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Shannon’s	incredible	legacy

• A	mathematical	theory	of	
communication

• Channel	capacity

• Source	coding

• Channel	coding

• Cryptography

• Sampling	theory

• …

(1916-2001)



And	many	more…

• Boolean	logic	for	switching	
circuits	(MS	thesis	1937)

• Juggling	theorem:	
H(F+D)=N(V+D)

F: the time a ball spends in the air,
D: the time a ball spends in a hand, 
V: the time a hand is vacant,
N: the number of balls juggled,
H: the number of hands. 

• …

(1916-2001)



Story:	Shannon	meets	Einstein

As	narrated	by	Arthur	Lewbel	(2001)

“
The	story	is	that	Claude	was	in	the	middle	of	giving	a	lecture	
to	mathematicians	in	Princeton,	when	the	door	in	the	back	of	
the	room	opens,	and	in	walks	Albert	Einstein.	

Einstein	stands	listening	for	a	few	minutes,	whispers	
something	in	the	ear	of	someone	in	the	back	of	the	room,	
and	leaves.	At	the	end	of	the	lecture,	Claude	hurries	to	the	
back	of	the	room	to	find	the	person	that	Einstein	had	
whispered	too,	to	find	out	what	the	great	man	had	to	say	
about	his	work.	

The	answer:	Einstein	had	asked	directions	to	the	men’s	room.
”



Outline
Five	“personal”	Shannon-inspired	research	threads:	
Chapter	1:	 Duality between	source	coding	and	channel	coding	– with	

side-information	(2003)

Chapter	2:	 Encryption and	Compression – swapping	the	order	(2003)

Chapter	3:		Sampling	below	Nyquist	rate	and	efficient								
reconstruction	(2014)

Chapter	4:	 Learning and	inference	exploiting	sparsity	– sub-linear	
time	algorithms	(2015-Present)

Chapter	5: Codes	for	distributed	computing	&	machine	learning	(2017-
Present)



Chapter	1

Duality	
• source	&	channel	

coding
• with	side-informationSandeep	Pradhan Jim	Chou



Shannon’s	celebrated	1948	paper

The Bell System Technical Journal
Vol. XXVII J Illy, 1948 No.3

A Mathematical Theory of Communication
By c. E. SHANNON

IXTRODUCTION

T HE recent development of various methods of modulation such as reM
and PPM which exchange bandwidth for signal-to-noise ratio has in-

tensified the interest in a general theory of communication. A basis for
such a theory is contained in the important papers of Nyquist! and Hartley"
on this subject. In the present paper we will extend the theory to include a
number of new factors, in particular the effect of noise in the channel, and
the savings possible due to the sta tistiral structure of the original message
and due to the nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message selected at another
point. Frequently the messages have meaning; that is they refer to or are
correlated according to some system with certain physical or conceptual
entities. These semantic aspects of communication are irrelevant to the
engineering problem. The significant aspect is that the actual message is
one selected from a set of possible messages. The system must be designed
to operate for each possible selection, not just the one which will actually
be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any
monotonic function of this number can be regarded as a measure of the in-
formation produced when one message is chosen from the set, all choices
being equally likely. As was pointed out by Hartley the most natural
choice is the logarithmic function. Although this definition must be gen-
eralized considerably when we consider the influence of the statistics of the
message and when we have a continuous range of messages, we will in all
cases use an essentially logarithmic measure.

The logarithmic measure is more convenient for various reasons:
1. It is practically more useful. Parameters of engineering importance

1 Nyquist, H., "Certain Factors Affecting Telegraph Speed," Belt System Tectmical J OUT-

nal, April 1924, p, 324; "Certain Topics in Telegraph Transmission Theory," A. I. E. E.
TI aIlS., v. 47, April 1928, p. 617.

2 Hartley. R. V. L.. "Transmission oi Information.' Belt System Technical Journal, July
1928, p. .'US.
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general	theory	of	communication

communication	system	as	source/channel/destination

abstraction	of	the	concept	of	message



Source	coding

Source
encoder

Information
source

Entropy	of	a	random	variable
=	minimum	number	of	bits	required	to	represent	the	source



Rate-distortion	theory	- 1948

• Trade-off	between	compression	rate	and	the	distortion

distortion	measure

R(D) = min
PY |X(y|x)

I(X;Y )

subject to E [d(X,Y )] ≤ D

Mutual	information:

H(X)-H(X|Y)



Channel	coding

capacity

C(W ) =max
PX(x)

I(X;Y )

subject to E [w(X)] ≤ W

cost	measure



Shannon’s	breakthrough

• Communication	before	Shannon:
– Linear	filtering (Wiener)	at	receiver	to	remove	noise

• Communication	after	Shannon:
– Designing	codebooks
– Non-linear	estimation	(MLE)	at	receiver

Reliable	transmission	at	rates
approaching	channel	capacity



“There	is	a	curious	and	provocative	duality	between	the	
properties	of	a	source with	a	distortion	measure	and	those	of	a	
channel.	This	duality	is	enhanced	if	we	consider	channels	in	
which	there	is	a	cost associated	with	the	different	input	letters,	
and	it	is	desired	to	find	the	capacity	subject	to	the	constraint	that	
the	expected	cost	not	exceed	a	certain	quantity…..

Shannon	(1959)



Shannon	(1959)

…This	duality	can	be	pursued	further	and	is	
related	to	a	duality	between	past	and	future	and	
the	notions	of	control	and	knowledge.	Thus,	we	
may	have	knowledge	of	the	past	but	cannot	
control	it;	we	may	control	the	future	but	not	
have	knowledge	of	it.”



Functional	duality

When	is	the	optimal encoder for	one	problem	functionally	
identical	to	the	optimal decoder for	the	dual	problem?

Encoder Decoder
bitsbits

DecoderEncoder
bitsbits

Source
Quantized
Source

Channel	
input

Channel	
output

source	coding

channel	coding



Duality	example:	Channel	coding
Channel
Encoder

m
Channel
Decoder

m
^

BEC
Channel

XX̂
R-bit
message

binary
input

binary
output

R-bit
estimate

You	want	to	send	message	m:	how	big	can	you	make	R?

Binary	Erasure	Channel

∗

1− p

1− p

p

p



What	is	the	Shannon	capacity?

Surprise: the	encoder	does	not	need	to	know	which bits	are	erased!

Encoder Decoder

0.8

0.8

0.2

0.2

Send	information	in	
non-erased	locations

∗

The	decoder knows	
which	bits	are	erased	
(channel	output)

∗ ∗

Suppose	the	
encoder also	
knows	which	bits	
are	erased	(genie)

∗∗



1) Encoder	&	Decoder	agree	
on	a	random	codebook

Shannon’s	random	coding	argument

Shannon’s	prescription:	random	coding

010101...

100110…

011100…

…

…

110010…

10,000

28,000

IID	random	coin-flips:		
Bernoulli(1/2)	entries

Codebook	for
channel	coding

2)	Encoder	encodes	message
Output	the	codeword	corresponding	to
the	index

3)	Decoder	decodes	message
Output	the	index	corresponding	to	the
closest codeword

msg.	m

100011…



1001000010101000...

1111011111101110…

1110000111001110…

…

…

1101011001010010…

Why	does	it	work?

1001000010101000...

1111011111101110…

1110000111001110…

…

…

1101011001010010…

n

2nR

IID	random	
B(1/2)	entries

Codebook	for
channel	coding

1110000111001110...
input	to	the	channel

Channel	will	erase	
20%	of	bits

1110000111001110...

1001000010101000...

1111011111101110…

1110000111001110…

…

…

1101011001010010…

n(1-p) np

er
as
ed

	lo
ca
tio

ns

0.8

0.8

0.2

0.2
∗

2nR• Decoding	successful	if	the	non-erased	string	is	unique
• Pr.{not	unique}	≤ 2#$(&#')x	2nR	è 0	if	R	≤ (1 − 𝑝)
• 8,000	bits	will	induce	unique	match	if	(random)	

codebook	size	is	≤ 2-,/// w.h.p.

p=0.2
n=10,000



Source	Coding	Dual	to	the	BEC:		BEQ

Source
Encoder

Source
Decoder

mm X̂

Compressed	bit-stream
8,000	bits

d(x, x̂) =

⎧

⎪

⎨

⎪

⎩

0 if x̂ = x for x ∈ {0, 1}

∞ if x̂ ≠ x for x ∈ {0, 1}

1 if x = ∗

1				0				1				0				1				0

cost: 0 1

Martinian	and	Yedidia,	2004

01*1*00110…

(Binary	Erasure	Quantization)

𝑋 ∈ {0,1}&/,///



Source	Coding	Dual	to	the	BEC:	BEQ

Source
Encoder

Source
Decoder

mmX X̂

Send	the	non-*	bits:

∗
∗∗∗

p(0) = p(1) = 0.4

p(∗) = 0.2

01*1*00110…

01100110…

Suppose	the	decoder
also	knows	which	are
the	`*’	symbols	(genie)

The	encoder	 knows	
which	are	the	`*’	symbols	
(source	attribute)



Source	Coding	Dual	to	the	BEC:	BEQ

String	Length	
10,000

Source
Encoder

Source
Decoder

mmX X̂
Compressed	bitstream

8,000	bits

How	would	you	do	it?

Use	channel	decoder	
as	source	encoder

Use	channel	encoder
as	source	decoder

p(0) = p(1) = 0.4

p(∗) = 0.2

Channel
Encoder

Channel	
Decoder

0.8

0.8

0.2

0.2
∗



1) Encoder	&	Decoder	agree	
on	a	random	codebook

Shannon’s	random	coding	argument

Shannon’s	prescription:	random	coding

010101...

100110…

011100…

…

…

110010…

10,000

28,000

IID	random	coin-flips:		
Bernoulli(1/2)	entries

Codebook

2)	Encoder	encodes	message
Output	the	codeword	corresponding	to
the	index
Output	the	index	corresponding	to	the
closest codeword

3)	Decoder	decodes	message
Output	the	index	corresponding	to	the
closest codeword
Output	the	codeword	corresponding	to
the	index

msg.	m

100011…



1001000010101000...

1111011111101110…

1110000111001110…

…

…

1101011001010010…

Why	does	it	work?
n

IID	random	
B(1/2)	entries

Codebook	for	source	coding

Bitstream of
length	n=10,000
p(0) = p(1) = 0.4

p(∗) = 0.2
1001000010101000...

1111011111101110…

1110000111001110…

…

…

1101011001010010…

2nR

1001000010101000...

