EK381: Exam 3 Review

College of Engineering
Boston University

Detection

Binary Hypothesis Testing:

- Two hypotheses H_{0} and H_{1}. Observe a random variable Y. Decide if H_{0} or H_{1} occurred based only on Y using a decision rule $D(Y)$.

Discrete Case	Continuous Case
$P_{Y \mid H_{0}}(y)$ if H_{0} occurs	$f_{Y \mid H_{0}(y) \text { if } H_{0} \text { occurs }}$
$P_{Y \mid H_{1}}(y)$ if H_{1} occurs	$f_{Y \mid H_{1}}(y)$ if H_{1} occurs

- Decision Regions:

$$
A_{0}=\left\{y \in R_{Y}: D(y)=0\right\} \quad A_{1}=\left\{y \in R_{Y}: D(y)=1\right\}
$$

- Probability of False Alarm: $P_{\mathrm{FA}}=\mathbb{P}\left[Y \in A_{1} \mid H_{0}\right]$
- Probability of Missed Detection: $P_{\mathrm{MD}}=\mathbb{P}\left[Y \in A_{0} \mid H_{1}\right]$
- Goal is to minimize the probability of error:

$$
P_{e}=P_{\mathrm{FA}} \mathbb{P}\left[H_{0}\right]+P_{\mathrm{MD}} \mathbb{P}\left[H_{1}\right]
$$

- Likelihood Ratio (and Log-Likelihood Ratio):

$$
L(y)=\frac{P_{Y \mid H_{1}}(y)}{P_{Y \mid H_{0}}(y)} \quad \ln (L(y))=\ln \left(\frac{P_{Y \mid H_{1}}(y)}{P_{Y \mid H_{0}}(y)}\right)
$$

Detection

Maximum Likelihood (ML) Rule:

- Intuition: Choose the hypothesis that best explains the observation.
- In terms of the conditional PMFs for the discrete case,

$$
D^{\mathrm{ML}}(y)= \begin{cases}1, & P_{Y \mid H_{1}}(y) \geq P_{Y \mid H_{0}}(y) \\ 0, & P_{Y \mid H_{1}}(y)<P_{Y \mid H_{0}}(y)\end{cases}
$$

- In terms of the conditional PDFs for the continuous case,

$$
D^{\mathrm{ML}}(y)= \begin{cases}1, & f_{Y \mid H_{1}}(y) \geq f_{Y \mid H_{0}}(y), \\ 0, & f_{Y \mid H_{1}}(y)<f_{Y \mid H_{0}}(y) .\end{cases}
$$

- In terms of the likelihood or log-likelihood ratio,

$$
\begin{gathered}
\underline{\text { Likelihood Ratio }} \\
D^{\mathrm{ML}}(y)=\left\{\begin{array}{ll}
1, & L(y) \geq 1, \\
0, & L(y)<1 .
\end{array} \quad D^{\mathrm{ML}}(y)= \begin{cases}1, & \ln (L(y)) \geq 0 \\
0, & \ln (L(y))<0\end{cases} \right.
\end{gathered}
$$

Detection

Maximum a Posteriori (MAP) Rule:

- Intuition: Choose the most likely hypothesis given the observation.
- Attains the minimum probability of error.
- In terms of the conditional PMFs for the discrete case,

$$
D^{\mathrm{MAP}}(y)= \begin{cases}1, & P_{Y \mid H_{1}}(y) \mathbb{P}\left[H_{1}\right] \geq P_{Y \mid H_{0}}(y) \mathbb{P}\left[H_{0}\right] \\ 0, & P_{Y \mid H_{1}}(y) \mathbb{P}\left[H_{1}\right]<P_{Y \mid H_{0}}(y) \mathbb{P}\left[H_{0}\right]\end{cases}
$$

- In terms of the conditional PDFs for the continuous case,

$$
D^{\mathrm{MAP}}(y)= \begin{cases}1, & f_{Y \mid H_{1}}(y) \mathbb{P}\left[H_{1}\right] \geq f_{Y \mid H_{0}}(y) \mathbb{P}\left[H_{0}\right] \\ 0, & f_{Y \mid H_{1}}(y) \mathbb{P}\left[H_{1}\right]<f_{Y \mid H_{0}}(y) \mathbb{P}\left[H_{0}\right]\end{cases}
$$

- In terms of the likelihood or log-likelihood ratio,

Likelihood Ratio

$$
D^{\mathrm{MAP}}(y)= \begin{cases}1, & L(y) \geq \frac{\mathbb{P}\left[H_{0}\right]}{\mathbb{P}\left[H_{1}\right]} \\ 0, & L(y)<\frac{\mathbb{P}\left[H_{0}\right]}{\mathbb{P}\left[H_{1}\right]}\end{cases}
$$

$$
D^{\mathrm{MAP}}(y)= \begin{cases}1, & \ln (L(y)) \geq \ln \left(\frac{\mathbb{P}\left[H_{0}\right]}{\mathbb{P}\left[H_{1}\right]}\right), \\ 0, & \ln (L(y))<\ln \left(\frac{\mathbb{P}\left[H_{0}\right]}{\mathbb{P}\left[H_{1}\right]}\right) .\end{cases}
$$

Detection

Vector Observations:

- Two hypotheses H_{0} and H_{1}. Observe a random vector \underline{Y}. Decide which hypothesis occurred using a decision rule $D(\underline{Y})$.

$$
\begin{gathered}
\text { Discrete Case } \\
P_{\underline{Y} \mid H_{0}(\underline{y}) \text { if } H_{0} \text { occurs }}^{P_{\underline{Y} \mid H_{1}}(\underline{y}) \text { if } H_{1} \text { occurs }}
\end{gathered}
$$

- Decision Regions:

$$
A_{0}=\left\{\underline{y} \in R_{Y}: D(\underline{y})=0\right\} \quad A_{1}=\left\{\underline{y} \in R_{Y}: D(\underline{y})=1\right\}
$$

- Probability of False Alarm: $P_{\mathrm{FA}}=\mathbb{P}\left[\underline{Y} \in A_{1} \mid H_{0}\right]$
- Probability of Missed Detection: $P_{\mathrm{MD}}=\mathbb{P}\left[\underline{Y} \in A_{0} \mid H_{1}\right]$
- Probability of Error: $P_{e}=P_{\mathrm{FA}} \mathbb{P}\left[H_{0}\right]+P_{\mathrm{MD}} \mathbb{P}\left[H_{1}\right]$
- The likelihood ratio as well as the ML and MAP rules are the same as on the previous slides, just substitute in \underline{Y} for Y and \underline{y} for y in each equation.

