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Detection

Binary Hypothesis Testing:
• Two hypotheses H0 and H1. Observe a random variable Y . Decide

if H0 or H1 occurred based only on Y using a decision rule D(Y ).

Discrete Case Continuous Case
PY |H0

(y) if H0 occurs fY |H0
(y) if H0 occurs

PY |H1
(y) if H1 occurs fY |H1

(y) if H1 occurs
• Decision Regions:
A0 = {y ∈ RY : D(y) = 0} A1 = {y ∈ RY : D(y) = 1}
• Probability of False Alarm: PFA = P[Y ∈ A1|H0]
• Probability of Missed Detection: PMD = P[Y ∈ A0|H1]
• Goal is to minimize the probability of error:

Pe = PFA P[H0] + PMD P[H1]

• Likelihood Ratio (and Log-Likelihood Ratio):

L(y) =
PY |H1

(y)

PY |H0
(y)

ln
(
L(y)

)
= ln

(
PY |H1

(y)

PY |H0
(y)

)



Detection

Maximum Likelihood (ML) Rule:

• Intuition: Choose the hypothesis that best explains the observation.

• In terms of the conditional PMFs for the discrete case,

DML(y) =

{
1, PY |H1

(y) ≥ PY |H0
(y),

0, PY |H1
(y) < PY |H0

(y).

• In terms of the conditional PDFs for the continuous case,

DML(y) =

{
1, fY |H1

(y) ≥ fY |H0
(y),

0, fY |H1
(y) < fY |H0

(y).

• In terms of the likelihood or log-likelihood ratio,

Likelihood Ratio Log-Likelihood Ratio

DML(y) =

{
1, L(y) ≥ 1,

0, L(y) < 1.
DML(y) =

{
1, ln(L(y)) ≥ 0,

0, ln(L(y)) < 0.



Detection

Maximum a Posteriori (MAP) Rule:
• Intuition: Choose the most likely hypothesis given the observation.

• Attains the minimum probability of error.

• In terms of the conditional PMFs for the discrete case,

DMAP(y) =

{
1, PY |H1

(y)P[H1] ≥ PY |H0
(y)P[H0],

0, PY |H1
(y)P[H1] < PY |H0

(y)P[H0].

• In terms of the conditional PDFs for the continuous case,

DMAP(y) =

{
1, fY |H1

(y)P[H1] ≥ fY |H0
(y)P[H0],

0, fY |H1
(y)P[H1] < fY |H0

(y)P[H0].

• In terms of the likelihood or log-likelihood ratio,

Likelihood Ratio Log-Likelihood Ratio

DMAP(y) =


1, L(y) ≥ P[H0]

P[H1]
,

0, L(y) <
P[H0]

P[H1]
.

DMAP(y) =


1, ln(L(y)) ≥ ln

(
P[H0]

P[H1]

)
,

0, ln(L(y)) < ln

(
P[H0]

P[H1]

)
.



Detection

Vector Observations:
• Two hypotheses H0 and H1. Observe a random vector Y . Decide

which hypothesis occurred using a decision rule D(Y ).

Discrete Case Continuous Case
PY |H0

(y) if H0 occurs fY |H0
(y) if H0 occurs

PY |H1
(y) if H1 occurs fY |H1

(y) if H1 occurs

• Decision Regions:

A0 = {y ∈ RY : D(y) = 0} A1 = {y ∈ RY : D(y) = 1}

• Probability of False Alarm: PFA = P[Y ∈ A1|H0]

• Probability of Missed Detection: PMD = P[Y ∈ A0|H1]

• Probability of Error: Pe = PFA P[H0] + PMD P[H1]

• The likelihood ratio as well as the ML and MAP rules are the same
as on the previous slides, just substitute in Y for Y and y for y in
each equation.



Estimation

Scalar Estimation:

• We observe a random variable Y and want to estimate an
unobserved random variable X using an estimator x̂(Y ).