1111011111101110…

1110000111001110…

…

…

1101011001010010…

n(1-p) np

er
as
ed

	lo
ca
tio

ns

2nR

p=0.2
n=10,000

• Encoding	successful	if	there	exists	an		exact	match	for	the		
non-*	part	of	input	string

• Pr.{no	exact	match}	≤ (1 − 2#$(&#'))	^	2nR	è 0	if	R	≥ 1 − 𝑝
• 8,000 source	bits	will	induce	an	exact	match	w.h.p.	if	random	

codebook	size	is	at	least 28,000



Knowledge	of	the	erasure	pattern

Encoder DecoderChannel

The	decoder	knows
the	erasure	pattern

The	encoder	does	
not	need	to	know

Channel	coding

∗∗ ∗∗

Encoder Decoder

The	decoder	does	not	
need	to	know	the	
don’t	care	locations

The	encoder	knows
the	don’t	care	
locations

Source	coding

∗∗∗∗



Given a source coding problem with source distr.             , optimal quantizer
distortion measure                   and distortion constraint D, (left) ,       

a dual channel coding problem with channel                     cost measure            and 
cost constraint W (right) s.t.:             

(i) R(D)=C(W);

(ii)

$

),ˆ;(maxarg)ˆ(*
),ˆ|*(~ˆ|:)ˆ(

XXIxp
WEwxxpXXxp £

=

q+=
D

))(||)ˆ|(*()ˆ( 1 xpxxpDcxwwhere and ).ˆ()ˆ*( XwEW xp=

)(Xp

)|ˆ(* XXp

Optimal
Quantizer p*(X̂)

X X̂

)(Xp

)ˆ|(* XXp

Channel )ˆ(* Xp

X X̂

REVERSAL  OF  ORDER

Duality	between	source	and	channel	coding:

)|ˆ(* XXp
)ˆ,( xxd

)(Xp

),ˆ(xw),ˆ|(* xxp



Optimal
Quantizer	

X X̂

Channel

X X̂

REVERSAL		OF		ORDER

Duality	between	source	and	channel	coding

).ˆ()ˆ*( XwEW xp=

Pradhan,	Chou	and	Ramchandran,	2003



For	any given	source	coding	problem,	there	is	a	dual channel	
coding	problem	such	that:

• both	problems	induce	the	same	optimal	joint	distribution

• the	optimal	encoder	for	one	is	functionally	identical to	the	
optimal	decoder	for	the	other

• an	appropriate	channel-cost	measure	is	associated

Key	takeaway

Source	coding
distortion	measure is	as	important	as	the	source	distribution

Channel	coding
channel	cost	measure is	as	important	as	the	channel	conditional	distribution

Interpretation	of	functional	duality



Duality	between	
source	coding	with	side	information

and	
channel	coding	with	side	information



Source	coding	with	side	information	(SCSI):

Encoder DecoderX

S

X
^

• (Only)	decoder		has	access	to	side-information	S

•Studied	by	Slepian-Wolf	‘73,	Wyner-Ziv	’76,	Berger	’77

•Applications:	sensor	networks	(IoT),	digital	upgrade,	
secure	compression.

•No	performance	loss	in	some	important	cases

X

S
)|( SXHR ³



Encoder
Y

S

X

• (Only)	encoder	has	access	to	``interfering”	side-information	S

• Studied	by	Gelfand-Pinsker	‘81,	Costa	‘83,		Heegard-El	Gamal	’85

• Applications:	data	hiding,	watermarking,	precoding	for	known	
interference,	writing	on	dirty	paper,	MIMO	broadcast.

•No	performance	loss	in	some	important	cases

Channel Decoder

Channel	coding	with	side	information	(CCSI):

m m̂



• Encoder	(only)	has	access	to	``interfering”	side-information	S

• Studied	by	Gelfand-Pinsker	‘81,	Costa	‘83,		Heegard-El	Gamal	’85

• Applications:	data	hiding,	watermarking,	precoding	for	known	
interference,	writing	on	dirty	paper,	MIMO	broadcast.

•No	performance	loss	in	some	important	cases

Channel	coding	with	side	information	(CCSI):

Encoder
Y

S

Decoder
m m̂

Z Y=U+S+Z

U + +X



n X and S=> length-3 binary data (equally likely),  
n Correlation: Hamming distance between X and S at most 1 
n E.g.: when X=[0 1 0],    S => [0 1 0], [0 1 1], [0 0 0], [1 1 0].

X

S

XX =ˆ

Case	1	(S	at	both	ends)

Encoder Decoder

SCSI:	binary	example	of	noiseless	compression

000
001
010
100

00 è
01 è
10 è
11 è

=X+S

Decoder outputs  X=S+e (mod 2)

Encoder computes   e=S+X (mod 2) and sends using 2 bits

32



ú
û

ù
ê
ë

é
111
000Coset-1

ú
û

ù
ê
ë

é
110
001Coset-4ú

û

ù
ê
ë

é
101
010Coset-3

ú
û

ù
ê
ë

é
011
100Coset-2

n Transmission at  2 bits/sample achievable
n Encoder => send index of the coset containing X.
n Decoder => find a codeword in given coset closest to S

Example:		X=010,	S=110	=>	Encoder	sends	message	10

000
001
010
100

111
110
101
011

0 0 0 
1 1 1

Coset-1

X

S
X

Decoder

S

XX =ˆ

Case	2:		S	at	decoder	only	

Encoder

(00) (01)

(10) (11)

33



CCSI:	illustrative	example

•S:		3-bit	(uniformly	random)	host signal		(e.g.	binary	fax)
•m:		message	bits	to	be	embedded in	the	host	signal
•Max.	allowed	distortion	between	S and	embedded	host	X is	1:	
•Clean	channel	(no	attack)	model:	(Z=0);		received	signal	Y=X

Case:	1: Both	encoder	and	decoder	have	access	to	host	signal	
000
001
010
100

o Q) How	many	bits	can	m be?		
o A) 2	bits

00	è
01	è
10	è
11	è

(Binary	data-embedding/watermarking)

Encoder
Y

S

Decoder
m m̂

Z

Y=U+S+Z
U + +X

Um



•Codebook:	partition	U	into	4		cosets

•Each	of	4	messages	indexes	a	coset in	U.

•Encoder	“nudges”	S	to	closest	entry	X	in	
desired	coset of	U:

•Decoder	receives	Y=X	and
declares	coset index	of	Y	as	message	
sent.

1),( £XSdH

Messages	index	one	of	4	cosets of	U:

0	0	1	
1	1	0Coset-2

0	1	0	
1	0	1Coset-3

0	0	0	
1	1	1Coset-1

1	0	0	
0	1	1Coset-4

01

(00)

(11)

(10)

Encoder
Y

S

Decoder
m m̂

Z Y=U+S+Z

U + +X

Case	2:	only	Encoder	has	access	to	S

Q) Can	we	still	embed	a	2	bit	message	
in	S	while	satisfying																						?												1),( £XSdH



Toy example of duality between SCSI and CCSI

0 0 1 
1 1 0

0 0 0 
1 1 1

(00) (01) 0 1 0 
1 0 1

(10) 1 0 0 
0 1 1(11)

SCSI
Encoder

SCSI
Decoder

S

M: coset index

Distributed compression (SCSI)

X
source

(correlated source)

reconst.
X̂M

Data-hiding
Decoder MM 

data to be
embedded

Data embedding (CCSI)

recovered
data

S

Data-hiding
Encoder

(host)

X̂
embedded
host

X
noisy
host

(010) (10) (10) (010)

(10) (010) (010)
(10)

(011)

(011)



Duality (loose sense)

CCSI
n Side information at 

encoder only
n Channel code is 

“partitioned” into a bank 
of source codes

n No performance loss in 
some important cases 
w.r.t. presence of side 
information at both ends

SCSI
n Side info. at  decoder 

only
n Source code is 

“partitioned” into a bank 
of channel codes

n No performance loss in 
some important cases 
w.r.t. presence of side 
information at both ends



Enc.
X U

SCSI

Dec.

S

X̂U Dec. U

CCSI

Enc.U

S

X̂ XCh.

Markov	chains,	duality	and	rate	loss

XSUX ˆ, ®®

SCSI
CCSI

p(s,x,u,x)^

UXS ®®
XSUX ˆ, ®®
USXX ®® ,ˆ

DUALITY

no	rate	loss



Encoder Decoder
bitsbits

Quantized
Source

Duality between	source	coding	
&	channel	coding	with	side	information

source	coding	with	side	information	(SCSI)

Pradhan,	Chou	and	Ramchandan,	2003

Source

Side-information

DecoderEncoder
bitsbits

Channel	
input

Channel	
output

Side-information

channel	coding	with	side	information	(CCSI)

Internet	of	Things	(IoT),	video	streaming,	
multiple	description	coding,	secure	compression

Watermarking,	data	hiding,	
multi-antenna	wireless	broadcast



Chapter	2
Cryptography	

• Compressing	
encrypted	data

Mark	Johnson Prakash	Ishwar

Vinod	Prabhakaran



Cryptography	– 1949

• Foundations	of	modern	cryptography
• All	theoretically	unbreakable	ciphers	must	have	the	properties	of	one-time	pad



Compress Encrypt

“Correct” order

Cryptograhic
Key

KSource	~𝒊𝒊𝒅	𝑩(𝟎. 𝟏𝟏)

X
H(X) bits H(X) bits

CompressEncrypt

Wrong order?

Source
X Y H(X) bits

Cryptograhic
Key

K
Johnson,	Ishwar,	Prabhakaran,	Schonberg	&	Ramchandran,	2004

Compression	of	Encrypted	Data

Compressed
0.5	bits/symbol

Encrypted	and	Compressed
0.5	bits/symbol

Encrypted	and	uncompressed
1 bits/symbol

Compressed	and	Encrypted
0.5	bits/symbol?



Compressed 
Encrypted Image

5,000 bits

Encrypted ImageOriginal Image

10,000 bits

Final 
Reconstructed 

Image
Decoding Compressed 

Image

Example



10,000	bits 5,000	bits?

Original Image Encrypted Image Decoded Image

Source
Reconstructed	
Source

Encrypter Encoder Decoder Decrypter

Joint Decoder/Decrypter

Key
Syndrome

Key

Key	Insight!

