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Foundations of Probability

Sets:

• A set is a collection of elements.

• The universal set Ω is the set of all elements (for the specific
context).

• A subset A of a set B is a set consisting of some (or none) of the
elements of B. Usually written as A ⊂ B.

• The empty set (or null set) φ is the set with no elements.

Set Operations:

• Complement: Ac = {x : x /∈ A}.
• Union: A ∪B = {x : x ∈ A or x ∈ B}.
• Intersection: A ∩B = {x : x ∈ A and x ∈ B}.
• Difference: A−B = {x : x ∈ A and x /∈ B}.



Foundations of Probability

Other Set Concepts:
• A collection of sets A1, . . . , An is mutually exclusive if Ai ∩Aj = φ

for i 6= j.
• A collection of sets A1, . . . , An is collectively exhaustive if
A1 ∪ · · · ∪An = Ω.

• A collection of sets A1, . . . , An is a partition if it is both mutually
exclusive and collectively exhaustive.

De Morgan’s Laws: (
A ∪B

)c
= Ac ∩Bc( n⋃

i=1

Ai

)c

=

n⋂
i=1

Ac
i(

A ∩B
)c

= Ac ∪Bc( n⋂
i=1

Ai

)c

=

n⋃
i=1

Ac
i



Foundations of Probability

Basic Probability Model:

• An experiment is a procedure that generates observable outcomes.

• An outcome is a possible observation of an experiment.

• The sample space Ω is the set of all possible outcomes.

• An event is a set of outcomes of an experiment.

Probability Axioms:

• Non-negativity: For any event A, P[A] ≥ 0.

• Normalization: P[Ω] = 1.

• Additivity: For any countable collective A1, A2, . . . of mutually
exclusive events, P[A1 ∪A2 ∪ · · · ] = P[A1] + P[A2] + · · · .

Other Useful Properties:

• Complement: P[Ac] = 1− P[A].

• Inclusion-Exclusion: P[A ∪B] = P[A] + P[B]− P[A ∩B].



Foundations of Probability

Conditional Probability:

• The conditional probability of event A given that B occurs is

P[A|B] =
P[A ∩B]

P[B]
.

• Conditional probability satisfies the probability axioms:
• Non-negativity: For any event A, P[A|B] ≥ 0.
• Normalization: P[Ω|B] = 1.
• Additivity: For any countable collective A1, A2, . . . of mutually

exclusive events, P[A1 ∪A2 ∪ · · · |B] = P[A1|B] + P[A2|B] + · · · .

Multiplication Rule:

• For any events A1, A2, . . . , An,

P
[ n⋂
i=1

Ai

]
= P[A1]P[A2|A1]P[A3|A1 ∩A2] · · · P[An|A1 ∩ · · · ∩An−1] .

• Two events A and B: P[A ∩B] = P[A]P[B|A] = P[B]P[A|B].



Foundations of Probability

Law of Total Probability:
• For a partition B1, . . . , Bn satisfying P[Bi] > 0 for all i,

P[A] =

n∑
i=1

P[A|Bi]P[Bi] .

Bayes’ Rule:
• This is a method to “flip” conditioning:

P[B|A] =
P[A|B]P[B]

P[A]
.

• Sometimes, it is useful to solve for the denominator using the law of
total probability. For a partition B1, . . . , Bn satisfying P[Bi] > 0 for
all i,

P[Bj |A] =
P[A|Bj ]P[Bj ]

P[A]
=

P[A|Bj ]P[Bj ]
n∑
i=1

P[A|Bi]P[Bi]



Foundations of Probability

Independence:
• Two events A and B are independent if P[A ∩B] = P[A]P[B].
• Events A1, . . . , An are independent if

• All collections of n− 1 events chosen from A1, . . . , An are
independent.

• P[A1 ∩ · · · ∩An] = P[A1] · · ·P[An]

• Independence means that no subset of the events can be used to
improve the prediction of any other subset of events.

• If A1, . . . , An only satisfy P[Ai ∩Aj ] = P[Ai]P[Aj ] for all i 6= j, then
we say they are pairwise independent (but not independent).

Conditional Independence:
• The events A and B are conditionally independent given C if

P[A ∩B|C] = P[A|C]P[B|C] .

• Independence does not imply conditional independence.
• Conditional independence does not imply independence.