• Goal: Minimize the mean-squared error: MSE = E
[(
X − x̂(Y )

)2]
Minimum Mean-Squared Error (MMSE) Estimator:

• Attains the minimum MSE amongst all possible estimators.

• Given by the conditional expectation: x̂MMSE(y) = E
[
X|Y = y

]
Linear Least-Squares Error (LLSE) Estimator:

• Attains the minimum MSE amongst all linear estimators.

• x̂LLSE(y) = E[X] +
Cov[X,Y ]

Var[Y ]

(
y − E[Y ]

)
= E[X] + ρX,Y

σX
σY

(
y − E[Y ]

)
• MSELLSE = Var[X]−

(
Cov[X,Y ]

)2
Var[Y ]

= Var[X](1− ρ2X,Y )

• For jointly Gaussian X and Y , x̂MMSE(y) = x̂LLSE(y).



Estimation

Vector Estimation:

• We observe a random vector Y and want to estimate an unobserved
random vector X using an estimator x̂(Y ).

• Mean-Squared Error: MSE = E
[(
X − x̂(Y )

)T(
X − x̂(Y )

)]
Vector Minimum Mean-Squared Error (MMSE) Estimator:

• Attains the minimum MSE amongst all possible estimators.

• Given by the conditional expectation: x̂MMSE(y) = E
[
X|Y = y

]
Vector Linear Least-Squares Error (LLSE) Estimator:

• Attains the minimum MSE amongst all linear estimators.

• x̂LLSE(y) = E[X] + ΣX,Y Σ−1Y
(
y − E[Y ]

)
• Covariance Matrix of Y : ΣY = E

[
(Y − E[Y ])(Y − E[Y ])T

]
• Cross-Covariance Matrix: ΣX,Y = E

[
(X − E[X])(Y − E[Y ])T

]
• For jointly Gaussian X and Y , x̂MMSE(y) = x̂LLSE(y).



Sums of Random Variables

• Joint PMF for n discrete random variables PX1,...,Xn(x1, . . . , xn)

• Joint PDF for n continuous random variables fX1,...,Xn(x1, . . . , xn)

• Expected Value of a Sum: E
[
X1 + · · ·+Xn

]
=

n∑
i=1

E[Xi]

• Variance of a Sum: Var
[
X1 + · · ·+Xn

]
=

n∑
i=1

n∑
j=1

Cov[Xi, Xj ]

Independent and Identically Distributed Random Variables:

• Joint PMF PX1,...,Xn(x1, . . . , xn) = PX(x1) · · ·PX(xn)

• Joint PDF fX1,...,Xn(x1, . . . , xn) = fX(x1) · · · fX(xn)

• Expected Value of a Sum: E
[
X1 + · · ·+Xn

]
= nE[X]

• Variance of a Sum: Var
[
X1 + · · ·+Xn

]
= nVar[X]



Sums of Random Variables

• Weak Law of Large Numbers: Let X1, X2, . . . , Xn be i.i.d.
random variables with finite mean µ. For any constant ε > 0,

lim
n→∞

P
(∣∣∣∣ 1n

n∑
i=1

Xi − µ
∣∣∣∣ > ε

)
= 0

• Strong Law of Large Numbers: Let X1, X2, . . . , Xn be i.i.d.
random variables with finite mean µ. Then,

P
(

lim
n→∞

1

n

n∑
i=1

Xi = µ

)
= 1

• Central Limit Theorem: Let X1, X2, . . . , Xn be i.i.d. random
variables with finite mean µ and finite variance σ2. The CDF of

Yn =
∑n

i=1Xi−nµ
σ
√
n

converges to the standard normal CDF,

lim
n→∞

FYn(y) = Φ(y) .



Statistics

Parameter Estimation:

• We collect data X1, . . . , Xn, which we assume is i.i.d. with some
unknown true mean µ and true variance σ2. How can we estimate
these parameters?

