 1 —
O0(1/K).

e Recovered support is uniform

* Time complexity: O(K) (optimal)

Yin, Pedarsani, Chen, R., 2017



Main Results

» Precise characterization of the constants in the sample

complexity L: # of parameter vectors
K: sparsity
= 5.1 210 61 8.8 310 61 8.1 410 6 p* : errorfloor
p” 2 X U 6 X U 1 X 19 m: # of measurements
m=CK 33.39K 37.80K 40.32K

» Time complexity: O(K) (optimal)

>(C = @(logi).



Primitives

Summation check:

- Goal: find measurements generated by the same g
 Generate x4, x, € C" from some continuous distribution
» Generate the third vector of the form x; = x; + x5

« Get measurements y4,y,, V3

* Y3 =y1+ Y27

« If so, the three measurements come from the same g
« Consistent pair (y1,y5)

Ratio test

* Find location of a singleton

Peeling

 Remove contribution to other measurements



* Find consistent pairs

Decoding Algorithm



Decoding Algorithm

* Find consistent pairs

* Find singletons

Singleton balls
At this stage, we have got some

non-zero elements but we don’t
know which parameter vectors
they belong to.

R h
LDV LY
fizsn) an
N4 Y

gz

NI

N1




Decoding Algorithm

O O O
- Find consistent pairs o B— .
&
« Find singletons O G—D = &
« Find strong doubletons O @ & O \ﬁ/
& &
o O
» Strong doubletons: consistent pairs that O

are only associated with two singleton balls

found in the first stage.

» Can be found by guess-and-check.

» The two singleton balls must be in the same
parameter vector.




Decoding Algorithm

* Find consistent pairs
* Find singletons

« Find strong doubletons

Theorem: As long as M/K > const., the L
largest connected components of the graph
are of size O(K), and correspond to different
parameter vectors. Other connected
components are of size O(log K).

[Follows from E-R (n,p) random graphs: if
np>1, then component size is O(n), else it is
O(log n).]

o O O
S G
O e o
NP4
o o ©o0




Decoding Algorithm

O O O

- Find consistent pairs o I::

* Find singletons O O O
* Find strong doubletons O 0O O O o’

 Recover a subset of size O(K) O O o O O



Decoding Algorithm

Find consistent pairs

Find singletons

Find strong doubletons
Recover a subset of size O(K)

lterative decoding

RSN



Decoding Algorithm

Iterative decoding:

a
@\ Consistent pairs (bins). Each
A 1 bin is either blue or red.
% 2
w
> 3
g 4

Non-zero elements from

two parameter vectors,
either blue or red




Decoding Algorithm

Iterative decoding:

a

°c

W[ N || —

ORI




DeCOding Alg()nthm By finding strong doubletons and largest

connected components, we have already

. - . recovered a fraction of non-zero elements. Say
Iterative decoding: 0. b (blue) and u, v (red).

o

/

W[N] —

@
5



DeCOding Algonthm By finding strong doubletons and largest

connected components, we have already

. - . recovered a fraction of non-zero elements. Say
Iterative decoding: 0. b (blue) and u, v (red).

o

/

W[N] —

@
5



Decoding Algorithm
Iterative decoding:

Guess-and-check: try to subtract a and

é)\ b from bin 1, and v from bin 3.
b 1
Y 2
w
> 3
g 4




Decoding Algorithm

Iterative decoding:

S

/

(W]~

@
5

The remaining measurements pass
ratio test. Recover c using bin 1 and
recover w using bin 3.




Decoding Algorithm

Iterative decoding:

S

/

(W]~

@
5

Iterate this procedure and recover all
the non-zero elements.




Decoding Algorithm

Density evolution: -

» Consider one particular parameter vec

: e Bad news: = 1 is a fixed point!
> P i the fraction of non-zero elements th Po P

 Good news: If we canstartatpy =1 — 6,
we are good to go!

 Summation starts from 2 because
singletons are not useful for
iterative decoding as we don’t

know their “color.”

0.2 0.4 06 08 1-061

» p; can converge to an arbitrarily small constant. *



L 2 3 4
8.8x107°% | 8.1 x10°°
m=CK | 33.39K 37.80K 40.32K

Experimental Results pF | 51x10°°

Noiseless setting: sample and time complexities:

» Optimal parameters (d, R, V) computed from density evolution.

» Success: exact recovery of all non-zero elements.
» Empirical success probability/average running time over 100 trials.