• Y = X + K where X is independent of K
• Slepian-Wolf theorem:

can send X at rate H(Y|K) = H(X)



Y=X+K

K

XX =ˆ

Case	1

Encoder Decoder

000
001
010
100

00 è
01 è
10 è
11 è

=Y+K
• Encoder	computes		X=Y+K	(mod	2)	
• Encoder	represents	X	using	2	bits
• Decoder	outputs		X	(mod	2)

SCSI:	binary	example	of	noiseless	compression
(Slepian-Wolf	’73)



• Transmission	at		2	bits/sample
• Encoder	=>	send	index	of	the	coset	containing	X.
• Decoder	=>	find	a	codeword	in	given	coset	closest	to	K

Example:		Y=010 (K=110) =>	Encoder	sends	message	10

111
110
101
011

000
001
010
100

0 0 0 
1 1 1

Coset-1

Y

K
Y

Decoder

K

XX =ˆ

Case	2

Encoder

100 101

000 001

110 111

010 011

ú
û

ù
ê
ë

é
111
000Coset-1

(00)

ú
û

ù
ê
ë

é
110
001Coset-4

(11)ú
û

ù
ê
ë

é
101
010Coset-3

(10)

ú
û

ù
ê
ë

é
011
100Coset-2

(01)

(Slepian-Wolf	’73)



Geometric	illustration
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Example:	geometric	illustration

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

Side information
X

Encoder DecoderX X̂



Practical	Code	Constructions

• Use	a	linear	transformation	(hash/bin)
• Design	cosets	to	have	maximal	spacing

– State	of	the	art	linear	codes	(LDPC	codes)

• Distributed	Source	Coding	Using	Syndromes	(DISCUS)*

Bin	1 Bin	2 Bin	3
Source	

Codewords

*Pradhan	&	Ramchandran,	‘03



Chapter	3
Sampling	theory

• Sample	and	compute	
efficient	sampling	(and	
connections	to	learning)

Xiao	Li

Orhan	Ocal



Sampling	theorem

Shannon
1949

Nyquist
1928

Whittaker
1915

Kotelnikov
1933

…

linear	interpolation!

pointwise	sampling!



Aliasing	phenomenon

Input	signal

Time	domain Frequency	domain

Bandwidth	of	1	Hz

Sampling	at	rate	1/2
Spectrum	is	aliased!

Sampling	at	rate	1 No	aliasing	
– can	recovery	by	linear filtering



But	what	if	the	spectrum	is	sparsely	occupied?

Frequency	domain

Henry	Landau,	1967
– Know	the	frequency	support
– Sample	at	rate	“occupied	bandwidth” focc (Landau	rate)

0 1GHz

When	you	do	not	know	the	support?
• Feng	and	Bresler,	1996
• Lu	and	Do,	2008
• Mishali,	Eldar,	Dounaevsky and	Shoshan,	2011
• Lim	and	Franceschetti,	2017



Filter	bank	approach
Input	in	frequency	domain

Know the	frequency	support,	filter	and	sample
no	aliasing
thanks	to	filtering

Filtering

Sampling

? ? ?

?

?

?

?

?

?

?

?

?

?

?

?

Sampling	spectrum-blind?

Requires	2focc.	Can	we	design	a	constructive	scheme? Lu	and	Do,	2008



1 1 1 1 1

1 2 3 4 5 -20
4

100 grams 
each

• One	unknown	thief

• Steals	unknown	but	
fixed	amount	from	
each	coin

• What	is	min.	no.	of	
weighings needed	?

• 2	are	enough!

Ratio-test identifies the location

Differential weight

-5 y1

y2

y2

y1

Puzzle: Gold thief



Key	Ideas:
1. Randomly	group	the	treasurers.
2. If	there	is	a	single	thief	problem

ü Ratio	test	
ü Iterate.

1 2 3 4 5 6 7 8 9 1210 11

1
bin-3

bin-2

bin-4

bin-1
2

34

5

6

7

8

9

10

1112

singleton

multitonsingleton

Questions:
1. How	many	groups	needed?	
2. How	to	form	groups?	
3. How	to	identify	if	a	group	has	a	

single	thief?

4-thieves among 12-treasurers



Remarks
• Computational	cost	O(focc) independent	of bandwidth
• Requires	mild	assumptions	(genericity)
• Can	be	made	robust	to	sampling	noise

Main	result

Ocal,	Li	&	Ramchandran,	2016 57



Key	insight	for	spectrum-blind	sampling

• Introduces	aliasing	(structured	noise)

• Filter	bank	derived	from	capacity-achieving	codes	for	the	
BEC: (irregular	LDPC	codes)

• Non-linear	recovery	instead	of	linear	interpolation

subsampling

“judicious”	filtering/subsampling

aliasing

“good”	aliasing

• To	reduce	sampling	rate,	subsample	judiciously



• Filter	and	then	sample	at	rate	B

Filter	bank	for	sampling

• Sample	the	signal	at	rate	B

H(f)



Filter	bank	for	sampling



‘Sparse-graph-coded’ filter	bank

where

m filters
N bands

matrix



Example	— sparse	graph	underlying	the	measurements

Sparse	bipartite	graph

A

C

D

B

E

F

bands
channels



Example	— sparse	graph	underlying	the	measurements

visual	cleaning	for	presentation:	
remove	edges	that	connect	to	non-active	
bands

A

C

D

B

E

F

bands channels



Example	— peeling

Measurement	classification

zero-ton: no	signal

single-ton: no	aliasing

multi-ton: aliasing

A

C

D

B

E

F

bands channels



Example	— peeling

Assume	a	mechanism:
identifies	which	channels	have	
no	aliasing	(here	B	and	F)	and	
maps	them	to	which	bands	they	
came	from	(here	1	and	4	resp.)

Measurement	classification

zero-ton: no	signal

single-ton: no	aliasing

multi-ton: aliasing

bands channels

A

C

D

B

E

F



Example	— peeling

mechanism:

identifies	which	channels	
have	no	aliasing	and	maps	
them	to	which	bands	they	
came	from

output:
channel	B:	(red,	index	=	1)
channel	F:	(blue,	index	=	4)

A

C

D

B

E

F

bands channels



Example	— peeling

mechanism:

identifies	which	channels	
have	no	aliasing	and	maps	
them	to	which	bands	they	
came	from

output:

peel	from	channels	they	alias	into!

channel	B:	(red,	index	=	1)
channel	F:	(blue,	index	=	4)

A

C

D

B

E

F

bands channels



Example	— peeling

mechanism:

identifies	which	channels	
have	no	aliasing	and	maps	
them	to	which	bands	they	
came	from

A

C

D

B

E

F

bands channels



Example	— peeling

mechanism:

identifies	which	channels	
have	no	aliasing	and	maps	
them	to	which	bands	they	
came	from

output:
channel	D:	(green,	index	=	8)
channel	E:	(cyan,	index	=	5)

A

C

D

B

E

F

bands channels



Example	— peeling

mechanism:

identifies	which	channels	
have	no	aliasing	and	maps	
them	to	which	bands	they	
came	from

output:
channel	D:	(green,	index	=	8)
channel	E:	(cyan,	index	=	5)

peel	from	channels	they	alias	into!

A

C

D

B

E

F

bands channels



Example	— peeling

mechanism:

identifies	which	channels	
have	no	aliasing	and	maps	
them	to	which	bands	they	
came	from
signal	is	completely	recovered!

A

C

D

B

E

F

bands channels



Realizing	the	mechanism

Identify	which	channels	have	no	aliasing	and	map	them	to	bands

0 fM 0 fM

magnitude

phase
phase	stairs

identifies	dark	blue	band as	a	singleton

same	magnitude	response
‘stairs’ phase	response



Construction	of	the	sparse-graph	code

bands channels

degree

Fr
ac
tio

n	
of
	b
an
ds

Luby et	al.	2001



Construction	of	the	sparse-graph	code

bands channels Variable	nodes Check	nodes

Regular	graph	construction:	
Connect	every	variable	node	to	
d	check	nodes	chosen	uniformly	
at	random



Density	evolution

Regular	graph	construction:	
Connect	every	variable	node	to	
d	check	nodes	chosen	uniformly	
at	random

example: d = 4

K
M

channels
Active
bands



• Pick an arbitrary edge in the graph (c, v).

• Examine its directed neighborhood of depth 2`.

• Study the probability p` of (c, v) being present.

• A way to analyze the number of remaining variable nodes Kp` (average).

Density	evolution

Regular	graph	construction:	
Connect	every	variable	node	to	
d	check	nodes	chosen	uniformly	
at	random

example: d = 4

K M



• Examine its directed neighborhood at depth-2`

Density	evolution

K M

example: d = 4



• Examine its directed neighborhood at depth-2`

Density	evolution

K M

example: d = 4



p`

p`�1p`�1p`�1

Density	evolution

The	variable	node	v	can	be	resolved	if	any	
of	these	check	nodes	can	be	resolved

A	check	node	is	resolved	from	below	if	all
of	the	variable	nodes	connected	to	it	
from	below	are	resolved



• Example with a depth-2 neighborhood

p` =
⇥
1� (1� p`�1)

3
⇤
⇥

⇥
1� (1� p`�1)

2
⇤
⇥

⇥
1� (1� p`�1)

2
⇤

• In the general setting where each variable has d edges, the degree distri-
butions of the graph results in the following:

p` =
⇣
1� e�p`�1/⌘

⌘d�1

p`

p`�1p`�1p`�1

Density	evolution

The	variable	node	v	can	be	resolved	if	any
of	these	check	nodes	can	be	resolved

A	check	node	is	resolved	from	below	if	all	
of	the	variable	nodes	connected	to	it	
from	below	are	resolved



• Example with a depth-2 neighborhood

p` =
⇥
1� (1� p`�1)

3
⇤
⇥

⇥
1� (1� p`�1)

2
⇤
⇥

⇥
1� (1� p`�1)

2
⇤

• In the general setting where each variable has d edges, the degree distri-
butions of the graph results in the following:

p` =
⇣
1� e�p`�1/⌘

⌘d�1

p`

p`�1p`�1p`�1

Density	evolution

Power	3	is	because	the	check	node	has	3	
variable	nodes	as	children

The	variable	node	v	can	be	resolved	if	any
of	these	check	nodes	can	be	resolved

A	check	node	is	resolved	from	below	if	all
of	the	variable	nodes	connected	to	it	
from	below	are	resolved



• Example with a depth-2 neighborhood

p` =
⇥
1� (1� p`�1)

3
⇤
⇥

⇥
1� (1� p`�1)

2
⇤
⇥

⇥
1� (1� p`�1)