• Sample Mean: Mn =
1

n

n∑
i=1

Xi

• Sample Variance: Vn =
1

n− 1

n∑
i=1

(Xi −Mn)2

• The sample mean and sample variance are unbiased estimators:

E[Mn] = µ E[Vn] = σ2

Confidence Intervals:

• [Mn ± ε] is a confidence interval for the mean with
confidence level 1− α if P[µ− ε ≤Mn ≤ µ+ ε] = 1− α .



Statistics

Confidence Interval: Known Variance

• Assumes data is i.i.d. Gaussian(µ, σ2) with σ2 known.

• [Mn ± ε] with ε = σ√
n
Q−1(α2 ) is a confidence interval for the mean

with confidence level 1− α.

• When to use: Variance is known or n > 30 samples.

• If the variance σ2 is unknown and we have n > 30 samples,
substitute σ2 with the sample variance Vn.

Confidence Interval: Unknown Variance

• Assumes data is i.i.d. Gaussian(µ, σ2) with σ2 unknown.

• Let FTn−1(t) be the CDF for a Student’s t-distribution with n− 1
degrees-of-freedom.

• [Mn ± ε] with ε = −
√
Vn√
n
F−1Tn−1

(α2 ) is a confidence interval for the

mean with confidence level 1− α.

• When to use: Variance is unknown and n ≤ 30 samples.



Statistics

Significance Testing
• Only have a probability model for the null hypothesis H0.
• The significance level 0 ≤ α ≤ 1 is used to determine when to reject

the null hypothesis.
• Given a statistic calculated from the dataset, the p-value is the

probability of observing a value at least this extreme under the null
hypothesis.
• If p-value < α, then reject the null hypothesis.
• If p-value ≥ α, then fail to reject the null hypothesis.

One-Sample Z-Test
• Null Hypothesis: X1, . . . , Xn is i.i.d. Gaussian(µ, σ2).
• When to use: Variance σ2 is known or n > 30 samples.
• Informally, is the mean not equal to µ?

1 Calculate the sample mean Mn.
2 Z-statistic: Z =

√
n(Mn − µ)/σ.

3 p-value = 2Φ(−|Z|).

• If the variance σ2 is unknown and we have n > 30 samples,
substitute σ2 with the sample variance Vn.



Statistics

One-Sample T-Test
• Null Hypothesis: X1, . . . , Xn is i.i.d. Gaussian(µ, σ2).
• When to use: Variance σ2 is unknown and n ≤ 30 samples.
• Informally, is the mean not equal to µ?

1 Calculate the sample mean Mn and variance Vn.
2 Z-statistic: T =

√
n(Mn − µ)/

√
Vn.

3 p-value = 2FTn−1
(−|T |).

Two-Sample Z-Test
• Null Hypothesis: X1, . . . , Xn1 is i.i.d. Gaussian(µ, σ21) and
Y1, . . . , Yn2 is i.i.d. Gaussian(µ, σ22).

• When to use: Variances σ21 and σ22 are known or min(n1, n2) > 30.
• Informally, do the datasets have the same mean?

1 Calculate the sample means M
(1)
n1 and M

(2)
n2 .

2 Z-statistic: Z =
(
M

(1)
n1 −M

(2)
n2

)/√σ2
1

n1
+

σ2
2

n2
.

3 p-value = 2Φ(−|Z|).

• If the variances σ21, σ
2
2 are unknown and we have min(n1, n2) > 30

samples, substitute σ21 = V
(1)
n1 and σ22 = V

(2)
n2 .



Statistics

Two-Sample T-Test

• Null Hypothesis: X1, . . . , Xn1 is i.i.d. Gaussian(µ, σ2) and
Y1, . . . , Yn2 is i.i.d. Gaussian(µ, σ2). The mean µ is unknown.