Estimation

Scalar Estimation:

- We observe a random variable Y and want to estimate an unobserved random variable X using an estimator $\hat{x}(Y)$.
- Goal: Minimize the mean-squared error: $\mathrm{MSE}=\mathbb{E}\left[(X-\hat{x}(Y))^{2}\right]$

Minimum Mean-Squared Error (MMSE) Estimator:

- Attains the minimum MSE amongst all possible estimators.
- Given by the conditional expectation: $\hat{x}_{\mathrm{MMSE}}(y)=\mathbb{E}[X \mid Y=y]$

Linear Least-Squares Error (LLSE) Estimator:

- Attains the minimum MSE amongst all linear estimators.
- $\hat{x}_{\text {LLSE }}(y)=\mathbb{E}[X]+\frac{\operatorname{Cov}[X, Y]}{\operatorname{Var}[Y]}(y-\mathbb{E}[Y])=\mathbb{E}[X]+\rho_{X, Y} \frac{\sigma_{X}}{\sigma_{Y}}(y-\mathbb{E}[Y])$
- $\mathrm{MSE}_{\text {LLSE }}=\operatorname{Var}[X]-\frac{(\operatorname{Cov}[X, Y])^{2}}{\operatorname{Var}[Y]}=\operatorname{Var}[X]\left(1-\rho_{X, Y}^{2}\right)$
- For jointly Gaussian X and $Y, \hat{x}_{\text {MMSE }}(y)=\hat{x}_{\text {LLSE }}(y)$.

Estimation

Vector Estimation:

- We observe a random vector \underline{Y} and want to estimate an unobserved random vector \underline{X} using an estimator $\underline{\hat{x}}(\underline{Y})$.
- Mean-Squared Error: $\mathrm{MSE}=\mathbb{E}\left[(\underline{X}-\underline{\hat{x}}(\underline{Y}))^{\top}(\underline{X}-\underline{\hat{x}}(\underline{Y}))\right]$

Vector Minimum Mean-Squared Error (MMSE) Estimator:

- Attains the minimum MSE amongst all possible estimators.
- Given by the conditional expectation: $\quad \underline{\hat{x}}_{\mathrm{MMSE}}(\underline{y})=\mathbb{E}[\underline{X} \mid \underline{Y}=\underline{y}]$

Vector Linear Least-Squares Error (LLSE) Estimator:

- Attains the minimum MSE amongst all linear estimators.
- $\underline{\hat{x}}_{\text {LLSE }}(\underline{y})=\mathbb{E}[\underline{X}]+\boldsymbol{\Sigma}_{\underline{X}, \underline{Y}} \boldsymbol{\Sigma}_{\underline{Y}}^{-1}(\underline{y}-\mathbb{E}[\underline{Y}])$
- Covariance Matrix of $\underline{Y}: \boldsymbol{\Sigma}_{\underline{Y}}=\mathbb{E}\left[(\underline{Y}-\mathbb{E}[\underline{Y}])(\underline{Y}-\mathbb{E}[\underline{Y}])^{\mathrm{T}}\right]$
- Cross-Covariance Matrix: $\boldsymbol{\Sigma}_{\underline{X}, \underline{Y}}=\mathbb{E}\left[(\underline{X}-\mathbb{E}[\underline{X}])(\underline{Y}-\mathbb{E}[\underline{Y}])^{\mathrm{T}}\right]$
- For jointly Gaussian \underline{X} and $\underline{Y}, \underline{\hat{x}}_{\text {MMSE }}(\underline{y})=\underline{\hat{x}}_{\text {LLSE }}(\underline{y})$.

Sums of Random Variables

- Joint PMF for n discrete random variables $P_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)$
- Joint PDF for n continuous random variables $f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)$
- Expected Value of a Sum: $\mathbb{E}\left[X_{1}+\cdots+X_{n}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]$
- Variance of a Sum: $\operatorname{Var}\left[X_{1}+\cdots+X_{n}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}\left[X_{i}, X_{j}\right]$

Independent and Identically Distributed Random Variables:

- Joint PMF $P_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=P_{X}\left(x_{1}\right) \cdots P_{X}\left(x_{n}\right)$
- Joint PDF $f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=f_{X}\left(x_{1}\right) \cdots f_{X}\left(x_{n}\right)$
- Expected Value of a Sum: $\mathbb{E}\left[X_{1}+\cdots+X_{n}\right]=n \mathbb{E}[X]$
- Variance of a Sum: $\operatorname{Var}\left[X_{1}+\cdots+X_{n}\right]=n \operatorname{Var}[X]$

Sums of Random Variables

- Weak Law of Large Numbers: Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. random variables with finite mean μ. For any constant $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right|>\epsilon\right)=0
$$

- Strong Law of Large Numbers: Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. random variables with finite mean μ. Then,

$$
\mathbb{P}\left(\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i}=\mu\right)=1
$$

- Central Limit Theorem: Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. random variables with finite mean μ and finite variance σ^{2}. The CDF of $Y_{n}=\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sigma \sqrt{n}}$ converges to the standard normal CDF,

$$
\lim _{n \rightarrow \infty} F_{Y_{n}}(y)=\Phi(y)
$$

Statistics

Parameter Estimation:

- We collect data X_{1}, \ldots, X_{n}, which we assume is i.i.d. with some unknown true mean μ and true variance σ^{2}. How can we estimate these parameters?
- Sample Mean: $M_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$
- Sample Variance: $V_{n}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-M_{n}\right)^{2}$
- The sample mean and sample variance are unbiased estimators:

$$
\mathbb{E}\left[M_{n}\right]=\mu \quad \mathbb{E}\left[V_{n}\right]=\sigma^{2}
$$

Confidence Intervals:

- $\left[M_{n} \pm \epsilon\right]$ is a confidence interval for the mean with confidence level $1-\alpha$ if $\mathbb{P}\left[\mu-\epsilon \leq M_{n} \leq \mu+\epsilon\right]=1-\alpha$.