Foundations of Probability

Counting:

• If an experiment is composed of m subexperiments and the ith

subexperiment consists of ni outcomes (that can be freely chosen),
then the total number of outcomes n1 n2 · · · nm.

Sampling:

• Number of ways to make k selections out of n distinguishable
elements

Order
Dependent Independent

With Replacement nk
(
n+ k − 1

k

)
Without Replacement

n!

(n− k)!

(
n

k

)
=

n!

k!(n− k)!



Discrete Random Variables

Discrete Random Variables:
• A random variable is a mapping that assigns (real) numbers to

outcomes in the sample space.
• Random variables are denoted by capital letters (such as X) and

their specific values are denoted by lowercase letters (such as x).
• The range of a random variable X is denoted by RX .

Probability Mass Function (PMF):
• Probability that a discrete random variable X takes the value x:

PX(x) = P[X = x] .

Basic PMF Properties
• Non-negativity: PX(x) ≥ 0 for all x.

• Normalization:
∑
x∈RX

PX(x) = 1.

• Additivity: For any event B ⊂ RX , the probability that X falls in B

is P[X ∈ B] =
∑
x∈B

PX(x).



Discrete Random Variables

Expectation:

• The expected value of a discrete random variable X is

E[X] =
∑
x∈RX

xPX(x) .

Functions of a Random Variable:

• A function of Y = g(X) of a discrete random variable X is itself a
discrete random variable.

• Range: RY = {g(x) : x ∈ RX}.
• PMF: PY (y) =

∑
x:g(x)=y

PX(x).

• Expected Value: E[Y ] =
∑
y∈RY

y PY (y) =
∑
x∈RX

g(x)PX(x) .

• Linearity of Expectation: E[aX + b] = aE[X] + b.



Discrete Random Variables

Variance:
• The variance measures how spread out a random variable is around

its mean, Var[X] = E
[(
X − E[X]

)2]
.

• Alternate formula: Var[X] = E[X2]−
(
E[X]

)2
.

• Variance of a linear function: Var[aX + b] = a2Var[X].
• Standard Deviation: σX =

√
Var[X].

Important Families of Discrete Random Variables:
Bernoulli Random Variables:
• X is a Bernoulli(p) random variable if it has PMF

PX(x) =

{
1− p x = 0,

p x = 1 .

• Range: RX = {0, 1}.
• Expected Value: E[X] = p.
• Variance: Var[X] = p(1− p).
• Interpretation: Single trial with success probability p.



Discrete Random Variables

Important Families of Discrete Random Variables:
Geometric Random Variables:

• X is a Geometric(p) random variable if it has PMF

PX(x) =

{
p(1− p)x−1 x = 1, 2, . . . ,

0 otherwise.

• Range: RX = {1, 2, . . .}.

• Expected Value: E[X] =
1

p
.

• Variance: Var[X] =
1− p
p2

.

• Interpretation: # of independent Bernoulli(p) trials until first
success.



Discrete Random Variables

Important Families of Discrete Random Variables:
Binomial Random Variables:

• X is a Binomial(n, p) random variable if it has PMF

PX(x) =


(
n

x

)
px(1− p)n−x x = 0, 1, . . . , n,

0 otherwise.

• Range: RX = {0, 1, . . . , n}.
• Expected Value: E[X] = np.

• Variance: Var[X] = np(1− p).

• Interpretation: # of successes in n independent Bernoulli(p) trials.



Discrete Random Variables

Important Families of Discrete Random Variables:
Discrete Uniform Random Variables:

• X is a Discrete Uniform(a, b) random variable if it has PMF

PX(x) =


1

b− a+ 1
x = a, a+ 1, . . . , b,

0 otherwise.

• Range: RX = {a, a+ 1, . . . , b}.

• Expected Value: E[X] =
a+ b

2
.

• Variance: Var[X] =
(b− a)(b− a+ 2)

12
=

(b− a+ 1)2 − 1

12
.

• Interpretation: equally likely to take any integer value from a to b.



Discrete Random Variables

Important Families of Discrete Random Variables:
Poisson Random Variables:

• X is a Poisson(λ) random variable if it has PMF

PX(x) =


λx

x!
e−λ x = 0, 1, . . .

0 otherwise.

• Range: RX = {0, 1, 2, . . .}.
• Expected Value: E[X] = λ.