• When to use: (Equal) variance σ2 is unknown and min(n1, n2) ≤ 30.
• Informally, do the datasets have the same mean?

1 Calculate the sample means M
(1)
n1 ,M

(2)
n2 , sample variances V

(1)
n1 , V

(2)
n2 ,

and the pooled sample variance

σ̂2 =
(
(n1 − 1)V (1)

n1
+ (n2 − 1)V (2)

n2

)
/
(
n1 + n2 − 2

)
2 T-statistic: T =

(
M (1)
n1
−M (2)

n2

)√
σ̂2
( 1

n1
+

1

n2

)
3 p-value = 2FTn1+n2−2

(−|T |).



Intro to Machine Learning

Binary Classification:

• The goal is to decide between two hypotheses, but we do not have
access to the underlying probability model.

• Instead, we have a dataset consisting of n samples,{
(X1, Y1), (X2, Y2), . . . , (Xn, Yn)

}
.

The ith sample (Xi, Yi) has an observation vector Xi and a label Yi,
which we assume is −1 or +1.

• We use this dataset to come up with a classifier D(x), which is a
function that maps any possible observation vector x into a guess of
its label.

• We measure performance via the error rate, the fraction of
misclassified examples (usually reported as a percentage).



Intro to Machine Learning

Training and Test Error:

• To make sure we are not overfitting, we split our dataset into
non-overlapping training and test datasets,{

(Xtrain,1, Ytrain,1), (Xtrain,2, Ytrain,2), . . . , (Xtrain,ntrain
, Ytrain,ntrain

)
}
,{

(Xtest,1, Ytest,1), (Xtest,2, Ytest,2), . . . , (Xtest,ntest
, Ytest,ntest)

}
.

• The training set is used to construct our classifier D(x) and the test
set can only be used to evaluate its performance.

Training Error = fraction of misclassified training examples,

Test Error = fraction of misclassified test examples



Intro to Machine Learning

Basic Classifiers:
• The closest average classifier first computes the average vector for

each label. Given a new observation vector, it computes the distance
to each average and choose the label with the smallest distance.

• The nearest neighbor classifier, when given a new observation vector,
computes the distance to every sample in the training set to find the
closest point. It then outputs the label of this point as its guess.

• The LDA classifier assumes the observation vectors are Gaussian,
with different mean vectors and the same covariance matrix. It
estimates these parameters and then applies the resulting ML rule.

• The QDA classifier assumes the observation vectors are Gaussian,
with different mean vectors and covariance matrices. It estimates
these parameters and then applies the resulting ML rule.

Dimensionality Reduction:
• Principal component analysis allows us to reduce the dimensionality

of our observations, by only keeping the (orthogonal) directions
corresponding the largest variance.



Markov Chains

Markov Chain:
• Sequence of (discrete) random variables X0, X1, X2, . . . such that,

given the history X0, . . . , Xn, the next state Xn+1 only depends on
the current state Xn,

PXn+1|Xn,...,X0
(xn+1|xn, . . . , x0) = PXn+1|Xn

(xn+1|xn)

• We assume the range is finite RX = {1, . . . ,K}.
• The transition probabilities Pjk are the probabilities of moving from

state j to state k in one time step. We assume the Markov chain is
homogeneous, PXn+1|Xn

(k|j) = Pjk.

• The n-step transition probabilities Pjk(n) are the probabilities of
moving from state j to state k in exactly n time steps. They can be
determined via the Chapman-Kolmogorov equations:

Pjk(n+m) =

K∑
i=1

Pji(n)Pik(m)



Markov Chains

State Transition Matrix:

• The state transition matrix is P =


P11 P12 · · · P1K

P21 P22 · · · P2K
...

...
. . .

...
PK1 PK2 · · · PKK


• Row index is for the current state, column index is for the next state.

• All rows must sum to 1.

Probability State Vector:

• The probability state vector is p
t

=

 PXt(1)
...

PXt(K)

.