Statistics

Confidence Interval: Known Variance

- Assumes data is i.i.d. Gaussian $\left(\mu, \sigma^{2}\right)$ with σ^{2} known.
- $\left[M_{n} \pm \epsilon\right]$ with $\epsilon=\frac{\sigma}{\sqrt{n}} Q^{-1}\left(\frac{\alpha}{2}\right)$ is a confidence interval for the mean with confidence level $1-\alpha$.
- When to use: Variance is known or $n>30$ samples.
- If the variance σ^{2} is unknown and we have $n>30$ samples, substitute σ^{2} with the sample variance V_{n}.

Confidence Interval: Unknown Variance

- Assumes data is i.i.d. Gaussian $\left(\mu, \sigma^{2}\right)$ with σ^{2} unknown.
- Let $F_{T_{n-1}}(t)$ be the CDF for a Student's t-distribution with $n-1$ degrees-of-freedom.
- $\left[M_{n} \pm \epsilon\right]$ with $\epsilon=-\frac{\sqrt{V_{n}}}{\sqrt{n}} F_{T_{n-1}}^{-1}\left(\frac{\alpha}{2}\right)$ is a confidence interval for the mean with confidence level $1-\alpha$.
- When to use: Variance is unknown and $n \leq 30$ samples.

Statistics

Significance Testing

- Only have a probability model for the null hypothesis H_{0}.
- The significance level $0 \leq \alpha \leq 1$ is used to determine when to reject the null hypothesis.
- Given a statistic calculated from the dataset, the p -value is the probability of observing a value at least this extreme under the null hypothesis.
- If p -value $<\alpha$, then reject the null hypothesis.
- If p -value $\geq \alpha$, then fail to reject the null hypothesis.

One-Sample Z-Test

- Null Hypothesis: X_{1}, \ldots, X_{n} is i.i.d. Gaussian $\left(\mu, \sigma^{2}\right)$.
- When to use: Variance σ^{2} is known or $n>30$ samples.
- Informally, is the mean not equal to μ ?
(1) Calculate the sample mean M_{n}.
(2) Z-statistic: $Z=\sqrt{n}\left(M_{n}-\mu\right) / \sigma$.
(3) p -value $=2 \Phi(-|Z|)$.
- If the variance σ^{2} is unknown and we have $n>30$ samples, substitute σ^{2} with the sample variance V_{n}.

Statistics

One-Sample T-Test

- Null Hypothesis: X_{1}, \ldots, X_{n} is i.i.d. Gaussian $\left(\mu, \sigma^{2}\right)$.
- When to use: Variance σ^{2} is unknown and $n \leq 30$ samples.
- Informally, is the mean not equal to μ ?
(1) Calculate the sample mean M_{n} and variance V_{n}.
(2) Z-statistic: $T=\sqrt{n}\left(M_{n}-\mu\right) / \sqrt{V_{n}}$.
(3) p -value $=2 F_{T_{n-1}}(-|T|)$.

Two-Sample Z-Test

- Null Hypothesis: $X_{1}, \ldots, X_{n_{1}}$ is i.i.d. $\operatorname{Gaussian}\left(\mu, \sigma_{1}^{2}\right)$ and $Y_{1}, \ldots, Y_{n_{2}}$ is i.i.d. $\operatorname{Gaussian}\left(\mu, \sigma_{2}^{2}\right)$.
- When to use: Variances σ_{1}^{2} and σ_{2}^{2} are known or $\min \left(n_{1}, n_{2}\right)>30$.
- Informally, do the datasets have the same mean?
(1) Calculate the sample means $M_{n_{1}}^{(1)}$ and $M_{n_{2}}^{(2)}$.
(2) Z-statistic: $Z=\left(M_{n_{1}}^{(1)}-M_{n_{2}}^{(2)}\right) / \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$.
(3) p -value $=2 \Phi(-|Z|)$.
- If the variances $\sigma_{1}^{2}, \sigma_{2}^{2}$ are unknown and we have $\min \left(n_{1}, n_{2}\right)>30$ samples, substitute $\sigma_{1}^{2}=V_{n_{1}}^{(1)}$ and $\sigma_{2}^{2}=V_{n_{2}}^{(2)}$.

Statistics

Two-Sample T-Test

- Null Hypothesis: $X_{1}, \ldots, X_{n_{1}}$ is i.i.d. Gaussian $\left(\mu, \sigma^{2}\right)$ and $Y_{1}, \ldots, Y_{n_{2}}$ is i.i.d. Gaussian $\left(\mu, \sigma^{2}\right)$. The mean μ is unknown.
- When to use: (Equal) variance σ^{2} is unknown and $\min \left(n_{1}, n_{2}\right) \leq 30$.
- Informally, do the datasets have the same mean?
(1) Calculate the sample means $M_{n_{1}}^{(1)}, M_{n_{2}}^{(2)}$, sample variances $V_{n_{1}}^{(1)}, V_{n_{2}}^{(2)}$, and the pooled sample variance

$$
\hat{\sigma}^{2}=\left(\left(n_{1}-1\right) V_{n_{1}}^{(1)}+\left(n_{2}-1\right) V_{n_{2}}^{(2)}\right) /\left(n_{1}+n_{2}-2\right)
$$

(2) T-statistic: $T=\frac{\left(M_{n_{1}}^{(1)}-M_{n_{2}}^{(2)}\right)}{\sqrt{\hat{\sigma}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}$
(3) p -value $=2 F_{T_{n_{1}+n_{2}-2}}(-|T|)$.