• Variance: Var[X] = λ.

• Interpretation: # of arrivals in a fixed time window.



Discrete Random Variables

Cumulative Distribution Function (CDF):

• The CDF returns the probability that a random variable X is less
than or equal to a value x:

FX(x) = P[X ≤ x] .

Basic CDF Properties:

• Non-negativity: FX(x) is a non-decreasing function of x.

• Normalization: lim
x→∞

FX(∞) = 1.

• Probability of an Interval: P[a < X ≤ b] = FX(b)− FX(a).



Discrete Random Variables

Conditioning for Discrete Random Variables:
• The conditional PMF of X given an event {X ∈ B} is

PX|B(x) =


PX(x)

P[X ∈ B]
x ∈ B

0 x /∈ B
where P[X ∈ B] =

∑
x∈B

PX(x)

• Non-negativity: PX|B(x) ≥ 0 for all x.

• Normalization:
∑
x∈B

PX|B(x) = 1.

• Additivity: For any event A ⊂ RX , the probability that X falls in A given

that X falls in B is P
[
{X ∈ A}

∣∣{X ∈ B}
]
=
∑
x∈A

PX|B(x).

• The conditional expected value of X given an event B is

E[X|B] =
∑
x∈B

xPX|B(x) .

• The conditional expected value of a function g(X) given event B is

E[g(X)|B] =
∑
x∈B

g(x)PX|B(x)



Foundations of Probability: True/False Practice Questions

For each of the following questions, indicate whether the statement is
always true or it can be false by clearly writing “True” or “False.”
Briefly explain the reasoning behind your answer for partial credit (in
case your choice is wrong). Throughout the problem, you may assume
that A, B, and C are events with P[A] > 0, P[B] > 0, and P[C] > 0.



Foundations of Probability: True/False #1

If P[A|B] = P[A], then A and B are independent.

True.

P[A|B] =
P[A ∩B]

P[B]
= P[A], which implies independence,

P[A ∩B] = P[A]P[B].



Foundations of Probability: True/False #2

If A, B, and C are independent, then P[A ∩B|C] = P[A]P[B].

True.

P[A ∩B|C] =
P[A ∩B ∩ C]

P[C]
=

P[A]P[B]P[C]

P[C]
= P[A]P[B].



Foundations of Probability: True/False #3

If A and B are independent, then they are also conditionally
independent given C.

False.

Independence does not imply conditional independence.



Foundations of Probability: True/False #4

P[A ∩B ∩ C] + P[A ∩Bc ∩ Cc] = P[A].

False.

The events B ∩ C and Bc ∩ Cc are not a partition so we cannot use
the Total Probability Theorem. (We could instead use B ∩ C and
(B ∩ C)c as a partition).



Foundations of Probability: True/False #5

If A and B are independent, P[A ∪B] = P[A] + P[B]P[Ac].

True.

P[A ∪B] = P[A] + P[B]− P[A ∩B] = P[A] + P[B]− P[A]P[B]

= P[A] + P[B]
(
1− P[A]

)
= P[A] + P[B]P[Ac]



Foundations of Probability: True/False #6

If A contains more outcomes than B, then P[A] > P[B].

False.

Even if A contains more outcomes, they could have lower combined
probability than the outcomes in B.



Foundations of Probability: True/False #7

P[A ∩B] ≤ P[A] + P[B]− 1.

False.

Combining P[A ∪B] = P[A] + P[B]− P[A ∩B] with the fact that
P[A ∪B] ≤ 1, we have that 1 ≥ P[A] + P[B]− P[A ∩B]. Rearranging
terms, we get
P[A ∩B] ≥ P[A] + P[B]− 1, which has the inequality in the opposite
direction.



Discrete Random Variables: True/False Practice Questions

For each of the following parts, indicate whether the statement is
always true or it can be false by clearly writing “True” or “False.”
Briefly explain the reasoning behind your answer for partial credit (in
case your choice is wrong). Diagrams are welcome. Throughout the
problem, you may assume that X is a discrete random variable with
PMF PX(x) and CDF FX(x).



Discrete Random Variables: True/False #1

PX(a) ≥ PX(b) for all a ≥ b.

False.

For example, if X is Bernoulli(1/4), then PX(1) < PX(0) even though
1 > 0.