• Moving forward one time step: p
t+1

= PTp
t
.

• Moving forward n time steps: p
t+n

= (Pn)Tp
t
.



Markov Chains

State Classification:

• State k is accessible from state j if it is possible to reach state k
starting from state j in zero or more time steps. (State j is always
accessible from itself.) Notation: j → k

• States j and k communicate if j → k and k → j. Notation: j ↔ k

• A communicating class C is a subset of states such that if j ∈ C,
then k ∈ C if and only if j ↔ k.

• A Markov chain is irreducible if all of its states belong to a single
communicating class.

• A state j is transient if there is a state k such that j → k but k 9 j.

• Any state that is not transient is recurrent.

• The period d of a state j is the greatest common divisor of the
length of all cycles from j back to itself.

• If the period is 1, then the state is called aperiodic. The entire
Markov chain is aperiodic if all states are aperiodic.



Markov Chains

Limiting Probability State Vector:

• For an irreducible, aperiodic Markov chain, there is a unique limiting
state probability vector π = lim

t→∞
p
t
.

Properties of the Limiting Probability State Vector:

• Normalization:
K∑
j=1

πj = 1

• Any initial probability state probability vector p
0

will converge to π.

• Steady-State Distribution: π = PTπ.

Handling Transient States:

• If there is only one recurrent communicating class and it is aperiodic,
then there is still a unique limiting state probability vector. Find by
first setting the limiting probabilities of all transient states to 0.



Practice Question #1

Consider the following detection problem.
Under hypothesis H0, Y is a Geometric(1/2) random variable.
Under hypothesis H1, Y is a Geometric(3/4) random variable.
The probabilities of the hypotheses are P[H0] = 1/3 and P[H1] = 2/3.

(a) Determine the ML rule. The conditional PMFs are

PY |H0
(y) =

{(
1
2

)y
y = 1, 2, . . .

0 otherwise.
PY |H1

(y) =

{
3
4

(
1
4

)y−1
y = 1, 2, . . .

0 otherwise.

From these, we can form the likelihood ratio,

L(y) =
PY |H1

(y)

PY |H0
(y)

= 3

(
1

2

)y
,

which is greater than 1 for y = 1 and less than 1 for y ≥ 2.
Therefore, the ML rule is to decide H1 for y = 1 and decide H0 for
y ≥ 2.



Practice Question #1

Consider the following detection problem.
Under hypothesis H0, Y is a Geometric(1/2) random variable.
Under hypothesis H1, Y is a Geometric(3/4) random variable.
The probabilities of the hypotheses are P[H0] = 1/3 and P[H1] = 2/3.

(b) Determine the probability of error under the ML rule. For the ML
rule, we have A0 = {Y ≥ 2} and A1 = {Y = 1}. Therefore, the
probability of error is

PFA = P[Y ∈ A1|H0] = P[Y = 1|H0] = PY |H0
(1) =

1

2
PMD = P[Y ∈ A0|H1] = P[Y ≥ 2|H1]

= 1− P[Y = 1|H1] = 1− PY |H1
(1) = 1− 3

4
=

1

4

P[error] = PFA P[H0] + PMD P[H1] =
1

2
· 1

3
+

1

4
· 2

3
=

1

3
.



Practice Question #1

Consider the following detection problem.
Under hypothesis H0, Y is a Geometric(1/2) random variable.
Under hypothesis H1, Y is a Geometric(3/4) random variable.
The probabilities of the hypotheses are P[H0] = 1/3 and P[H1] = 2/3.

(c) Determine the MAP rule. For the MAP rule, we need to compare

the likelihood ratio L(y) to
P[H0]

P[H1]
=

1/3

2/3
=

1

2
. We find that L(y) is

greater than 1
2 for y = 1, 2 and L(y) is less than 1

2 for y = 3, 4, . . ..
Therefore, the MAP rule is to decide H1 for y = 1, 2 and decide H0

for y ≥ 3.