Intro to Machine Learning

Binary Classification:

- The goal is to decide between two hypotheses, but we do not have access to the underlying probability model.
- Instead, we have a dataset consisting of n samples,

$$
\left\{\left(\underline{X}_{1}, Y_{1}\right),\left(\underline{X}_{2}, Y_{2}\right), \ldots,\left(\underline{X}_{n}, Y_{n}\right)\right\} .
$$

The $i^{\text {th }}$ sample $\left(\underline{X}_{i}, Y_{i}\right)$ has an observation vector \underline{X}_{i} and a label Y_{i}, which we assume is -1 or +1 .

- We use this dataset to come up with a classifier $D(\underline{x})$, which is a function that maps any possible observation vector \underline{x} into a guess of its label.
- We measure performance via the error rate, the fraction of misclassified examples (usually reported as a percentage).

Intro to Machine Learning

Training and Test Error:

- To make sure we are not overfitting, we split our dataset into non-overlapping training and test datasets,

$$
\begin{array}{r}
\left\{\left(\underline{X}_{\text {train }, 1}, Y_{\text {train }, 1}\right),\left(\underline{X}_{\text {train }, 2}, Y_{\text {train }, 2}\right), \ldots,\left(\underline{X}_{\text {train }, n_{\text {train }}}, Y_{\text {train }, n_{\text {train }}}\right)\right\}, \\
\quad\left\{\left(\underline{X}_{\text {test }, 1}, Y_{\text {test }, 1}\right),\left(\underline{X}_{\text {test }, 2}, Y_{\text {test }, 2}\right), \ldots,\left(\underline{X}_{\text {test }, n_{\text {test }}}, Y_{\text {test }, n_{\text {test }}}\right)\right\} .
\end{array}
$$

- The training set is used to construct our classifier $D(\underline{x})$ and the test set can only be used to evaluate its performance.

Training Error $=$ fraction of misclassified training examples, Test Error $=$ fraction of misclassified test examples

Basic Classifiers:

- The closest average classifier first computes the average vector for each label. Given a new observation vector, it computes the distance to each average and choose the label with the smallest distance.
- The nearest neighbor classifier, when given a new observation vector, computes the distance to every sample in the training set to find the closest point. It then outputs the label of this point as its guess.
- The LDA classifier assumes the observation vectors are Gaussian, with different mean vectors and the same covariance matrix. It estimates these parameters and then applies the resulting ML rule.
- The QDA classifier assumes the observation vectors are Gaussian, with different mean vectors and covariance matrices. It estimates these parameters and then applies the resulting ML rule.

Dimensionality Reduction:

- Principal component analysis allows us to reduce the dimensionality of our observations, by only keeping the (orthogonal) directions corresponding the largest variance.

Markov Chains

Markov Chain:

- Sequence of (discrete) random variables $X_{0}, X_{1}, X_{2}, \ldots$ such that, given the history X_{0}, \ldots, X_{n}, the next state X_{n+1} only depends on the current state X_{n},

$$
P_{X_{n+1} \mid X_{n}, \ldots, X_{0}}\left(x_{n+1} \mid x_{n}, \ldots, x_{0}\right)=P_{X_{n+1} \mid X_{n}}\left(x_{n+1} \mid x_{n}\right)
$$

- We assume the range is finite $R_{X}=\{1, \ldots, K\}$.
- The transition probabilities $P_{j k}$ are the probabilities of moving from state j to state k in one time step. We assume the Markov chain is homogeneous, $P_{X_{n+1} \mid X_{n}}(k \mid j)=P_{j k}$.
- The n-step transition probabilities $P_{j k}(n)$ are the probabilities of moving from state j to state k in exactly n time steps. They can be determined via the Chapman-Kolmogorov equations:

$$
P_{j k}(n+m)=\sum_{i=1}^{K} P_{j i}(n) P_{i k}(m)
$$

Markov Chains

State Transition Matrix:

- The state transition matrix is $\mathbf{P}=\left[\begin{array}{cccc}P_{11} & P_{12} & \cdots & P_{1 K} \\ P_{21} & P_{22} & \cdots & P_{2 K} \\ \vdots & \vdots & \ddots & \vdots \\ P_{K 1} & P_{K 2} & \cdots & P_{K K}\end{array}\right]$
- Row index is for the current state, column index is for the next state.
- All rows must sum to 1 .

Probability State Vector:

- The probability state vector is $\underline{p}_{t}=\left[\begin{array}{c}P_{X_{t}}(1) \\ \vdots \\ P_{X_{t}}(K)\end{array}\right]$.
- Moving forward one time step: $\underline{p}_{t+1}=\mathbf{P}^{\top} \underline{p}_{t}$.
- Moving forward n time steps: $\underline{p}_{t+n}=\left(\mathbf{P}^{n}\right)^{\top} \underline{p}_{t}$.

Markov Chains

State Classification:

- State k is accessible from state j if it is possible to reach state k starting from state j in zero or more time steps. (State j is always accessible from itself.) Notation: $j \rightarrow k$
- States j and k communicate if $j \rightarrow k$ and $k \rightarrow j$. Notation: $j \leftrightarrow k$
- A communicating class C is a subset of states such that if $j \in C$, then $k \in C$ if and only if $j \leftrightarrow k$.
- A Markov chain is irreducible if all of its states belong to a single communicating class.
- A state j is transient if there is a state k such that $j \rightarrow k$ but $k \nrightarrow j$.
- Any state that is not transient is recurrent.
- The period d of a state j is the greatest common divisor of the length of all cycles from j back to itself.
- If the period is 1 , then the state is called aperiodic. The entire Markov chain is aperiodic if all states are aperiodic.

Markov Chains

Limiting Probability State Vector:

- For an irreducible, aperiodic Markov chain, there is a unique limiting state probability vector $\underline{\pi}=\lim _{t \rightarrow \infty} \underline{p}_{t}$.