[

- 2.5
—+L=2,K=2400

*L=2,n=1x10*<L=4, n=1x10*
> L=4,n=1x10"

08  L=3, K=2400
| < L=4,K=2400
)
$0.6
Q
Q
=
0.4
=
a®
0.2
0l << <9 warias ‘ ‘ ‘ ‘ 0
0 10 20 30 40 50 6( 0
m/K

200



Generic method to make algorithm robust to noise

Recall how we find locations and values of singletons in the noiseless setting.
Ex.: asingleton with non-zero element b at index 4

Ts Te L Tg ]

Ty
] [ rZW 1'3W2 rsW* rgW?® r,Wé rW’? _[r4W3b

:oooovooo:

* What if we have y; =14, + wy
and y, = r,W3b + wy?

Location information is encoded
in the relative phase between

Yo and y;. - A(ﬁ) =7?




Robust Mixed-Coloring Algorithm

It is not robust to encode the location information in the relative phase!
Alternative choice?

Y1
;
3

»We can also encode the Ig

0 » It is still possible to recover the binary pattern of the
measurements by a simple thresholding.

» Of course we may make mistakes.

» This procedure can be robustified by simply
repeating each bit or using an error correcting code.

V1 0+ W1
»What if l}’z] = |b+wy|?
Y3 b + ws




Experimental Results

Noisy setting: sample and time complexities:

»A=10=0.2.

» Record the minimum number of measurements to achieve 100

consecutive success.

» Sublinear sample and time complexities.

%10

+ K=20-4K=60
- "K=40

Running time (sec)

™
n

(\}
\

[E—
W
I

+ K=204K=60

L 7+
%W -
0 1 , 3 | | |
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Chapter 5

Speeding up
distributed computing
on the cloud




System Noise

Network bottlenecks

Maintenance, etc.



System Noise = Latency
Variability




System Noise = Latency
Variability




Distributed Matrix-Vector Multiplication

AXxb
Master

¥
v U 0

Worker 1 Worker 2 Worker 3




Distributed Matrix-Vector Multiplication

AXxDb

A, Master
= AQ )
i /J
~

Worker 1 Worker 2 Worker 3




Distributed Matrix-Vector Multiplication

AXxDb

S 1
N

Worker 1 Worker 2 Worker 3




Distributed Matrix-Vector Multiplication

AXDb

A, Master
— AQ )

As

A1 ) b
= AQ X b \

Ag X b

-(#) O 0 f

Worker 1 Worker 2 Worker 3




Distributed Matrix-Vector Multiplication

AXDb

A, Master
= A2 )
As

A1><b
= AQXb
Ag x b
3 X yl

Aqllb b E]A:s b

Worker 1 Worker 2 Worker 3




Straggler Problem

CDF of time to collect results from k workers

k — 100 [Chen et al., 2016]

Google Brain

The slowest worker can be 6 times slower

k=1 k=90

Time (S)



Why Do We Have Stragglers?

“ .. Infeasible to eliminate all
latency variability.”

[Dean, Barroso, Comm. ACM’2013]

( 2. Shared Resources )

(1. Data Locality )

Master

)1

Worker 1

V3

(Network Latency )

|

x| This
imag
e
cann
ot
el
be

Worker 2 Worker 3



Coded Matrix-Vector Multiplication

AXDb
(A'l)xb Master

Ay
[ Al xDb
-\ AL x b
()
Yo

/
Al = AL+ Al Y4
ys ==Y + o

0> yél

Worker 1 Worker 2 Worker 3




Coded Computation for Linear Operations

Assumptions:
= n workers
= k subtasks

= Computing time of each worker: constant + exponential RV (i.i.d.)
= Average computingtime is proportionalto 1/k

[
Theorem: E[Tuncoded] =© (logn> E[ rteplication] =6 (logn)
n n
" 1
E[TMDS—coded] =0 E
-

m
_|
[T—

~

7

uncoded

replication /
o (logn) | \ coded

_______

Lee, Lam, Pedarsani, Papailiopoulos, R. 2015



MDS-Coded Matrix-Vector Multiplication

opt. MDS

Under exponential latency
model

ET] =of
(ms)
uncoded

W

- opt. rep.