Practice Question #1

Consider the following detection problem.
Under hypothesis H0, Y is a Geometric(1/2) random variable.
Under hypothesis H1, Y is a Geometric(3/4) random variable.
The probabilities of the hypotheses are P[H0] = 1/3 and P[H1] = 2/3.

(d) Determine the probability of error under the MAP rule. For the
MAP rule, we have A0 = {Y ≥ 3} and A1 = {Y ≤ 2}. Therefore,
the probability of error is

PFA = P[Y ∈ A1|H0] = P[Y ≤ 2|H0]

= PY |H0
(1) + PY |H0

(2) =
1

2
+

1

4
=

3

4
PMD = P[Y ∈ A0|H1] = P[Y ≥ 3|H1] = 1− P[Y ≤ 2|H1]

= 1− PY |H1
(1)− PY |H1

(2) = 1− 3

4
− 3

16
=

1

16

P[error] = PFA P[H0] + PMD P[H1] =
3

4
· 1

3
+

1

16
· 2

3
=

7

24
.



Practice Question #2

Consider the following estimation problem. The joint PDF of X and Y
is

fX,Y (x, y) =

{
x− y 1 ≤ x ≤ 2, 0 ≤ y ≤ 1

0 otherwise.

(a) What are the marginal PDFs fX(x) and fY (y)?

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy =

{∫ 1
0 (x− y) dy 1 ≤ x ≤ 2

0 otherwise.

=

{(
xy − y2

2

)∣∣1
0

1 ≤ x ≤ 2

0 otherwise.
=

{
x− 1

2 1 ≤ x ≤ 2

0 otherwise.

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx =

{∫ 2
1 (x− y) dx 0 ≤ y ≤ 1

0 otherwise.

=

{(x2 y
2 − xy

)∣∣2
1

0 ≤ y ≤ 1

0 otherwise.
=

{
3
2 − y 0 ≤ y ≤ 1

0 otherwise.



Practice Question #2

Consider the following estimation problem. The joint PDF of X and Y
is

fX,Y (x, y) =

{
x− y 1 ≤ x ≤ 2, 0 ≤ y ≤ 1

0 otherwise.

(b) What is the conditional PDF fX|Y (x|y)?

fX|Y (x|y) =


fX,Y (x, y)

fY (y)
fY (y) > 0

0 otherwise.

=


x− y
3
2 − y

1 ≤ x ≤ 2, 0 ≤ y ≤ 1

0 otherwise.

(Remember that the range of conditional PDF will be the same as
the range of the joint PDF!)



Practice Question #2

Consider the following estimation problem. The joint PDF of X and Y
is

fX,Y (x, y) =

{
x− y 1 ≤ x ≤ 2, 0 ≤ y ≤ 1

0 otherwise.

(c) What is the MMSE estimator of X given Y = y?
Remember that the MMSE estimator is just the conditional
expectation!

x̂MMSE(y) = E[X|Y = y] =

∫ ∞
−∞

xfX|Y (x|y) dx

=

∫ 2

1
x
x− y
3
2 − y

dx =

( x3

3 −
x2 y
2

3
2 − y

)∣∣∣∣2
1

=
14− 9y

9− 6y



Practice Question #2

Consider the following estimation problem. The joint PDF of X and Y
is

fX,Y (x, y) =

{
x− y 1 ≤ x ≤ 2, 0 ≤ y ≤ 1

0 otherwise.

(d) What is the LLSE estimator of X given Y = y?
Remember that the LLSE estimator is a linear function with slope
and offset determined through calculating certain means, variances,
and covariances. We will use the formula

x̂LLSE(y) = E[X] +
Cov[X,Y ]

Var[Y ]
(y − E[Y ]). Below, we calculate the

necessary integrals.