Properties of the Limiting Probability State Vector:

- Normalization: $\sum_{j=1}^{K} \pi_{j}=1$
- Any initial probability state probability vector \underline{p}_{0} will converge to $\underline{\pi}$.
- Steady-State Distribution: $\underline{\pi}=\mathbf{P}^{\top} \underline{\pi}$.

Handling Transient States:

- If there is only one recurrent communicating class and it is aperiodic, then there is still a unique limiting state probability vector. Find by first setting the limiting probabilities of all transient states to 0 .

Practice Question \#1

Consider the following detection problem. Under hypothesis H_{0}, Y is a Geometric $(1 / 2)$ random variable. Under hypothesis H_{1}, Y is a Geometric (3/4) random variable.
The probabilities of the hypotheses are $\mathbb{P}\left[H_{0}\right]=1 / 3$ and $\mathbb{P}\left[H_{1}\right]=2 / 3$.
(a) Determine the ML rule. The conditional PMFs are
$P_{Y \mid H_{0}}(y)=\left\{\begin{array}{ll}\left(\frac{1}{2}\right)^{y} & y=1,2, \ldots \\ 0 & \text { otherwise } .\end{array} \quad P_{Y \mid H_{1}}(y)= \begin{cases}\frac{3}{4}\left(\frac{1}{4}\right)^{y-1} & y=1,2, \ldots \\ 0 & \text { otherwise } .\end{cases}\right.$
From these, we can form the likelihood ratio,

$$
L(y)=\frac{P_{Y \mid H_{1}}(y)}{P_{Y \mid H_{0}}(y)}=3\left(\frac{1}{2}\right)^{y},
$$

which is greater than 1 for $y=1$ and less than 1 for $y \geq 2$.
Therefore, the ML rule is to decide H_{1} for $y=1$ and decide H_{0} for $y \geq 2$.

Practice Question \#1

Consider the following detection problem. Under hypothesis H_{0}, Y is a Geometric (1/2) random variable. Under hypothesis H_{1}, Y is a Geometric (3/4) random variable.
The probabilities of the hypotheses are $\mathbb{P}\left[H_{0}\right]=1 / 3$ and $\mathbb{P}\left[H_{1}\right]=2 / 3$.
(b) Determine the probability of error under the ML rule. For the ML rule, we have $A_{0}=\{Y \geq 2\}$ and $A_{1}=\{Y=1\}$. Therefore, the probability of error is

$$
\begin{aligned}
P_{\mathrm{FA}} & =\mathbb{P}\left[Y \in A_{1} \mid H_{0}\right]=\mathbb{P}\left[Y=1 \mid H_{0}\right]=P_{Y \mid H_{0}}(1)=\frac{1}{2} \\
P_{\mathrm{MD}} & =\mathbb{P}\left[Y \in A_{0} \mid H_{1}\right]=\mathbb{P}\left[Y \geq 2 \mid H_{1}\right] \\
& =1-\mathbb{P}\left[Y=1 \mid H_{1}\right]=1-P_{Y \mid H_{1}}(1)=1-\frac{3}{4}=\frac{1}{4} \\
\mathbb{P}[\text { error }] & =P_{\mathrm{FA}} \mathbb{P}\left[H_{0}\right]+P_{\mathrm{MD}} \mathbb{P}\left[H_{1}\right]=\frac{1}{2} \cdot \frac{1}{3}+\frac{1}{4} \cdot \frac{2}{3}=\frac{1}{3} .
\end{aligned}
$$

Practice Question \#1

Consider the following detection problem. Under hypothesis H_{0}, Y is a Geometric (1/2) random variable. Under hypothesis H_{1}, Y is a Geometric (3/4) random variable. The probabilities of the hypotheses are $\mathbb{P}\left[H_{0}\right]=1 / 3$ and $\mathbb{P}\left[H_{1}\right]=2 / 3$.
(c) Determine the MAP rule. For the MAP rule, we need to compare the likelihood ratio $L(y)$ to $\frac{\mathbb{P}\left[H_{0}\right]}{\mathbb{P}\left[H_{1}\right]}=\frac{1 / 3}{2 / 3}=\frac{1}{2}$. We find that $L(y)$ is greater than $\frac{1}{2}$ for $y=1,2$ and $L(y)$ is less than $\frac{1}{2}$ for $y=3,4, \ldots$. Therefore, the MAP rule is to decide H_{1} for $y=1,2$ and decide H_{0} for $y \geq 3$.

Practice Question \#1

Consider the following detection problem. Under hypothesis H_{0}, Y is a Geometric (1/2) random variable. Under hypothesis H_{1}, Y is a Geometric (3/4) random variable.
The probabilities of the hypotheses are $\mathbb{P}\left[H_{0}\right]=1 / 3$ and $\mathbb{P}\left[H_{1}\right]=2 / 3$.
(d) Determine the probability of error under the MAP rule. For the MAP rule, we have $A_{0}=\{Y \geq 3\}$ and $A_{1}=\{Y \leq 2\}$. Therefore, the probability of error is

$$
\begin{aligned}
P_{\mathrm{FA}} & =\mathbb{P}\left[Y \in A_{1} \mid H_{0}\right]=\mathbb{P}\left[Y \leq 2 \mid H_{0}\right] \\
& =P_{Y \mid H_{0}}(1)+P_{Y \mid H_{0}}(2)=\frac{1}{2}+\frac{1}{4}=\frac{3}{4} \\
P_{\mathrm{MD}} & =\mathbb{P}\left[Y \in A_{0} \mid H_{1}\right]=\mathbb{P}\left[Y \geq 3 \mid H_{1}\right]=1-\mathbb{P}\left[Y \leq 2 \mid H_{1}\right] \\
& =1-P_{Y \mid H_{1}}(1)-P_{Y \mid H_{1}}(2)=1-\frac{3}{4}-\frac{3}{16}=\frac{1}{16} \\
\mathbb{P}[\text { error }] & =P_{\mathrm{FA}} \mathbb{P}\left[H_{0}\right]+P_{\mathrm{MD}} \mathbb{P}\left[H_{1}\right]=\frac{3}{4} \cdot \frac{1}{3}+\frac{1}{16} \cdot \frac{2}{3}=\frac{7}{24} .
\end{aligned}
$$

Practice Question \#2

Consider the following estimation problem. The joint PDF of X and Y is

$$
f_{X, Y}(x, y)= \begin{cases}x-y & 1 \leq x \leq 2,0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) What are the marginal PDFs $f_{X}(x)$ and $f_{Y}(y)$?