300 I

200
6 8 10 12 14 16 1

opt. MDS

On Amazon AWS

Codes provide 30% speedup compared uncoded
and replicated jobs for fixed number of workers

[LLPPR, NIPS workshop‘15]
[LLPPR, T-IT’18]



Applications

Distributed linear regression
Distributed non-linear function computation
Reducing communication in data shuffling by network coding

Has attracted lots of interest:

Coded Matrix Multiplication in MapReduce setup
Coded Computation for Logistic Regression
Coded Computation + Distributed Gradient Computing

Approximation: SVD + Coded Matrix Multiplication,
Sketching, Second order methods...



Coded Computation [ 5rs ™

* A new interface between ML systems and information & coding
theory

» Codes can be used to speed up distributed computation & distributed
ML

» Matrix-vector multiplication [LLPPR, ToIT'18],

» Matrix-matrix multiplication [LSR, ISIT'17], [BLOR, ISIT’18], [GWCR, BG'19]
» Gradient accumulation [LPPR, ISIT’17], [GKCMR, ICML Workshop’19]

» Data shuffling [CLPPR, NeurlPS W’17], [CLPPR, SysML’18]

« Works in practice (Amazon EC2 experiments on real data)

/)\ 300ms {}33% /N & Wb 25% 4 058 {}38%
200ms os

il L ]

Matrix multiplication Linear regression Matrix completion




[LLPPR, NIPS W’15]

COdEd Computat|on [LLPPR, TolT'18]

» Matrix-vector multiplication [LLPPR, ToIT'18]

[Ferdinand and Draper, Allerton’16]
[Reisizadeh et al., ISIT’17]

[Mallick, Chaudhari, Joshi, '18]
[Wang, Liu, Shroff, ICML18]

[Maity, Rawat, Mazumdar, SysML'18]

» Matrix-matrix multiplication [LSR, ISIT'17], [BLOR, ISIT'18] [GWCR, BG’19]

* [Yu, Maddah-Ali, Avestimehr, NIPS’17]
» [Dutta et al., '18]

» Gradient accumulation [LPPR, ISIT'17] [GKCMR, ICML Workshop'19]

[Dutta, Cadambe, Grover, NIPS’16]

[Tandon, Lei, Dimakis, Karampatziakis, ICML’17]
[Raviv, Tamo, Tandon, Dimakis, '17]

[Halbawi, Azizan, Salehi, Hassibi, ISIT’ 18]

[Ye and Abbe, ICML’18]

[Charles and Papailiopoulos, ISIT'18]

» Data shuffling [CLPPR, NeurlPS W’17], [CLPPR, SysML'18]

* [Song et al., ISIT'17]
 [Attia and Tandon, Globecom’16]



Scalable computing: Serverless platform!

* A decade ago, cloud servers abstracted away physical servers.
* Future: “serverless” computing will abstract away cloud servers.

Serverless
workers

D

*  “Function as a Service (FaaS)”
— Run my function “somewhere”
— AWS, Google, IBM, Microsoft, etc.

Why Serverless computing?

. R G T f(d3)
* Simple abstraction foruser | MO0 o eeeemmT :
. Storage °
— Cluster management hidden | .
*  Tremendous scale RS, °
— 16,000 machines in 10 seconds
— Cloud storage as infinite RAM
* Reduced Costs
— Pay only for the time you use

* Significant interest from the cloud computing
community

Jonas, Eric, et al. "Cloud Programming Simplified: A Berkeley View on Serverless Computing." (2019).
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Serverless Systems: Characteristics

Massive scale of low quality workers

significant # of stragglers are
observed in our
experiments consistentl

Workers do not communicate
— Read/write data through a single data storage entity

Workers are short-lived
Stragglers and faults!

I Host submit 180
N Job start
I Setup done 160

I Job done

3s00  Sss0 3600

K | 60 ]
~2% stragglers
40 ‘ ‘ ‘ ‘ ‘ ‘ ‘
100 o o 200 250 300 350 0 500 1000 1500 2000 2500 3000 3500 4000
Wallclock time (seconds) Workers returned
A single run snapshot Average Runtimes over 10 trials

Can have up to 16,000 workers on AWS Lambda



What are we optimizing for?

TEnc 7-D/st‘ TC(l)mp TE:e
' Black Box @ @@——— !
: Processor 1
Tnout : Master = B Master : Resul
put == (Encoding) rOCessor (Decoding) | ! esult
Wait for K’

Processor N

___________________________________________

* Matrix multiplication is a black box
* MDS is beneficial, but target only T4y

* End to end latency is desired metric

Product Codes: a good tradeoff between
near-MDS and local enc./dec.