E[X] =

∫ ∞
−∞

xfX(x) dy =

∫ 2

1
x

(
x− 1

2

)
dx =

(
x3

3
− x2

4

)∣∣∣∣1
2

=
19

12

E[Y ] =

∫ ∞
−∞

yfY (y) dy =

∫ 1

0
y

(
3

2
− y
)
dy =

(
3y2

4
− y3

3

)∣∣∣∣1
0

=
5

12



Practice Question #2

Consider the following estimation problem. The joint PDF of X and Y
is

fX,Y (x, y) =

{
x− y 1 ≤ x ≤ 2, 0 ≤ y ≤ 1

0 otherwise.

(d) What is the LLSE estimator of X given Y = y?

E[Y 2] =

∫ ∞
−∞

y2fY (y) dy =

∫ 1

0
y2
(

3

2
− y
)
dy =

(
y3

2
− y4

4

)∣∣∣∣1
0

=
1

4

Var[Y ] = E[Y 2]−
(
E[Y ]

)2
=

1

4
− 25

144
=

11

144

E[XY ] =

∫ ∞
−∞

∫ ∞
−∞

xyfX,Y (x, y) dy

=

∫ 2

1

∫ 1

0
xy(x− y) dy dx =

∫ 2

1

(
x2 y2

2
− xy3

3

)1

0

dx

=

∫ 2

1

(
x2

2
− x

3

)
dx =

(
x3

6
− x2

6

)∣∣∣∣2
1

=
2

3



Practice Question #2

Consider the following estimation problem. The joint PDF of X and Y
is

fX,Y (x, y) =

{
x− y 1 ≤ x ≤ 2, 0 ≤ y ≤ 1

0 otherwise.

(d) What is the LLSE estimator of X given Y = y?

Cov[X,Y ] = E[XY ]− E[X]E[Y ] =
2

3
− 19

12
· 5

12
=

1

144

x̂LLSE(y) =
19

12
+

1
144
11
144

(
y − 5

12

)
=

y

11
+

17

11



Practice Question #3

Let Y be a random variable with E[Y ] = 2 and E[Y 2] = 5. Let Z be a
random variable with E[Z] = −1 and E[Z2] = 3. Let ρY,Z = − 1√

2
and

define X = 3Y + Z.

(a) Determine the mean of X.

E[X] = E[3Y + Z] = 3E[Y ] + E[Z] = 3 · 2 + (−1) = 5 .

(b) Determine the variance of X. We can use the formula
Var[aY + bZ] = a2 Var[Y ] + b2 Var[Z] + 2abCov[Y, Z].

Var[Y ] = E[Y 2]−
(
E[Y ]

)2
= 5− 22 = 1

Var[Z] = E[Z2]−
(
E[Z]

)2
= 3− (−1)2 = 2

Cov[Y,Z] = ρY,Z
√

Var[Y ] · Var[Z] = − 1√
2
·
√

1 · 2 = −1

Var[X] = Var[3Y + Z] = 32 Var[Y ] + 12 Var[Z] + 2 · 3 · 1 Cov[Y,Z]

= 9 · 1 + 1 · 2 + 6 · (−1) = 5 .



Practice Question #3

Let Y be a random variable with E[Y ] = 2 and E[Y 2] = 5. Let Z be a
random variable with E[Z] = −1 and E[Z2] = 3. Let ρY,Z = − 1√

2
and

define X = 3Y + Z.