Discrete Random Variables: True/False #2

For a ≥ b, P[X ≥ a|X ≥ b] =
P[X ≥ a]

P[X ≥ b]
.

True.

P[X ≥ a|X ≥ b] =
P
[
{X ≥ a} ∩ {X ≥ b}

]
P[X ≥ b]

=
P[X ≥ a]

P[X ≥ b]
since a ≥ b.



Discrete Random Variables: True/False #3

For any real number a, E
[
(X + a)2

]
= E[X2] + 2aE[X] + a2.

True.

E
[
(X + a)2

]
= E

[
X2 + 2aX + a2

]
= E[X2] + 2aE[X] + a2 using the

linearity of expectation.



Discrete Random Variables: True/False #4

If, for all values a > 0, PX(a) = PX(−a), then E[X] = 0.

True.

This means that the PMF is symmetric and centered on 0, so it has
mean 0.



Discrete Random Variables: True/False #5

Var[X] ≥ 0

True.

Var[X] = E
[
(X − E[X])2] so it is the average of non-negative terms

and must be non-negative.



Discrete Random Variables: True/False #6

E
[
(X2 − E[X2])2

]
= E[X4]− E[X2].

False.

Define Y = X2. We know that
Var[Y ] = E

[
(Y − E[Y ])2

]
= E[Y 2]−

(
E[Y ]

)2
. Plugging in Y = X2,

we get E
[
(X2 − E[X2])2

]
= E[X4]−

(
E[X2]

)2
. The proposed

equation is missing the square in the second term.



Practice Question #1

Consider the following game. There is a hat containing 5 blue balls
and 3 red balls. Without looking, you reach into the hat and pull out 4
balls. You win the game if you pull out exactly 2 blue and 2 red balls.
After each game, the balls are returned to the hat and mixed up again
for the next game. (All outcomes within a single game are equally
likely and that each game is independent of the others.)

(a) What is the probability that you win a single game?

(b) Let’s say you play a total of 7 games. Let W denote the total
number of games that you win out of 7. What kind of random
variable is W?

(c) What is the expected value of the number of games you will win?

(d) Say that you lost the first 2 out of 7 games. What is the probability
that you will win at least 3 games in total?



Practice Question #1 Solution

(a) P[win] =
# ways to win

# total ways to select
(since equally likely).

• There are
(
8
4

)
= 8!

4!4! = 8·7·6·5
4·3·2·1 = 70 ways to select 4 balls out of

5 + 3 = 8 total ways to select.
• # ways to win =# ways to select 2 out of 3 red balls

×# ways to select 2 out of 5 blue balls

=

(
3

2

)
×
(

5

2

)
=

5!

3!2!
· 3!

1!2!
= 30

• P[win] =
30

70
=

3

7

(b) W ∼ Binomial(7, 3/7)

(c) E[W ] = np = 7 · 3

7
= 3



Practice Question #1 Solution

(d) Since the games are independent, we can just ignore the first 2
losses and focus on the probability of winning 3 out of 5 games. We
can express this as a new random variable X that is
Binomial(5, 3/7). The probability of winning at least 3 games is

P[X ≥ 3] = PX(3) + PX(4) + PX(5)

=

(
5

3

)(3

7

)3(4

7

)2
+

(
5

4

)(3

7

)4(4

7

)1
+

(
5

5

)(3

7

)5(4

7

)0
=

6183

16807



Practice Question # 2

You walk up to the Green Line subway platform and wait for the train.
You know from past experience that the number of minutes M
(rounded up to the nearest minute) one has to wait for a train is a
Geometric(1/10) random variable.

(a) What is the probability that M is greater than or equal to 2 minutes?

(b) Calculate the average number of minutes you need to wait.

(c) Your frustration F is equal to the square of the number of minutes
you wait. Calculate your average frustration.

(d) Assume that you have already waited one minute and would like to
predict how much longer you will wait. Specifically, assume the
event B = {M ≥ 2} has occurred. Determine the conditional PMF
PM |B(m).

(e) As in (d), assume that you have already waited one minute. Let
Y = M − 1 be the random variable corresponding to the number of
additional minutes you will wait. Using your answer from part (d),
calculate E[Y |B], the average number of additional minutes.



Practice Question #2 Solution

(a) Since M is Geometric( 1
10) its PMF is

PM (m) =

{
1
10

(
9
10

)m−1
m = 1, 2, . . .