Product-coded (a.k.a. G-LDPC coded) Mat.-Mat. Mult.

G-LDPC codes [Tanner ’81, Lentmaier-Z2’99, Boutros et al. ’99], Product codes [Elias ‘54, Justeson '07, JENR ‘15]

Ay
Ay x( By By Bi+DB;)

A+ Ay
— 41 B, A1 Bs Aq1(B1 + B»)
= AsB AsB As(B1 + B
37; 1 37;2 2 ( 1Ej 2)
\ (A1 + A2)B1 (A1 + A2)Bs )
£ 0
1. Near-MDS '
2. Low ENC/DEC cost
3. DEC is parallelizable
4. N-dim product codes... .

2D 3D



Product Code Decoding

* Peeling decoder is very
simple and parallelizable

276



Product Code Decoding

* Peeling decoder is very
simple and parallelizable
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Product Code Decoding

* Peeling decoder is very
simple and parallelizable
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Product Code Decoding

* Peeling decoder is very
simple and parallelizable
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Product Code Decoding

* Peeling decoder is very
simple and parallelizable

280



Product-Coded MM: Performance

Result: (Baharav & R’18) In a d-dimensional product-
coded matrix multiplication scheme with (n, k, r+1)
component codes, the output will be decodable
w.h.p. after K’ = N — ~=-% nodes have completed
their subtasks.

. Cantolerateu stragglers
n(d,r) 51488

TABLE II: Thresholds: 7n(d, )

r 1 2 3 4 5 6
N

(1.2218) 12880 1.3797 1.4564 1.5202 1.5741
1.2949 14998 1.6568 1.7781  1.8760  1.9575
1.4250  1.7275  1.9409 2.1031  2.2327  2.3406

1.5697 19577 22244 24256 2.5864  2.7199
1.7189  2.1869  2.5051 27446  2.9361  3.0953

G NV N N Y




Kernel Ridge Regression using
Conjugate Gradient on AWS Lambda

On a real-world dataset withn = 0.4 million examples
Reduced variation in iteration times,

and 400 workers . -
, improved reliability
‘ ‘ ‘ ‘ I Coded Computation
P r.o b I e m : 500 - I Speculative Execution (recompute)

I

o

o
T

Solve for x in (K + Al)x =y, K:Kernel matrix of dim.n

300 -

Initialization:
xo=1"Yro=y — (K +ADxy, pg=79, k = 0

200 -

Iteration time (in seconds)

100 [~

small? Iteration number
T T

6000 T
NO =~ Coded Computation
5000 | === Speculative Execution (recompute) 7
g 44.5%
k = k+1 Compute in parallel: by = (K + A x;, S 4000 | savings |
@
o
£ 3000 - 1
Update locally _qg)
> 2000
<
o
1000 [
k+1 — X + AP 1 0

1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
_ Tke+1Tk+1 .
Br = S T Iteration number
k 'k

Pict1= Tict1 + BicPr (First iteration includes the one-time encoding cost)

Th+1 = Tk — Al




Power lteration on serverless AWS
Lambda

* Goal: Find the largest eigenvalue and eigenvector of a
diagonalizable matrix A of dimension 0.5 million with 1000

workers
* Applications: PCA, PageRank; Twitter recos. on whom to follow

Aby,
|ADg|

* Each iteration: a matrix-vector multiplication by4+1 =

— . . || === Coded Computati
50% SO VI n gS I n 6000 - —— Ssesulati(\)/r:?;(:cﬁt?on (recompute) 49.2% -
] : 5000 savings i
total timel 8
[0]
H £ 4000
(Thour 6 min. £
£ 3000 -
[t
less) 2000 |

0 5 10 15 20
Iteration number



Matrix Multiplication: Sketching

* Exact computation is not necessary, especially if input data has redundancies

* Randomized sketching is an important technique to reduce comp. complexity

- To compute AAT
« Sketch the input matrix: A = AS

A

dxXn

X

~

S

nxXm

Y

dxXm

(m«Kn)

» Sis a random matrix such that SST is close to identity

* Multiply the smaller matrices A and AT

Mahoney, M. W., 2011; Woodruff, D. P, 2014; Drineas et al., 2016; .......