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y= \begin{cases}\int_{0}^{1}(x-y) d y & 1 \leq x \leq 2 \\
0 & \text { otherwise } .\end{cases} \\
& =\left\{\begin{array}{ll}
\left.\left(x y-\frac{y^{2}}{2}\right)\right|_{0} ^{1} & 1 \leq x \leq 2 \\
0 & \text { otherwise. }
\end{array}= \begin{cases}x-\frac{1}{2} & 1 \leq x \leq 2 \\
0 & \text { otherwise } .\end{cases} \right. \\
f_{Y}(y) & =\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x= \begin{cases}\int_{1}^{2}(x-y) d x & 0 \leq y \leq 1 \\
0 & \text { otherwise } .\end{cases} \\
& =\left\{\begin{array}{ll}
\left.\left(\frac{x^{2} y}{2}-x y\right)\right|_{1} ^{2} & 0 \leq y \leq 1 \\
0 & \text { otherwise. }
\end{array}= \begin{cases}\frac{3}{2}-y & 0 \leq y \leq 1 \\
0 & \text { otherwise. }\end{cases} \right.
\end{aligned}
$$

Practice Question \#2

Consider the following estimation problem. The joint PDF of X and Y is

$$
f_{X, Y}(x, y)= \begin{cases}x-y & 1 \leq x \leq 2,0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(b) What is the conditional PDF $f_{X \mid Y}(x \mid y)$?

$$
\begin{aligned}
f_{X \mid Y}(x \mid y) & = \begin{cases}\frac{f_{X, Y}(x, y)}{f_{Y}(y)} & f_{Y}(y)>0 \\
0 & \text { otherwise } .\end{cases} \\
& = \begin{cases}\frac{x-y}{\frac{3}{2}-y} & 1 \leq x \leq 2,0 \leq y \leq 1 \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

(Remember that the range of conditional PDF will be the same as the range of the joint PDF!)

Practice Question \#2

Consider the following estimation problem. The joint PDF of X and Y is

$$
f_{X, Y}(x, y)= \begin{cases}x-y & 1 \leq x \leq 2,0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(c) What is the MMSE estimator of X given $Y=y$?

Remember that the MMSE estimator is just the conditional expectation!

$$
\begin{aligned}
\hat{x}_{\mathrm{MMSE}}(y) & =\mathbb{E}[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x \\
& =\int_{1}^{2} x \frac{x-y}{\frac{3}{2}-y} d x=\left.\left(\frac{\frac{x^{3}}{3}-\frac{x^{2} y}{2}}{\frac{3}{2}-y}\right)\right|_{1} ^{2}=\frac{14-9 y}{9-6 y}
\end{aligned}
$$

Practice Question \#2

Consider the following estimation problem. The joint PDF of X and Y is

$$
f_{X, Y}(x, y)= \begin{cases}x-y & 1 \leq x \leq 2,0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(d) What is the LLSE estimator of X given $Y=y$?

Remember that the LLSE estimator is a linear function with slope and offset determined through calculating certain means, variances, and covariances. We will use the formula
$\hat{x}_{\text {LLSE }}(y)=\mathbb{E}[X]+\frac{\operatorname{Cov}[X, Y]}{\operatorname{Var}[Y]}(y-\mathbb{E}[Y])$. Below, we calculate the necessary integrals.

$$
\begin{aligned}
& \mathbb{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d y=\int_{1}^{2} x\left(x-\frac{1}{2}\right) d x=\left.\left(\frac{x^{3}}{3}-\frac{x^{2}}{4}\right)\right|_{2} ^{1}=\frac{19}{12} \\
& \mathbb{E}[Y]=\int_{-\infty}^{\infty} y f_{Y}(y) d y=\int_{0}^{1} y\left(\frac{3}{2}-y\right) d y=\left.\left(\frac{3 y^{2}}{4}-\frac{y^{3}}{3}\right)\right|_{0} ^{1}=\frac{5}{12}
\end{aligned}
$$

Practice Question \#2

Consider the following estimation problem. The joint PDF of X and Y is

$$
f_{X, Y}(x, y)= \begin{cases}x-y & 1 \leq x \leq 2,0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(d) What is the LLSE estimator of X given $Y=y$?

$$
\begin{aligned}
\mathbb{E}\left[Y^{2}\right] & =\int_{-\infty}^{\infty} y^{2} f_{Y}(y) d y=\int_{0}^{1} y^{2}\left(\frac{3}{2}-y\right) d y=\left.\left(\frac{y^{3}}{2}-\frac{y^{4}}{4}\right)\right|_{0} ^{1}=\frac{1}{4} \\
\operatorname{Var}[Y] & =\mathbb{E}\left[Y^{2}\right]-(\mathbb{E}[Y])^{2}=\frac{1}{4}-\frac{25}{144}=\frac{11}{144} \\
\mathbb{E}[X Y] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X, Y}(x, y) d y \\
& =\int_{1}^{2} \int_{0}^{1} x y(x-y) d y d x=\int_{1}^{2}\left(\frac{x^{2} y^{2}}{2}-\frac{x y^{3}}{3}\right)_{0}^{1} d x \\
& =\int_{1}^{2}\left(\frac{x^{2}}{2}-\frac{x}{3}\right) d x=\left.\left(\frac{x^{3}}{6}-\frac{x^{2}}{6}\right)\right|_{1} ^{2}=\frac{2}{3}
\end{aligned}
$$