0 otherwise.

P[M ≥ 2] = 1− P[M ≤ 1] = 1− PM (1) = 1− 1

10
=

9

10

(b) E[M ] =
1

p
=

1
1
10

= 10

(c) First, recall that Var[M ] = E[M2]−
(
E[M ]

)2
. Since M is a

Geometric( 1
10) random variable, Var[M ] = 9/10

(1/10)2
= 90 and

E[M ] = 10. Therefore,

E[F ] = E[M2] = Var[M ] +
(
E[M ]

)2
= 90 + (10)2 = 190.

(d) PM |B(m) =

{
PM (m)
P[B] m ∈ B

0 m /∈ B
=

{
1
10

(
9
10

)m−2
m = 2, 3, . . .

0 otherwise.



Practice Question #2 Solution

(e) Since Y = M − 1, we can substitute in m = y + 1 into the
conditional PMF of M given B to get

PY |B(y) = PM |B(y + 1) =

{
1
10

(
9
10

)y+1−2
y + 1 = 2, 3, . . .

0 otherwise.

=

{
1
10

(
9
10

)y−1
y = 1, 2, . . .

0 otherwise.

This is just a Geometric(1/10) random variable, so
E[Y |B] = 1

1
10

= 10.

You could also get this by realizing that the past independent trials
have no effect on the future trials, so M conditioned on {M > k} is
just a shifted Geometric distribution and Y − k conditioned on
{M > k} is Geometric.



Practice Question # 3

You are in charge of monitoring an online message board. You believe
that the number of messages M posted in an hour is well-modeled as
a Poisson random variable. After careful analysis, you have determined
that the probability that at least one message is posted in an hour is
1− e−3.

(a) What is the average number of messages posted in an hour?

(b) Given that between 1 and 3 messages (inclusive) are posted in an
hour, what is the probability of seeing exactly 2 messages?

(c) Calculate E[10M2 + 50M ].

(d) You consider it a busy hour if 4 or more messages are posted. If you
know that at least 2 messages have been posted, what is the
probability that it is a busy hour?

(e) Assume that the activity for each hour in a day is independent. Let
T be the total number of busy hours in a day. What kind of random
variable is T? (Don’t forget the parameters.)



Practice Question #3 Solution

(a) We are given that P[M ≥ 1] = 1− e−3, which implies that
P[M ≤ 0] = 1− P[M ≥ 1] = e−3. Since Poisson random variables
are non-negative, this tells us that PM (0) = e−3. We know from the

Poisson PMF that PM (0) = λ0

0! e
−λ = e−λ so λ = 3 in this case.

Finally, the average of a Poisson random variable is E[M ] = λ = 3.

(b) Define the events A = {M = 2} and B = {M ∈ {1, 2, 3}}. The
conditional probability of A given B is

P[A|B] =
P[A ∩B]

P[B]
=

PM (2)

PM (1) + PM (2) + PM (3)

=
e−3 3

2

2!

e−3
(
31

1! + 32

2! + 33

3!

) =
9
2

3 + 9
2 + 27

6

=
3

8
.



Practice Question #3 Solution

(c) First, we use the variance formula Var[M ] = E[M2]−
(
E[M ])2 to

solve for the second moment,
E[M2] = Var[M ] +

(
E[M ]

)2
= λ+ λ2 = 3 + 32 = 12. Now, using

the linearity of expectation,
E[10M2 + 50M ] = 10E[M2] + 50E[M ] = 10 · 12 + 50 · 3 = 270.

(d) Define the events C = {M ≥ 4} and D = {M ≥ 2}. The
conditional probability of C given D is

P[C|D] =
P[C ∩D]

P[D]
=

P[M ≥ 4]

P[M ≥ 2]

=
1−

(
PM (0) + PM (1) + PM (2) + PM (3)

)
1−

(
PM (0) + PM (1)

)
=

1− e−3
(
30

0! + 31

1! + 32

2! + 33

3!

)
1− e−3

(
30

0! + 31

1!

) =
1− 13 e−3

1− 4 e−3



Practice Question #3 Solution

(e) We can think of a busy hour as a success and the number of busy
hours in a day as the sum of 24 independent trials with success
probability p = P[M ≥ 4] = 1− 13 e−3. Therefore, T is a
Binomial(24, 1− 13 e−3) random variable.