2
⇤

• In the general setting where each variable has d edges, the degree distri-
butions of the graph results in the following:

p` =
⇣
1� e�p`�1/⌘

⌘d�1

p`

p`�1p`�1p`�1

Density	evolution

The	variable	node	v	can	be	resolved	if	any
of	these	check	nodes	can	be	resolved

A	check	node	is	resolved	from	below	if	all
of	the	variable	nodes	connected	to	it	
from	below	are	resolved



• Example with a depth-2 neighborhood

p` =
⇥
1� (1� p`�1)

3
⇤
⇥

⇥
1� (1� p`�1)

2
⇤
⇥

⇥
1� (1� p`�1)

2
⇤

• In the general setting where each variable has d edges, the degree distri-
butions of the graph results in the following:

p` =
⇣
1� e�p`�1/⌘

⌘d�1

p`

p`�1p`�1p`�1

Density	evolution

The	variable	node	v	can	be	resolved	if	any
of	these	check	nodes	can	be	resolved

A	check	node	is	resolved	from	below	if	all
of	the	variable	nodes	connected	to	it	
from	below	are	resolved



• Example with a depth-2 neighborhood

p` =
⇥
1� (1� p`�1)

3
⇤
⇥

⇥
1� (1� p`�1)

2
⇤
⇥

⇥
1� (1� p`�1)

2
⇤

• It generalizes to left d-regular grpahs, we have

p` =
⇣
1� e�p`�1/⌘

⌘d�1

p`

p`�1p`�1p`�1

Density	evolution



• Example with a depth-2 neighborhood

p` =
⇥
1� (1� p`�1)

3
⇤
⇥

⇥
1� (1� p`�1)

2
⇤
⇥

⇥
1� (1� p`�1)

2
⇤

• It generalizes to left d-regular grpahs, we have

p` =
⇣
1� e�p`�1/⌘

⌘d�1

p`

p`�1p`�1p`�1

Density	evolution

Regular	graph	construction:	
Connect	every	variable	node	to	
d check	nodes	chosen	uniformly	
at	random

Number	of	children	of	check	
nodes	has	Poisson	distribution	
with	mean	Kd/M

K M

example: d = 4

Pr{a	check	node	is	resolved}	=



• Example with a depth-2 neighborhood

p` =
⇥
1� (1� p`�1)

3
⇤
⇥

⇥
1� (1� p`�1)

2
⇤
⇥

⇥
1� (1� p`�1)

2
⇤

• It generalizes to left d-regular grpahs, we have

p` =
⇣
1� e�p`�1/⌘

⌘d�1

p`

p`�1p`�1p`�1

Density	evolution

K M

example: d = 4



p0 = 1

p1

p2

p3
p4

Density	evolution

• K=#	of	active	bands
• M=	#	of	channels
• d=	left	degree	(#	of	edges

from	bands	to	channels)
Stephan	ten	Brink	‘99
Richardson	&	Urbanke ‘08



p`

p`�1p`�1p`�1

Density	evolution

K M



Density	evolution



Density	evolution



• Density Evolution

– assumes that the directed neighborhood is a tree

– tree-based average analysis

p` =
⇣
1� e�

2dK
M p`�1

⌘d�1

p` can be made arbitrarily small

Algorithm	analysis

Density	evolution	equations



• Density Evolution

– assumes that the directed neighborhood is a tree

– tree-based average analysis

p` =
⇣
1� e�

2dK
M p`�1

⌘d�1

p` can be made arbitrarily small

Kd(1� p`) edges removed

Algorithm	analysis

Density	evolution	equations



Kd(1� p`) edges removed

Algorithm	analysis



Kd edges to be removed

?

Kd(1� p`) edges removed Kdp` edges remain

Algorithm	analysis



• Expander Graph

– the remaining Kdp` edges form an expander graph

– expander graphs guarantee steady supplies of single-tons

Kd edges to be removed

Kd(1� p`) edges removed Kdp` edges remain

ALLnon-zero	coefficients	recovered		w.h.p.

Algorithm	analysis



Back	to	sub-Nyquist	sampling:		Numerical	experiment
Output	from	two	sample	channels

true	signal					estimates

Input	spectrum	and	time	domain	signal



Interesting	connection

• Minimum-rate spectrum-blind sampling
• Coding	theory	and sampling	theory

– Capacity-approaching	codes	for	erasure	channels	
– Filter	banks	that	approach	Landau	rate	for	
sampling

Sampling	theoryCoding	theory

Sparse-graph	coded	filter	bank

97



CSL Lecture, UIUC

“Peeling-based”
turbo	engine

Divide

Sparse-Graph		Code

“Solve-if-trivial”
sub-engineConcur

+
+

+

+



Broad	scope	of	
applications

Sparse-graph	
codes

Sparse	
Spectrum	
(DFT/WHT)

Pawar,	R.,	2013	
Li,	Pawar,	R.,	2014

Fast	
neighbor	

discovery	for	
IoT (group	
testing)

Lee,	Pedarsani,	R.,	2015

Sub-Nyquist	
sampling	
theory

Ocal,	Li,	R.,	2016

Compressed	
sensing

Li,	Pawar,	R.,	2014

Sparse	
mixed	linear
regression

Yin,	Pedarsani,	Chen,	R.,	2016

Compressive	
phase	
retrieval

Pedarsani,	Lee,	R.,	2014



Broad	scope	of	
applications

Sparse-graph	
codes

Fast	
neighbor	

discovery	for	
IoT (group	
testing)

Lee,	Pedarsani,	R.,	2015

Sub-Nyquist	
sampling	
theory

Ocal,	Li,	R.,	2016

Compressed	
sensing

Li,	Pawar,	R.,	2014

Sparse	
mixed	linear
regression

Yin,	Pedarsani,	Chen,	R.,	2016

Compressive	
phase	
retrieval

Pedarsani,	Lee,	R.,	2014

Sparse	
Spectrum	
(DFT/WHT)

Pawar,	R.,	2013	
Li,	Pawar,	R.,	2014



Chapter 4

Speeding up learning 
and sparse recovery

Sameer	Pawar Simon	Li

Orhan	Ocal



Motivation

Dataset



Motivation

Dataset



Motivation

Dataset



Motivation

Dataset



Motivation

Dataset



Motivation

Dataset



Motivation

Dataset

EASY!



Motivation

Dataset

However…



Motivation

Dataset

in reality…



Motivation

Dataset

in reality…



Motivation

Dataset



Motivation

Dataset



Motivation

Dataset

What if
— we can actively choose training data
— the model has sublinear d.o.f

we can achieve robust and fast learning
using coding theory!



Motivation

Dataset

What if
— we can actively choose training data
— the model has sublinear d.o.f. 

Can we achieve fast & robust learning
with active sampling + coding theory?

Sub-linear Cost



Applications

Machine Learning Computational Imaging

Sub-Nyquist SamplingMRI

IoT



Sparse-graph	
codes

Sparse	
Spectrum	
(DFT/WHT)

Sameer	Pawar

Xiao	(Simon)	Li

Orhan	Ocal



• Given f(x) =
N�1X

n=0

Fnx
n

• Find coe�cients {Fn}N�1
n=0

f(X0) = F0 +X0F1 + · · ·+X19
0 F19

f(X1) = F0 +X1F1 + · · ·+X19
1 F19

f(X2) = F0 +X2F1 + · · ·+X19
2 F19

...

f(X19) = F0 +X19F1 + · · ·+X19
19F19

Learning	polynomials:	HS	algebra	edition



f(X0) = F0 +X0F1 + · · ·+X19
0 F19

f(X1) = F0 +X1F1 + · · ·+X19
1 F19

f(X2) = F0 +X2F1 + · · ·+X19
2 F19

...

f(X19) = F0 +X19F1 + · · ·+X19
19F19

2

666664

f(X0)
f(X1)
f(X2)

...
f(X19)

3

777775
=

2

666664

1 X0 · · · X19
0

1 X1 · · · X19
1

1 X2 · · · X19
2

...
1 X19 · · · X19

19

3

777775

2

666664

F0

F1

F2
...

F19

3

777775

Recovering	the	coefficients

inverse Discrete Fourier Transform (DFT)
if Xm = ei

2⇡
N m

• Given f(x) =
N�1X

n=0

Fnx
n

• Find coe�cients {Fn}N�1
n=0



What	if	only	K of	 N coeffs.	non-zero?

Example:
Degree	N=	1	million
Sparsity	K	=	200

K sublinear	in	N (K/Nè0)



CSL Lecture, UIUC

Discrete	Fourier	Transform	(DFT)
Compute the DFT of x ∈ CN :

x[n] =
1

√
N

N−1∑

k=0

X[k]ej
2π

N
kn, n = 0, · · · , N − 1

0" 1" 2" 19"3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16" 17" 18"

FFT	Algorithm

Sample	complexity: N

Computational cost:

What	if	only	K	out	of	N	Fourier	
coefficients	are	non-zero?
Example:
Length	N	=	1	million
Sparsity K	=	200

O(N	log	N)



CSL Lecture, UIUC

Problem	Formulation	/	Results

FFAST	(Fast	Fourier	Aliasing-Based	Sparse	Transform)
• Noiseless:	For	K sublinear	in	N

• Uses	fewer	than	4K samples	
• O(K	log	K) computation time	

• Robust	to	noise:	O(K	log4/3 N) samples	in	O(K	log7/3 N) time

Compute the K-sparse DFT of x ∈ CN with K ≪ N :

x[n] =
1

√
N

∑

k∈K

X[k]ei
2πk

N
n n = 0, · · · , N − 1

Support K chosen from [N ] uniformly at random
<latexit sha1_base64="WjBAqPj7cdqrXp968S6PRAjbUx0="></latexit><latexit sha1_base64="WjBAqPj7cdqrXp968S6PRAjbUx0="></latexit><latexit sha1_base64="WjBAqPj7cdqrXp968S6PRAjbUx0="></latexit>

<latexit sha1_base64="jS8BCafSOQFuP1K6XDxisIKv0/g="></latexit>

Sub-linear	time	recovery	when	d.o.f.	sublinear!
Pawar,	R,	IEEE	Trans.	Inf.	Theory	,	2018



Sampling

Sub-sampling

Aliasing
Signal	and	its	spectrum



Chinese-Remainder-Theorem 
guided subsampling

Sparse graph codes

Insights

We use coding-theoretic tools
Design:
• Randomized	constructions	of	good	sparse-graph	codes
Analysis:
• Density	evolution,	Martingales,	Expander	graph	theory…

Sub-sampling 
below Nyquist rate

Aliasing in the 
frequency domain

Good “alias” codeClever sub-sampling
(for sparse case)
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X[1] = 1

X[3] = 4

X[5] = 1

X[10] = 3

X[13] = 7

(= DFT =)
(length	=	20)

Main	idea
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X[1] = 1

X[3] = 4

X[5] = 1

X[10] = 3

X[13] = 7

(= DFT =)

# 5

(length	=	20)

Main	idea

subsample	by	5
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X[1] = 1

X[3] = 4

X[5] = 1

X[10] = 3

X[13] = 7

(= DFT =)

(= DFT =) U [0] U [1] U [2] U [3]

Our Measurements

# 5

(length	=	20)

(length	=	4)

Main	idea

subsample	by	5
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X[1] = 1

X[3] = 4

X[5] = 1

X[10] = 3

X[13] = 7

(= DFT =)
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shift	and	subsample	by	5
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x[n]
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Stage 1
downsample by 5
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Sparse	DFT	Computation	
=	Decoding	over	Sparse	GraphsDoes	it	always	work? NO!How	do	we	induce	good	graphs	that	will	work?