Practice Question \#2

Consider the following estimation problem. The joint PDF of X and Y is

$$
f_{X, Y}(x, y)= \begin{cases}x-y & 1 \leq x \leq 2,0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(d) What is the LLSE estimator of X given $Y=y$?

$$
\begin{aligned}
\operatorname{Cov}[X, Y] & =\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]=\frac{2}{3}-\frac{19}{12} \cdot \frac{5}{12}=\frac{1}{144} \\
\hat{x}_{\text {LLSE }}(y) & =\frac{19}{12}+\frac{\frac{1}{144}}{\frac{11}{144}}\left(y-\frac{5}{12}\right)=\frac{y}{11}+\frac{17}{11}
\end{aligned}
$$

Practice Question \#3

Let Y be a random variable with $\mathbb{E}[Y]=2$ and $\mathbb{E}\left[Y^{2}\right]=5$. Let Z be a random variable with $\mathbb{E}[Z]=-1$ and $\mathbb{E}\left[Z^{2}\right]=3$. Let $\rho_{Y, Z}=-\frac{1}{\sqrt{2}}$ and define $X=3 Y+Z$.
(a) Determine the mean of X.

$$
\mathbb{E}[X]=\mathbb{E}[3 Y+Z]=3 \mathbb{E}[Y]+\mathbb{E}[Z]=3 \cdot 2+(-1)=5 .
$$

(b) Determine the variance of X. We can use the formula

$$
\operatorname{Var}[a Y+b Z]=a^{2} \operatorname{Var}[Y]+b^{2} \operatorname{Var}[Z]+2 a b \operatorname{Cov}[Y, Z]
$$

$$
\begin{aligned}
& \operatorname{Var}[Y]=\mathbb{E}\left[Y^{2}\right]-(\mathbb{E}[Y])^{2}=5-2^{2}=1 \\
& \operatorname{Var}[Z]=\mathbb{E}\left[Z^{2}\right]-(\mathbb{E}[Z])^{2}=3-(-1)^{2}=2
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Cov}[Y, Z] & =\rho_{Y, Z} \sqrt{\operatorname{Var}[Y] \cdot \operatorname{Var}[Z]}=-\frac{1}{\sqrt{2}} \cdot \sqrt{1 \cdot 2}=-1 \\
\operatorname{Var}[X] & =\operatorname{Var}[3 Y+Z]=3^{2} \operatorname{Var}[Y]+1^{2} \operatorname{Var}[Z]+2 \cdot 3 \cdot 1 \operatorname{Cov}[Y, Z] \\
& =9 \cdot 1+1 \cdot 2+6 \cdot(-1)=5 .
\end{aligned}
$$

Practice Question \#3

Let Y be a random variable with $\mathbb{E}[Y]=2$ and $\mathbb{E}\left[Y^{2}\right]=5$. Let Z be a random variable with $\mathbb{E}[Z]=-1$ and $\mathbb{E}\left[Z^{2}\right]=3$. Let $\rho_{Y, Z}=-\frac{1}{\sqrt{2}}$ and define $X=3 Y+Z$.
(c) Let X_{1}, \ldots, X_{500} be i.i.d. random variables with the same distribution as X. Using the Central Limit Theorem approximation, estimate the probability $\mathbb{P}\left[\left|\frac{1}{500} \sum_{i=1}^{500} X_{i}-\mathbb{E}[X]\right|>\frac{1}{2}\right]$. (You may leave your answer in terms of the Φ function.) Let

$$
W=\frac{1}{500} \sum_{i=1}^{500} X_{i}-\mathbb{E}[X] \text { and note that } \mathbb{E}[W]=0 \text { and }
$$

$$
\operatorname{Var}[W]=\frac{1}{500} \operatorname{Var}[X]=\frac{5}{500}=\frac{1}{100} . \text { Therefore, }
$$

$$
\mathbb{P}\left[|W|>\frac{1}{2}\right]=\mathbb{P}\left[W>\frac{1}{2}\right]+\mathbb{P}\left[W<-\frac{1}{2}\right]=1-F_{W}\left(\frac{1}{2}\right)+F_{W}\left(-\frac{1}{2}\right)
$$

$$
\begin{aligned}
& \approx 1-\Phi\left(\frac{1 / 2-0}{1 / 10}\right)+\Phi\left(\frac{-1 / 2-0}{1 / 10}\right) \\
& =1-\Phi(5)+\Phi(-5)=2 \Phi(-5)
\end{aligned}
$$

Practice Question \#4

You are trying out a new blood pressure drug with a control group and an experimental group, each of consisting of 400 samples. The variance is believed to be $\sigma_{1}^{2}=0.40$ in the control group and $\sigma_{2}^{2}=0.60$ in the experimental group. For the control group, you obtain sample mean $M_{400}^{(1)}=2.10$ and for the experimental group you obtain sample mean $M_{400}^{(2)}=2.02$.
(a) What is the variance of the sample mean $\operatorname{Var}\left[M_{400}^{(1)}\right]$?

$$
\operatorname{Var}\left[M_{400}^{(1)}\right]=\frac{1}{400}(0.40)=0.001
$$

(b) Do the groups have different means at a significance level of 0.05 ? Since the variances are known, a two-sample Z-test is appropriate. The Z-statistic is

$$
Z=\frac{\left(M_{n}^{(1)}-M_{n}^{(2)}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n}+\frac{\sigma_{2}^{2}}{n}}}=\frac{20 \cdot(2.10-2.02)}{\sqrt{1}}=20 \cdot 0.08=1.6
$$

The p -value is $2 \Phi(-|Z|)=2 \Phi(-1.6)=0.1$ which exceeds the significance level 0.05 . Thus, we fail to reject the null hypothesis.

Practice Question \#4

You are trying out a new blood pressure drug with a control group and an experimental group, each of consisting of 400 samples. The variance is believed to be $\sigma_{1}^{2}=0.40$ in the control group and $\sigma_{2}^{2}=0.60$ in the experimental group. For the control group, you obtain sample mean $M_{400}^{(1)}=2.10$ and for the experimental group you obtain sample mean $M_{400}^{(2)}=2.02$.
(c) Construct a confidence interval for the mean of the control group with confidence level 0.9 . First, select γ such that $Q(\gamma)=\alpha / 2=0.05 \Longrightarrow \gamma=1.6$.