Large-scale Convex Optimization on Serverless
Systems

Recall the challenges in serverless systems:

* Slow communication

 Ephemeral workers

* Persistent stragglers

Hence, reducing the number of iterations is paramount

* Second-order methods are a natural fit for serverless systems
— Reduce the number of iterations considerably
— Exploit the tremendous compute power per iteration

* OverSketched Newton: Tailored to serverless systems



OverSketched Newton

Key Observation: For many common convex optimization problems
* @Gradient can be written as a few large matrix-vector mults.
* Hessian can be written as a large matrix-matrix multiplication

Example problems:

= Logistic and linear regression,

= Softmax regression,

o SVMs,

= Linear program,

= Semidefinite programs,

= Lasso (in dual formulation), etc.



Example: Logistic Regression

1 «— T A
1 S E —Y, W T; - 2
ziléllIzld {f(w) n log (1 e ) 2 [l }

1=1

e X =[xy, -,x,] € R¥™"is the matrix containing training examples
y

[V -, ¥, € R™is vector containing training labels

* Gradientis given by ** Hessianis given by

1
1N~y ! Ht = —=XAXT + Al, € R4xd
Viw) = n Zl 1 + eyiw’x; + Aw I n ‘

—Yi

) . 1+ eV:i&;
* (Can be written as matrix-vector

* Requires computation 0
products :

: where \
Vf(w) @ Aw, where ; = : A =XVAE R > d

o Ais diagonal, A(i,i) =



OverSketched Newton

Compute the gradient using classical coded computing
Compute the Hessian approximately by “over sketching”

A ST a-[3]

A,
(A1 + A)x

A+ A,

SN~ { AT /
//"/z: s

de

-

Model update: wttl = wt — H™1g

— Can be done locally if d small enough

oy

We prove convergence guarantees for OverSketched Newton
when the objective is both strongly and weakly convex



Training Error
o
w

0.21

0.1

Comparison with existing second-order methods

Experiments with n = 0.3 million examples and d = 3000 features on AWS Lambda

Logistic regression on synthetic data

—+— Uncoded GIANT with full gradient
—=&— GIANT with gradient coding
—&— GIANT with ignoring stragglers
—&— Exact Newton's method

—— OverSketched Newton _

50% Savings!

0 200 400 600

Time (seconds)

8(|0 1000

GIANT: Linear-quadratic
convergence whenn > d

60 workers used for Gradient

3600 workers used to compute
the exact Hessian

600 workers used to compute the
sketched Hessian

Wang, Shusen, et al. "GIANT: Globally improved approximate newton method for distributed optimization." Neur/PS. 2018.



Coded computing vs Recomputing Stragglers

Experiments on logistic regression with n = 0.4 million and d = 2000

Newton-type methods on EPSILON dataset

0.65 | —O— Exact Hessian (with recomputed gradient) Codes used?
; —+—— Exact Hessian (with coded gradient) ] .
0.6 F OverSketched Newton (with recomputed gradient) ] . Runnlng
[ —&— OverSketched Newton (with coded gradient) ' Gradient Hessian time

0.55

o
o
v
v

Training Error

AR ANE

0 100 200 300 400 500 600 700
Time (seconds)



First order vs Second order on AWS Lambda

Experiments on a EPSILON dataset with n = 0.4 million ex. and d = 2000 features

e 100 workers used for Gradient computation
e 1500 workers used to compute the sketched Hessian

0.7 .
5\ Gradient descent
Nesterov Accelerated Gradient
0.6 : \\OverSketched Newton
S 0.5
L L
o I
C L
c 04
S I
= I
0.3
0 200 400 600 800 1000

Time (seconds)



MPI (server-based) vs Serverless computing

Experiments on logistic regression with n = 0.3 million and d = 3000

0.8 ! ! ! T T

—6-— GIANT on Amazon EC2 (server-based)
—jii=—= (QveSketched Newton on AWS Lambda

Training error

0) 100 200 300 400 500 600
Time (seconds)



Concluding Remarks

Shannon-inspired research threads on the power of codes in:
* Duality:

— “exchangability” of enc. and dec. functions in source/channel coding
* Encryption:

— “exchangability” of encryption & compression modules w/o perf. loss
 Sampling:

— unexplored connections between sampling theory and coding theory
* Learning:

— sparse-graph code based “peeling” core powerful in many sparse

learning settings with sub-linear time complexity

* Distributed computing:

— straggler-proofing with codes speeds up distributed machine learning



Conclusion: Shannon’s incredible legacy

A mathematical theory of
communication

* Channel capacity
* Source coding

* Channel coding

* Cryptography
 Sampling theory

His legacy will last many
more centuries!

(1916-2001)

294



Thank you!