Erased''
symbols/packets'

Parity'''
Checks'

0'

1'

k81'

0'

1'

m81'

...
...

Non$zero(
DFT(coefficients(

Aliased(((
Frequency(bins(

0(

1(

k$1(

0(

1(

m$1(

...
...

Sparse	DFT	Computation =	Decoding	over	Sparse	Graphs

• Explicit graph: design well-understood.

• (N �K) correctly received packets.

• K erased packets.

• Peeling decoder recovers values.

2

6666666666664

non� zero DFT #1

non� zero DFT #2

non� zero DFT #3

non� zero DFT #4

non� zero DFT #5

3

7777777777775

2
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erasure#4

erasure#5

3
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non-zero
DFT Coe�cients

aliased
frequency bins

erased
symbols/packets

parity
checks

• Implicit graph induced by subsampling.

• (N �K) zero DFT coe�cients.

• K unknown non-zero DFT coe�cients.

• Peeling decoder recovers values & locations.



Balls-and-Bins Model
in Sparse-Graph Codes

Chinese-Remainder-Theorem 
induced graph
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4

mod 4

mod 5
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3

Chinese-Remainder-Theorem:
A number between 0-19 is uniquely represented by its remainders modulo (4,5)
> The two graph ensembles are identical.

10

1

5

13

3

CRT-guided	Subsampling	Induces	Good	Graphs

LDPC	codes Density	evolution,	Martingales,	Expander	graph	theory
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DFT
𝟏𝟎𝟕-length
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Peeling
Decoder

Subsample	by	
𝟏𝟎𝟎×𝟏𝟎𝟑

Shift	&	Subsample	by	
𝟏𝟎𝟎×𝟏𝟎𝟑

DFT
𝟏𝟎𝟕-length
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𝑾𝒉𝒂𝒕	𝒊𝒇	𝒐𝒏𝒍𝒚	 𝒗𝒆𝒓𝒚	𝒇𝒆𝒘 	𝑲	𝒐𝒇	𝒕𝒉𝒆	𝑵	.
polynomial	coeffs.{𝑭𝒏}	are	non-zero?

E.g.	deg.	N=1	million
Sparsity K=	200

#	evals.	M	= 𝟔𝟏𝟔

• N=100x103x107
• K≅ 𝐍𝟏/𝟑
• M=2*(100+103+107)-4

Sparse	polynomial	learning
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Threshold using density−evolution
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Empirical behavior of the FFAST algorithm
Threshold using density−evolution

Theoretical	threshold	=	2	X	1.23

Noiseless	setting:	Theory	vs.	practice

Samples/Sparsity

theory practice

Theory	is	by	using	density	evolution	equations	

Fraction	of	non-zero	
coefficients	not	recovered	

at	time	t

N	=	7.7	million
K	=	400
M	=	1248	samples



From	Noiseless	to	Noisy

Noiseless - FFAST

x[n]
#DFT

Stage 1

shiftDFT #

Stage d

Noisy - R-FFAST

x[n]
#DFT

Stage 1

shiftDFT #

Stage d

shiftDFT #

Use	
more	
shifts



Fourier	Transform

Magnetic	resonance	imaging

FFT/IFFT
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Numerical	Phantoms	for	Cardiovascular	MR

336 = 16⇥ 21
323 = 17⇥ 19

http://www.biomed.ee.ethz.ch/research/bioimaging/cardiac/mrxcat
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temporal di↵erence across di↵erent frames of the phantom

Numerical	Phantoms	for	Cardiovascular	MR
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Real	Time	Reconstruction	in	MATLAB	on	a	Macbook

Measurements:	35.33%	of	Nyquist	rate



MRI	Viewfinder

Real-time	MRI	with	viewfinder

Kodak,	1975
Viewing	the	photograph

Canon,	2000



Chapter 4 
(part 2)

Speeding up learning 
and recovery of 
pseudo-Boolean 
functions

Sameer	Pawar Simon	Li

Orhan	Ocal



• N -point Walsh-Hadamard Transform (WHT) with N = 2
n

f [m] =

X

k2{0,1}n

F [k](�1)
hk,mi, m 2 {0, 1}n

• F [k] is sparse in many machine learning applications:

- decision tree and regression tree

- boolean expression (digital logic)

- hypergraph

• Connection to polynomials? Let x1 = (�1)
m1 and x2 = (�1)

m2 , then

f(x1, x2) =

X

k1,k22{0,1}

F [k1, k2]x
k1
1 xk2

2

Walsh-Hadamard	Transform	(WHT)
• N -point Discrete Fourier Transform (DFT)

f [m] =
1

N

N�1X

k=0

F [k]ei
2⇡k
N m, m = 0, · · · , N � 1

• F [k] is sparse in many signal processing applications:

- medical imaging, such as MRI

- wideband sensing, such as cognitive radio

- radio astronomy

• What if we set N = 2n and

- augment 1-D domain {0, · · · , N � 1} as n-D domain k 2 {0, 1}n,

- replace ei
2⇡k
N m with (�1)hk,mi with m,k 2 {0, 1}n

c4 c5

c0 c1

c6 c7

c2 c3

C4 C5

C0 C1

C6 C7

C2 C3

Equivalent	to	a	high-dim.	DFT	
over	the	hyper-cube



• N -point Walsh-Hadamard Transform (WHT) with N = 2
n

f [m] =

X

k2{0,1}n

F [k](�1)
hk,mi, m 2 {0, 1}n

• F [k] is sparse in many machine learning applications:

- decision tree and regression tree

- boolean expression (digital logic)

- hypergraph

• Connection to polynomials? Let x1 = (�1)
m1 and x2 = (�1)

m2 , then

f(x1, x2) =

X

k1,k22{0,1}

F [k1, k2]x
k1
1 xk2

2

WHT:	polynomial	interpretation



Recovering	the	function

⎡

⎢

⎢

⎣

f(1, 1)
f(−1, 1)
f(1,−1)
f(−1,−1)

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

F{}

F{1}

F{2}

F{1,2}

⎤

⎥

⎥

⎦f : {−1, 1}2 → R

Example	for
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Polynomial	recovery

Evaluate the	function	at	every	point

Sample	complexity:

What	if	only	K	out	of	N	WHT	coeffs.	
are	non-zero?
Ex:					No.	of	variables																					n	=	30	

No.	of	input	combinations	N=	1	billion
Sparsity K	=	64

input f

(1,1,…,1)

(1,1,…,-1)

… …



Main	Result

165Li,	Pawar,	Bradley,	Ramchandran,	2015

Insights:

(Sparse graph codes)

Sub-sampling Aliasing in the 
WHT domain

Good “alias” codeClever sub-sampling
(for sparse case)

𝒏 = 𝒍𝒐𝒈	(𝑵)



Walsh-Hadamard	Transform

C4 C5

C0 C1

C6 C7

C2 C3

c4 c5

c0 c1

c6 c7

c2 c3

“time”	domain
WH	domain

Equivalent	to	a	high-dim.	DFT	
over	the	hyper-cube



Walsh-Hadamard	Transform

C4 C5

C0 C1

C6 C7

C2 C3

c4 c5

c0 c1

c6 c7

c2 c3

“time”	domain WH	domain



Walsh-Hadamard	Transform

C4 C5

C0 C1

C6 C7

C2 C3

c4 c5

c0 c1

c6 c7

c2 c3

“time”	domain WH	domain



Walsh-Hadamard	Transform

C4 C5

C0 C1

C6 C7

C2 C3

c4 c5

c0 c1

c6 c7

c2 c3

“time”	domain WH	domain
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X1 X2

X9

X14

X22 X23 2n ⇡ 109 possible hyperedges
if n = 30

n = # of books

s = # of sale patterns

n = # of books

s = # of sale patterns

• recover all sale patterns (hyperedges) without logging every transaction?

• sketch the cuts of the graph instead!

WHT	– Hypergraph	Sketching
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X1 X2

X9

X14

X22 X23 2n ⇡ 109 possible hyperedges
if n = 30

n = # of books

s = # of sale patterns

n = # of books

s = # of sale patterns

consider a cut :

x1 = · · · = x5 = +1

x6 = · · · = x25 = �1
=) cut value f(x) = 0

• recover all sale patterns (hyperedges) without logging every transaction?

• sketch the cuts of the graph instead!

WHT	– Hypergraph	Sketching
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X1 X2

X9

X14

X22 X23 2n ⇡ 109 possible hyperedges
if n = 30

n = # of books

s = # of sale patterns

n = # of books

s = # of sale patterns

• recover all sale patterns (hyperedges) without logging every transaction?

• sketch the cuts of the graph instead!

consider a cut :

x1 = · · · = x10 = +1

x11 = · · · = x25 = �1
=) cut value f(x) = 1

WHT	– Hypergraph	Sketching



WHT	– Hypergraph	Sketching
X1 X2

X9

X14

X22 X23 2n ⇡ 109 possible hyperedges
if n = 30

n = # of books

s = # of sale patterns

n = # of books

s = # of sale patterns

• recover all sale patterns (hyperedges) without logging every transaction?

• sketch the cuts of the graph instead!
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X1 X2

X9

X14

X22 X23 2n ⇡ 109 possible hyperedges
if n = 30

n = # of books

s = # of sale patterns

n = # of books

s = # of sale patterns

• recover all sale patterns (hyperedges) without logging every transaction?