Since the variance is known,

$$
\left[M_{n}^{(1)} \pm \frac{\gamma \sigma}{\sqrt{n}}\right]=\left[2.10 \pm \frac{1.6 \cdot \sqrt{0.40}}{20}\right]
$$

Practice Question \#5

In this problem, you will work through the process of constructing and evaluating an LDA binary classifier by hand. You have been given the following 1-dimensional training and test datasets:

$$
\mathbf{X}_{\text {train }}=\left[\begin{array}{c}
+2 \\
0 \\
-1 \\
-3
\end{array}\right] \quad \underline{Y}_{\text {train }}=\left[\begin{array}{c}
+1 \\
+1 \\
-1 \\
-1
\end{array}\right] \quad \mathbf{X}_{\text {test }}=\left[\begin{array}{c}
+4 \\
0
\end{array}\right] \quad \underline{Y}_{\text {test }}=\left[\begin{array}{l}
+1 \\
-1
\end{array}\right]
$$

(a) Compute the sample means $\hat{\mu}_{+}$and $\hat{\mu}_{-}$as well as the sample covariance matrix $\hat{\boldsymbol{\Sigma}}$, which in this 1-dimensional setting is just a sample variance (and could be denoted by $\hat{\sigma}^{2}$ instead if you wish).

$$
\begin{aligned}
\hat{\mu}_{+} & =\frac{1}{2}(+2+0)=+1 \quad \hat{\mu}_{-}=\frac{1}{2}(-1-3)=-2 \\
\hat{\boldsymbol{\Sigma}}_{+} & =(2-1)^{2}+(0-1)^{2}=2 \\
\hat{\boldsymbol{\Sigma}}_{-} & =((-1)-(-2))^{2}+(-3-(-2))^{2}=2 \\
\hat{\boldsymbol{\Sigma}} & =\frac{1}{4-2}\left((2-1) \hat{\boldsymbol{\Sigma}}_{+}+(2-1) \hat{\boldsymbol{\Sigma}}_{-}\right)=2
\end{aligned}
$$

Practice Question \#5

(b) Work out the LDA classifier. Try to simplify the expression as much as you can. Show your work for full credit.

$$
\begin{aligned}
D_{\mathrm{LDA}}(x) & = \begin{cases}+1 & 2\left(\hat{\mu}_{+}-\hat{\mu}_{-}\right) \hat{\boldsymbol{\Sigma}}^{-1} x \geq \hat{\mu}_{+} \hat{\boldsymbol{\Sigma}}^{-1} \hat{\mu}_{+}-\hat{\mu}_{-} \hat{\boldsymbol{\Sigma}}^{-1} \hat{\mu}_{-} \\
-1 & \text { otherwise. }\end{cases} \\
& = \begin{cases}+1 & 2(+1-(-2)) \frac{1}{2} x \geq 1 \cdot \frac{1}{2} \cdot 1-(-2) \cdot \frac{1}{2} \cdot(-2) \\
-1 & \text { otherwise. }\end{cases} \\
& = \begin{cases}+1 & x \geq-\frac{1}{2} \\
-1 & \text { otherwise } .\end{cases}
\end{aligned}
$$

(c) Calculate the LDA training and test error rates.

$$
\underline{Y}_{\text {train,guess }}=\left[\begin{array}{c}
+1 \\
+1 \\
-1 \\
-1
\end{array}\right] \quad \underline{Y}_{\text {test,guess }}=\left[\begin{array}{c}
+1 \\
+1
\end{array}\right]
$$

Training Error Rate is 0% and Test Error Rate is 50%.

Practice Question \#6

Consider the following Markov chain

(a) Determine the communicating classes.

$$
C_{1}=\{1,5\} \text { and } C_{2}=\{2,3,4\} .
$$

(b) Determine which states are transient and which are recurrent. States 1 and 5 are transient and states 2,3 , and 4 are recurrent.
(c) Determine the period of each state.

State 3 has a self-cycle and thus has period 1. All states in its communicating class have the same period so states 2 and 4 have period 1 as well. States 1 and 5 have period 2 .

Practice Question \#6

Consider the following Markov chain

(d) Write down the state transition matrix. $\mathbf{P}=\left[\begin{array}{ccccc}0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{3} & \frac{2}{3} & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0\end{array}\right]$
(e) Does the Markov chain have a unique limiting probability state vector $\underline{\pi}$?
Yes, even though it is not irreducible, it has only a single recurrent communicating class. This class is aperiodic. Therefore, it has a unique limiting probability state vector where the probabilities of the transient states are set to 0 .

Practice Question \#6

(f) Solve for the unique limiting probability state vector $\underline{\pi}$. Since states 1 and 5 are transient, we know that $\pi_{1}=\pi_{5}=0$. From the steady-state equation $\mathbf{P}^{\top} \underline{\pi}=\underline{\pi}$, we get

$$
\begin{aligned}
\pi_{4} & =\pi_{2} \\
\pi_{2}+\frac{1}{3} \pi_{3} & =\pi_{3} \quad \Longrightarrow \quad \pi_{3}=\frac{3}{2} \pi_{2}
\end{aligned}
$$

Plugging these into the normalization equation, we get

$$
\sum_{j=1}^{5} \pi_{j}=\pi_{2}+\frac{3}{2} \pi_{2}+\pi_{2}=\frac{7}{2} \pi_{2}=1 \quad \Longrightarrow \quad \pi_{2}=\frac{2}{7}
$$

Substituting back in, we get $\pi_{4}=\frac{2}{7}$ and $\pi_{3}=\frac{3}{7}$ so $\underline{\pi}=\left[\begin{array}{c}0 \\ 2 / 7 \\ 3 / 7 \\ 2 / 7 \\ 0\end{array}\right]$.