• sketch the cuts of the graph instead!

• Generally speaking, we have the cut function

f(x) =
3

2
� 1

2
x1x2 �

1

2
x9x14 �

1

2
x22x23

WHT	– Hypergraph	Sketching
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X1 X2

X9

X14

X22 X23 2n ⇡ 109 possible hyperedges
if n = 30

n = # of books

s = # of sale patterns

n = # of books

s = # of sale patterns

• recover all sale patterns (hyperedges) without logging every transaction?

• sketch the cuts of the graph instead!

• Generally speaking, we have the cut function

f(x) =
3

2
� 1

2
x1x2 �

1

2
x9x14 �

1

2
x22x23

• K-sparse polynomial

• K  s2d�1

• small # of sale patterns s ⌧ n

• small # of items per sale d ⌧ n

WHT	– Hypergraph	Sketching
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X1 X2

X9

X14

X22 X23 2n ⇡ 109 possible hyperedges
if n = 30

n = # of books

s = # of sale patterns

n = # of books

s = # of sale patterns

• recover all sale patterns (hyperedges) without logging every transaction?

• sketch the cuts of the graph instead!

• Generally speaking, we have the cut function

f(x) =
3

2
� 1

2
x1x2 �

1

2
x9x14 �

1

2
x22x23

sub-sample cuts recover hyperedges

WHT	– Hypergraph	Sketching



Hyperedge at iteration 1000

1 2 3 4
5

6
7

8

9

10

11

12

13

14

15

16
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21
22

23242526272829
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31
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48 49 50

Hyperedge at iteration 9

1 2 3 4
5

6
7

8

9

10

11

12

13

14

15

16

17

18

19
20

21
22

23242526272829
30

31
32

33

34

35

36

37

38

39

40

41

42

43

44
45

46
47

48 49 50

• total cut values 2n = 250

• sparsity K  s2d�1 = 500

• # of cut queries O(Kn) ⇡ 25000

n = 50 books

d = 2 items/sale

s = 250 sale patterns

WHT	– Hypergraph	Sketching



Hyperedge at iteration 1000

1 2 3 4
5

6
7

8

9

10

11

12

13

14

15

16

17

18
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20

21
22

23242526272829
30

31
32
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Hyperedge at iteration 9

1 2 3 4
5

6
7

8

9

10

11

12

13

14

15

16

17

18

19
20

21
22

23242526272829
30

31
32

33

34

35

36

37

38

39

40

41

42

43

44
45

46
47

48 49 50

n = 50 books

d = 2 items/sale

s = 250 sale patterns

• total cut values 2n = 250

• sparsity K  s2d�1 = 500

• # of cut queries O(Kn) ⇡ 25000

WHT	– Hypergraph	Sketching



WHT	– Hypergraph	Sketching
Hyperedge at iteration 1000

1 2 3 4
5

6
7

8

9

10

11

12

13

14

15

16
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23242526272829
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Hyperedge at iteration 1

1 2 3 4
5

6
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8
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22
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45
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47

48 49 50

n = 50 books

d = 2 items/sale

s = 250 sale patterns

• total cut values 2n = 250

• sparsity K  s2d�1 = 500

• # of cut queries O(Kn) ⇡ 25000



Hyperedge at iteration 1000

1 2 3 4
5
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Hyperedge at iteration 2

1 2 3 4
5

6
7

8

9

10

11

12

13

14

15

16

17

18

19
20

21
22

23242526272829
30

31
32

33

34

35

36

37

38

39

40

41

42

43

44
45

46
47

48 49 50

Hyperedge at iteration 1

1 2 3 4
5

6
7

8

9
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11
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n = 50 books

d = 2 items/sale

s = 250 sale patterns

• total cut values 2n = 250

• sparsity K  s2d�1 = 500

• # of cut queries O(Kn) ⇡ 25000

WHT	– Hypergraph	Sketching



Hyperedge at iteration 1000
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Hyperedge at iteration 3
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Hyperedge at iteration 2
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Hyperedge at iteration 1
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n = 50 books

d = 2 items/sale

s = 250 sale patterns

• total cut values 2n = 250

• sparsity K  s2d�1 = 500

• # of cut queries O(Kn) ⇡ 25000

WHT	– Hypergraph	Sketching



Hyperedge at iteration 1000

1 2 3 4
5

6
7

8

9

10

11

12

13

14

15

16

17

18

19
20

21
22

23242526272829
30

31
32

33

34

35

36

37

38

39

40

41

42

43

44
45

46
47

48 49 50

Hyperedge at iteration 4
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Hyperedge at iteration 3
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Hyperedge at iteration 2
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Hyperedge at iteration 1
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n = 50 books

d = 2 items/sale

s = 250 sale patterns

• total cut values 2n = 250

• sparsity K  s2d�1 = 500

• # of cut queries O(Kn) ⇡ 25000

WHT	– Hypergraph	Sketching



Open	source	implementations
• Sparse	FFT	and	Sparse	WHT implemented	in	C++
• Publicly	available	on	GitHub
https://github.com/ucbasics

• Hardware	implementation	of	sparse	FFT

IEEE	JSSC,	2019				A	Real-Time,	1.89-GHz	Bandwidth,	175-kHz	Resolution	Sparse	Spectral	Analysis	RISC-V	SoC in	16-nm	FinFET
A.	Wang	,	W.	Bae	,	J.	Han	,	S.	Bailey	,	O.	Ocal ,	P.	Rigge ,	Z.	Wang	,	K.	Ramchandran ,	E.	Alon ,	B.	Nikolic	

Technology 16nm FinFET

Bandwidth 2GHz

Analysis time 0.02ms

Compression 65%
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“Peeling-based”
turbo	engine

Divide

Sparse-Graph		Code

“Solve-if-trivial”
sub-engineConcur

+
+

+

+



Broad	scope	of	
applications

Sparse-graph	
codes

Sparse	
Spectrum	
(DFT/WHT)

Pawar,	R.,	2013	
Li,	Pawar,	R.,	2014

Fast	
neighbor	

discovery	for	
IoT (group	
testing)

Lee,	Pedarsani,	R.,	2015

Sub-Nyquist	
sampling	
theory

Ocal,	Li,	R.,	2016Compressed	
sensing

Li,	Pawar,	R.,	2014

Sparse	
mixed	linear
regression

Yin,	Pedarsani,	Chen,	R.,	2016

Compressive	
phase	
retrieval

Pedarsani,	Lee,	R.,	2014



Estimate the K-sparse signal x 2 CN , which has only K ⌧ N non-zero
coe�cients, from linear measurements in the presence of noise

y = Ax+w

Compressed	sensing

Candes 2006,	Donoho 2006



Estimate the K-sparse signal x 2 CN , which has only K ⌧ N non-zero
coe�cients, from linear measurements in the presence of noise

y = Ax+w

= �
Sensing Matrix S

Bi-adjacency Matrix H

Measurement Matrix AMeasurement Matrix A

�
Sensing Matrix S

Bi-adjacency Matrix H

Measurement Matrix A

Coding Matrix H

Compressed	sensing

Li,	Pawar,	R.,	2014	– Yin	et	al.,	2019



Generic method to make algorithm robust to noise
Recall	how	we	find	locations	and	values	of	singletons	in	the	noiseless	setting.
Ex.:		a	singleton	with	non-zero	element b	at	index	4



Generic method to make algorithm robust to noise

A. Guess that	a	received	bin	measurement	corresponds	to	a	singleton.
B. Find	ML	estimate	of	singleton	value	and	location	index	(using	coded	representation).
C. Verify using	signature	vector	if	singleton	hypothesis	is	correct.
D. If	yes,	“peel”	singleton	node	from	the	other	measurement	bins	it	belongs	to,	and	continue.
E. If	no,	continue	to	next	measurement	bin.

1. Represent	each	element	by	its	binary	index	string:	(log	N)
2. Encode	it	using	an	error	correcting	code	matched	to	the	noise	

of	the	channel:	(𝑪𝟏 log	N)
3. Add	a	unique	random	signature	vector	to	each	column	to	

identify	the	element	the	column	represents:	(𝑪𝟐 log	N).
4. Total	cost	(per	measurement	bin)	is			O(log	N).
5. No.	of	measurement	bins	is	O(K) (using	sparse	graph	codes).
6. Total	measurement	cost	is		O(K	log	N).

It is not robust to encode the location information in the relative phase! Alt. choice?

Guess-and-check	algorithm:



Broad	scope	of	
applications

Sparse-graph	
codes

Sparse	
Spectrum	
(DFT/WHT)

Pawar,	R.,	2013	
Li,	Pawar,	R.,	2014

Fast	
neighbor	

discovery	for	
IoT (group	
testing)

Lee,	Pedarsani,	R.,	2015

Sub-Nyquist	
sampling	
theory

Ocal,	Li,	R.,	2016Compressed	
sensing

Li,	Pawar,	R.,	2014

Sparse	
mixed	linear
regression

Yin,	Pedarsani,	Chen,	R.,	2016

Compressive	
phase	
retrieval

Pedarsani,	Lee,	R.,	2014



| .	| Decoder+

Compressive	Phase	Retrieval	(CPR)

Nonlinearity	makes	peeling	challenging



Main	Results

Sample
complexity

Computational	
complexity

Noiseless

Noisy (almost-linear)

Noisy	(sub-linear)

• Sparse-graph codes	for	Compressive	Phase	Retrieval:	PhaseCode

• Fast & efficient: first	‘capacity-approaching’	results	

• Design	can	be	made	‘Optics-Friendly’

• Extensive	simulations validate	close	tie	between	theory	&	practice

Pedarsani,	Yin,	Lee,	R.,	2014
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Simulation	Results



IFFT	of	recovered	FFT	
coefficients

Color	of	balls	

RED	=	Not	colored

Iteration	0

Simulation	Results



Iteration	1

Simulation	Results

Some	balls	are	colored!



More	balls	are	colored!

Iteration	2

Simulation	Results



Iteration	3

Simulation	Results



Iteration	4

Simulation	Results



Iteration	5

Simulation	Results



Iteration	6

Simulation	Results



Iteration	7

Simulation	Results



Iteration	8

Simulation	Results



Iteration	9

Simulation	Results



GREEN becomes	dominant?

Iteration	10

Simulation	Results



Most	balls	are	GREEN

Iteration	11

Simulation	Results



All	but	1	ball	are	GREEN

Iteration	12

Simulation	Results



All	balls	are	GREEN!

Iteration	13

Simulation	Results



Broad	scope	of	
applications

Sparse-graph	
codes

Sparse	
Spectrum	
(DFT/WHT)

Pawar,	R.,	2013	
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neighbor	
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IoT (group	
testing)

Lee,	Pedarsani,	R.,	2015

Sub-Nyquist	
sampling	
theory

Ocal,	Li,	R.,	2016Compressed	
sensing

Li,	Pawar,	R.,	2014

Sparse	
mixed	linear
regression

Yin,	Pedarsani,	Chen,	R.,	2016

Compressive	
phase	
retrieval

Pedarsani,	Lee,	R.,	2014



Group	testing

Find	K defective from	
n items using	‘group’	
measurements

1

0 Jack	Keil Wolf
[85]	Principles	of	group	testing	and	an	application	of	the	design	
and	analysis	of	multi-access	protocols
[85]	Born	again	group	testing:	multi-access	communications
[84]	Random	multiple-access	communications	and	group	testing
[81]	An	Application	of	Group	Testing	to	the	Design	of	Multi-User	
Protocols



Group	testing

Find	K defective from	n items using	‘group’	measurements

1

0



Group Testing for Neighbor Discovery

node1 node2

node3



Group Testing for Neighbor Discovery

node1

node2

node3

1 	 	 0 	 	 1 	 	 0 	 	 0

1 	 	 0 	 	 1 	 	 0 	 	 0

0 	 	 0 	 	 1 	 	 0 	 	 1

node1 node2

node3

*	0.9

*	0.5

*	0.1



Group Testing for Neighbor Discovery

node1

node2

node3

1 	 	 0 	 	 1 	 	 0 	 	 0

1 	 	 0 	 	 1 	 	 0 	 	 0

0 	 	 0 	 	 1 	 	 0 	 	 1

Energy	detection

node1 node2

node3

*	0.9

*	0.5

*	0.1

1 	 	 0 	 	 1 	 	 0 	 	 1



Group Testing for Neighbor Discovery

node1

node2

node3

1 	 	 0 	 	 1 	 	 0 	 	 0

1 	 	 0 	 	 1 	 	 0 	 	 0

0 	 	 0 	 	 1 	 	 0 	 	 1

Energy	detection

1 	 	 0 	 	 1 	 	 0 	 	 1

node1 node2

node3

Group	testing

*	0.9

*	0.5

*	0.1

Node1,	Node2,	and	Node3	are	neighbors!



SAFFRON
(Sparse-grAph codes Framework For gROup testiNg) 

Lee,	Pedarsani,	Chandrasekher,	R.,	2015



SAFFRON
(Sparse-grAph codes Framework For gROup testiNg) 

Simulation	done	
on	a	regular	
MacBook	Air	
laptop

Finding	32	defective	items	from		a	population

of	size	1	trillion	can	be	done	with	SAFFRON	
using	~87,000	tests		in	0.3	second	 on	a	
regular	MacBook	Air	laptop!
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1

1	OR	1	=	1

1

Peeling	with	OR	operation

1

1

2

1

Under	field	arithmetic Under	OR



1

1

1	OR	1	=	1

1

Challenge:		Peeling	with	OR	operation

1

1

2

1

Find	singleton	measurement/test	and	recover	the	value

Under	field	arithmetic Under	OR



1

1

1	OR	1	=	1

1

Peeling	with	OR	operation

1

1 1

?
depends	on	
other	neighbors

Nonlinearity	makes	peeling	challenging

Under	field	arithmetic Under	OR

2	– 1 =	1



subject	2	=	(10)2

subject	3	=	(11)2
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Solution	– high	level	idea

Binary	expansion	of	
subject	index
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Broad	scope	of	
applications

Sparse-graph	
codes

Sparse	
Spectrum	
(DFT/WHT)

Pawar,	R.,	2013	
Li,	Pawar,	R.,	2014

Fast	
neighbor	

discovery	for	
IoT (group	
testing)

Lee,	Pedarsani,	R.,	2015

Sub-Nyquist	
sampling	
theory

Ocal,	Li,	R.,	2016Compressed	
sensing

Li,	Pawar,	R.,	2014

Sparse	
mixed	linear
regression

Yin,	Pedarsani,	Chen,	R.,	2016

Compressive	
phase	
retrieval

Pedarsani,	Lee,	R.,	2014



Motivation

Ø Compressive sensing: a powerful tool for sparse recovery.

Ø What if we have a mixture of sparse signals?

Ø Applications:  Neuroscience, experiment design in biology…



Problem Formulation

Simultaneous	de-mixing and	sparse	parameter	estimation problem!
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Related Work (incomplete list)

Ø Tensor decomposing: Chaganty, and Liang. "Spectral Experts for Estimating 

Mixtures of Linear Regressions." ICML 2013.

Ø Convex relaxation: Chen, Yi, and Caramanis. "A Convex Formulation for Mixed 
Regression with Two Components: Minimax Optimal Rates." COLT. 2014.

Ø Alternating minimization (EM): Yi, Caramanis, and Sanghavi. "Alternating 

Minimization for Mixed Linear Regression." ICML. 2014.
Städler, Bühlmann, and van de Geer. “L_1 Penalization for Mixture Regression 

Models.” TEST, 2012.



Sparse	mixed	linear	regression:	main	results	

Mixed-Coloring algorithm

Yin,	Pedarsani,	Chen,	R.,	2017



Main Results



Primitives



• Find consistent pairs

Decoding Algorithm



Singleton balls
At this stage, we have got some 
non-zero elements but we don’t 
know which parameter vectors 
they belong to.

• Find consistent pairs

• Find singletons

Decoding Algorithm



Ø Strong doubletons: consistent pairs that 
are only associated with two singleton balls 
found in the first stage.

Ø Can be found by guess-and-check.
Ø The two singleton balls must be in the same 

parameter vector.

• Find consistent pairs

• Find singletons

• Find strong doubletons

Decoding Algorithm



• Find consistent pairs

• Find singletons

• Find strong doubletons

Decoding Algorithm

Theorem:   As long as M/K > const., the L 
largest connected components of the graph 
are of size O(K), and correspond to different 
parameter vectors.  Other connected 
components are of size O(log K). 

[Follows from E-R (n,p) random graphs:  if 
np>1, then component size is O(n), else it is 
O(log n).]



Decoding Algorithm



Decoding Algorithm



Decoding Algorithm
Iterative decoding:

Non-zero elements	from	
two	parameter	vectors,	

either	blue	or	red

Consistent	pairs	(bins).	Each	
bin	is	either	blue	or	red.



Decoding Algorithm
Iterative decoding:



Decoding Algorithm
Iterative decoding:

By	finding	strong	doubletons	and	largest	
connected	components,	we	have	already	
recovered a	fraction	of	non-zero	elements.	Say	
a,	b (blue)	and	u,	v (red).



Decoding Algorithm
Iterative decoding:

Recall:

By	finding	strong	doubletons	and	largest	
connected	components,	we	have	already	
recovered a	fraction	of	non-zero	elements.	Say	
a,	b (blue)	and	u,	v (red).



Decoding Algorithm
Iterative decoding:

Guess-and-check:	try	to	subtract	a and	
b from	bin	1,	and	v from	bin	3.



Decoding Algorithm
Iterative decoding:

The	remaining	measurements	pass	
ratio	test.	Recover	c using	bin	1	and	
recover	w using	bin	3.



Decoding Algorithm
Iterative decoding:

Iterate	this	procedure	and	recover	all	
the	non-zero	elements.



Decoding Algorithm
Density evolution:

• Summation	starts	from	2	because	
singletons	are	not	useful	for	
iterative	decoding	as	we	don’t	
know	their	“color.”



Experimental Results
Noiseless setting: sample and time complexities:

0 10 20 30 40 50 60
m/K

0

0.2

0.4

0.6

0.8

1

Pr
{s

uc
ce

ss
}

L=2, K=2400
L=3, K=2400
L=4, K=2400

0 200 400 600 800 1000
K

0

0.5

1

1.5

2

2.5

R
un

ni
ng

 ti
m

e 
(s

ec
) L=2, n=1×104

L=2, n=1×105
L=4, n=1×104

L=4, n=1×105

Matches	our	theory



Generic method to make algorithm robust to noise
Recall	how	we	find	locations	and	values	of	singletons	in	the	noiseless	setting.
Ex.:		a	singleton	with	non-zero	element b	at	index	4



It is not robust to encode the location information in the relative phase!
Alternative choice?

Robust Mixed-Coloring Algorithm

Ø It	is	still	possible	to	recover	the	binary	pattern	of	the	
measurements	by	a	simple	thresholding.

Ø Of	course	we	may make	mistakes.
Ø This	procedure	can	be	robustified by	simply	

repeating each	bit	or	using	an	error	correcting	code.



Experimental Results
Noisy setting: sample and time complexities:
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Chapter 5

Speeding up 
distributed computing
on the cloud

Kangwook	Lee Ramtin	P.

Vipul	Gupta Tavor	Baharav

Orhan	OcalDimitris	P.



Network	bottlenecks HW	failures

Maintenance,	etc.

System	Noise



f(A)

Computing f(A)…

Completed in 1s.

A

System	Noise	=	Latency	
Variability



f(A)

Computing f(A)…

Completed in 3s.

Still computing…

Still…

A

System	Noise	=	Latency	
Variability

f(A)

Computing f(A)…

Completed in 1s.

A
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Distributed	Matrix-Vector	Multiplication
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Distributed	Matrix-Vector	Multiplication

Master

Worker	1 Worker	2 Worker	3

A1 b b bA2 A3

A⇥ b
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Straggler Problem

0
1 6

Time (s)

CDF of time to collect U gradients

1
[Chen	et	al.,	2016]
Google	Brain

The slowest worker can be 6 times slower

V = W V = XY V = WYY

Straggler	Problem

CDF	of	time	to	collect	results	from	k	workers



Why	Do	We	Have Stragglers?

A1 b b bA2 A3

y1 y2 y3
This 
imag
e 
cann
ot 
curr
ently 
be 

Master

Worker 1 Worker 2 Worker 3

1. Data Locality

2. Shared Resources
3. Network Latency

“… infeasible to eliminate all  
latency variability.”

[Dean, Barroso, Comm. ACM’2013]



Coded	Matrix-Vector	Multiplication

Master

Worker	1 Worker	2 Worker	3

b b bA0
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Coded	Computation	for	Linear	Operations

Theorem: E[Tuncoded] = ⇥

✓
log n

n

◆

E[T]

coded

replication

1

uncoded

⇥

✓
log n

n

◆

⇥

✓
1

n

◆

E[T ?
MDS-coded] = ⇥

✓
1

n

◆

E[T ?
replication] = ⇥

✓
log n

n

◆

Lee,	Lam,	Pedarsani,	Papailiopoulos,	R.	2015



E[T]

opt.	MDS

opt.	rep.

uncoded

⇥

✓
log n

n

◆

⇥

✓
1

n

◆

MDS-Coded	Matrix-Vector	Multiplication

[LLPPR,	NIPS	workshop‘15]
[LLPPR,	T-IT’18]

On Amazon AWSUnder	exponential	latency				
model

opt.	MDS

opt.	rep. uncoded

Codes	provide	30%	speedup	compared	uncoded	
and	replicated	jobs	for	fixed	number	of	workers



Applications
• Distributed	linear	regression
• Distributed	non-linear	function	computation
• Reducing	communication	in	data	shuffling	by	network	coding

Has	attracted	lots	of	interest:
• Coded	Matrix	Multiplication	in	MapReduce	setup
• Coded	Computation	for	Logistic	Regression
• Coded	Computation	+	Distributed	Gradient	Computing
• Approximation:	SVD	+	Coded	Matrix	Multiplication,

Sketching,	Second	order	methods…



CodedComputation

300ms
33%

200ms

Matrix multiplication

8s

6s
25%

Linear regression

65s

40s
38%

Matrix completion

• A new interface between ML systems and information & coding 
theory

• Codes can be used to speed up distributed computation & distributed 
ML

• Matrix-vector multiplication [LLPPR, ToIT’18], 
• Matrix-matrix multiplication [LSR, ISIT’17], [BLOR, ISIT’18], [GWCR, BG’19]
• Gradient accumulation [LPPR, ISIT’17], [GKCMR, ICML Workshop’19]
• Data shuffling [CLPPR, NeurIPS W’17], [CLPPR, SysML’18]

• Works in practice (Amazon EC2 experiments on real data)

[LLPPR, NIPS W’15]  
[LLPPR, ToIT’18]



CodedComputation
• Matrix-vector multiplication [LLPPR, ToIT’18]

• [Ferdinand and Draper, Allerton’16]
• [Reisizadeh et al., ISIT’17]
• [Mallick, Chaudhari, Joshi, '18]
• [Wang, Liu, Shroff, ICML’18]
• [Maity, Rawat, Mazumdar, SysML'18]
• …

• Matrix-matrix multiplication [LSR, ISIT’17], [BLOR, ISIT’18] [GWCR, BG’19]
• [Yu, Maddah-Ali, Avestimehr, NIPS’17]
• [Dutta et al., ’18]
• …

• Gradient accumulation [LPPR, ISIT’17] [GKCMR, ICML Workshop’19]
• [Dutta, Cadambe, Grover, NIPS’16]
• [Tandon, Lei, Dimakis, Karampatziakis, ICML’17]
• [Raviv, Tamo, Tandon, Dimakis, '17]
• [Halbawi, Azizan, Salehi, Hassibi, ISIT’18]
• [Ye and Abbe, ICML’18]
• [Charles and Papailiopoulos, ISIT'18]
• …

• Data shuffling [CLPPR, NeurIPS W’17], [CLPPR, SysML’18]
• [Song et al., ISIT'17]
• [Attia and Tandon, Globecom’16]
• …

[LLPPR, NIPS W’15]  
[LLPPR, ToIT’18]



• “Function	as	a	Service	(FaaS)”
– Run	my	function	“somewhere”
– AWS,	Google,	IBM,	Microsoft,	etc.

Why	Serverless	computing?
• Simple	abstraction	for	user

– Cluster	management	hidden
• Tremendous	scale	

– 16,000	machines	in	10	seconds
– Cloud	storage	as	infinite	RAM

• Reduced	Costs
– Pay	only	for	the	time	you	use

• Significant	interest	from	the	cloud	computing	
community

Cloud	
Storage

func f data

Results

Serverless	
workers

Jonas,	Eric,	et	al.	"Cloud	Programming	Simplified:	A	Berkeley	View	on	Serverless	Computing."	(2019).

• A decade ago, cloud servers abstracted away physical servers.
• Future: “serverless” computing will abstract away cloud servers.

Scalable	computing:	Serverless platform!



Serverless	Systems:	Characteristics

• Massive	scale	of	low	quality	workers
• Workers	do	not	communicate	

– Read/write	data	through	a	single	data	storage	entity

• Workers	are	short-lived
• Stragglers	and	faults!

Stragglers
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~2% stragglers

Average	Runtimes	over	10	trialsA	single	run	snapshot

significant # of stragglers are
observed in our

experiments consistently

Can	have	up	to	16,000	workers	on	AWS	Lambda



What	are	we	optimizing	for?

Input
Master

(Encoding) Processor 2

Processor 1

Processor N

Master
(Decoding) Result

Wait for K’
...

Black Box

1

TEnc TDist TComp TDe
c

Product	Codes: a	good	tradeoff	between	
near-MDS	and	local	enc./dec.
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A1B1 A1B2 A1(B1 +B2)

A2B1 A2B2 A2(B1 +B2)

(A1 +A2)B1 (A1 +A2)B2

1

CCCCA

Product-coded	(a.k.a.	G-LDPC	coded)	Mat.-Mat.	Mult.

1. Near-MDS
2. Low	ENC/DEC	cost
3. DEC	is	parallelizable
4. N-dim	product	codes…

2D 3D

G-LDPC	codes [Tanner	’81,	Lentmaier-Z’99,	Boutros	et	al.	‘99],	Product	codes [Elias	‘54,	Justeson	’07,	JENR ‘15]	



Product	Code	Decoding

• Peeling	decoder	is	very	
simple	and	parallelizable
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Product	Code	Decoding

• Peeling	decoder	is	very	
simple	and	parallelizable
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Product	Code	Decoding

• Peeling	decoder	is	very	
simple	and	parallelizable
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Product	Code	Decoding
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• Peeling	decoder	is	very	
simple	and	parallelizable



Product	Code	Decoding

• Peeling	decoder	is	very	
simple	and	parallelizable
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Product-Coded	MM:	Performance

Result: (Baharav &	R’18)	In	a	d-dimensional	product-
coded	matrix	multiplication	scheme	with	(n,	k,	r+1)		
component	codes,	the	output	will	be	decodable	
w.h.p.	after																												nodes	have	completed	
their	subtasks.

• Can	tolerate														stragglers	
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Kernel	Ridge	Regression	using	
Conjugate	Gradient	on	AWS	Lambda



Power	Iteration	on	serverless	AWS	
Lambda

~50% savings in        
total time! 

(1hour 6 min. 
less)



Matrix	Multiplication:	Sketching
• Exact	computation	is	not	necessary,	especially	if	input	data	has	redundancies
• Randomized	sketching	is	an	important	technique	to	reduce	comp.	complexity

Mahoney,	M.	W.,	2011;	Woodruff,	D.	P.,	2014;	Drineas et	al.,	2016;	…….



Large-scale	Convex	Optimization	on	Serverless	
Systems

Recall	the	challenges	in	serverless	systems:
• Slow	communication
• Ephemeral	workers	
• Persistent	stragglers	
Hence,	reducing	the	number	of	iterations	is	paramount
• Second-order	methods	are	a	natural	fit	for	serverless	systems

– Reduce	the	number	of	iterations	considerably
– Exploit	the	tremendous	compute	power	per	iteration

• OverSketched	Newton:	Tailored	to	serverless	systems



OverSketched	Newton

Key	Observation:	For	many	common	convex	optimization	problems	
• Gradient	can	be	written	as	a	few	large	matrix-vector	mults.
• Hessian	can	be	written	as	a	large	matrix-matrix	multiplication

Example problems:
▫ Logistic and linear regression,
▫ Softmax regression,
▫ SVMs,
▫ Linear program,
▫ Semidefinite programs,
▫ Lasso (in dual formulation), etc.



Example:	Logistic	Regression



Cloud	
storage

W1

W2

W3

!

"1

"2

"1 + "2

M

Decode

"!

"1!

"2!

("1 + "2)!

"1!, ("1 + "2)!

" = "1
"2

Cloud	
storage

OverSketched	Newton

We	prove	convergence	guarantees	for	OverSketched	Newton	
when	the	objective	is	both	strongly	and	weakly	convex



Experiments	with	n	=	0.3	million	examples	and	d	=	3000	features	on	AWS	Lambda	

Comparison	with	existing	second-order	methods

50%	Savings! • 3600	workers	used	to	compute	
the	exact	Hessian		

• 600	workers	used	to	compute	the	
sketched	Hessian

Wang,	Shusen,	et	al.	"GIANT:	Globally	improved	approximate	newton	method	for	distributed	optimization." NeurIPS.	2018.



Experiments	on	logistic	regression	with	n	=	0.4	million	and	d	=	2000	

Coded	computing	vs	Recomputing	Stragglers
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Codes	used?



First	order	vs	Second	order	on	AWS	Lambda

• 100	workers	used	for	Gradient	computation
• 1500	workers	used	to	compute	the	sketched	Hessian	

Experiments	on	a	EPSILON	dataset	with	n	=	0.4	million	ex.	and	d	=	2000	features
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Experiments	on	logistic	regression	with	n	=	0.3	million	and	d	=	3000	

MPI	(server-based)	vs	Serverless	computing
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Concluding	Remarks
Shannon-inspired	research	threads	on	the	power	of	codes in:
• Duality:

– ‘’exchangability”	of	enc.	and	dec. functions	in	source/channel	coding
• Encryption:

– ‘’exchangability”	of	encryption	&	compression	modules	w/o	perf.	loss
• Sampling:	

– unexplored	connections	between	sampling	theory	and	coding	theory
• Learning:		

– sparse-graph	code	based	“peeling”	core	powerful	in	many	sparse	
learning	settings	with	sub-linear	time	complexity	

• Distributed	computing:	
– straggler-proofing	with	codes	speeds	up	distributed	machine	learning



Conclusion:	Shannon’s	incredible	legacy

• A	mathematical	theory	of	
communication

• Channel	capacity
• Source	coding
• Channel	coding
• Cryptography
• Sampling	theory
• …

(1916-2001)

His	legacy	will	last	many	
more	centuries!
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Thank	you!