(c) Let X1, . . . , X500 be i.i.d. random variables with the same
distribution as X. Using the Central Limit Theorem approximation,
estimate the probability P

[∣∣ 1
500

∑500
i=1Xi − E[X]

∣∣ > 1
2

]
. (You may

leave your answer in terms of the Φ function.) Let

W =
1

500

500∑
i=1

Xi − E[X] and note that E[W ] = 0 and

Var[W ] =
1

500
Var[X] =

5

500
=

1

100
. Therefore,

P[|W | > 1

2
] = P

[
W >

1

2

]
+ P

[
W < −1

2

]
= 1− FW

(1

2

)
+ FW

(
− 1

2

)
≈ 1− Φ

(
1/2− 0

1/10

)
+ Φ

(
−1/2− 0

1/10

)
= 1− Φ(5) + Φ(−5) = 2Φ(−5)



Practice Question #4

You are trying out a new blood pressure drug with a control group and
an experimental group, each of consisting of 400 samples. The
variance is believed to be σ21 = 0.40 in the control group and
σ22 = 0.60 in the experimental group. For the control group, you

obtain sample mean M
(1)
400 = 2.10 and for the experimental group you

obtain sample mean M
(2)
400 = 2.02.

(a) What is the variance of the sample mean Var[M
(1)
400]?

Var[M
(1)
400] =

1

400
(0.40) = 0.001

(b) Do the groups have different means at a significance level of 0.05?
Since the variances are known, a two-sample Z-test is appropriate.
The Z-statistic is

Z =
(M

(1)
n −M (2)

n )√
σ2
1
n +

σ2
2
n

=
20 · (2.10− 2.02)√

1
= 20 · 0.08 = 1.6

The p-value is 2Φ(−|Z|) = 2Φ(−1.6) = 0.1 which exceeds the
significance level 0.05. Thus, we fail to reject the null hypothesis.



Practice Question #4

You are trying out a new blood pressure drug with a control group and
an experimental group, each of consisting of 400 samples. The
variance is believed to be σ21 = 0.40 in the control group and
σ22 = 0.60 in the experimental group. For the control group, you

obtain sample mean M
(1)
400 = 2.10 and for the experimental group you

obtain sample mean M
(2)
400 = 2.02.

(c) Construct a confidence interval for the mean of the control group
with confidence level 0.9. First, select γ such that
Q(γ) = α/2 = 0.05 =⇒ γ = 1.6.

Since the variance is known,[
M (1)
n ±

γσ√
n

]
=
[
2.10± 1.6 ·

√
0.40

20

]



Practice Question #5

In this problem, you will work through the process of constructing and
evaluating an LDA binary classifier by hand. You have been given the
following 1-dimensional training and test datasets:

Xtrain =


+2
0
−1
−3

 Y train =


+1
+1
−1
−1

 Xtest =

[
+4
0

]
Y test =

[
+1
−1

]

(a) Compute the sample means µ̂+ and µ̂− as well as the sample
covariance matrix Σ̂, which in this 1-dimensional setting is just a
sample variance (and could be denoted by σ̂2 instead if you wish).

µ̂+ =
1

2
(+2 + 0) = +1 µ̂− =

1

2
(−1− 3) = −2

Σ̂+ = (2− 1)2 + (0− 1)2 = 2

Σ̂− = ((−1)− (−2))2 + (−3− (−2))2 = 2

Σ̂ =
1

4− 2
((2− 1)Σ̂+ + (2− 1)Σ̂−) = 2



Practice Question #5

(b) Work out the LDA classifier. Try to simplify the expression as much
as you can. Show your work for full credit.

DLDA(x) =

{
+1 2(µ̂+ − µ̂−)Σ̂−1x ≥ µ̂+Σ̂−1µ̂+ − µ̂−Σ̂−1µ̂−

−1 otherwise.

=

{
+1 2(+1− (−2))12x ≥ 1 · 12 · 1− (−2) · 12 · (−2)

−1 otherwise.

=

{
+1 x ≥ −1

2

−1 otherwise.

(c) Calculate the LDA training and test error rates.

Y train,guess =


+1
+1
−1
−1

 Y test,guess =

[
+1
+1

]

Training Error Rate is 0% and Test Error Rate is 50%.



Practice Question #6

Consider the following Markov chain

1 2 3 4 5
1
2

1
2

1
2

1
2

1

1
1
3

2
3

(a) Determine the communicating classes.
C1 = {1, 5} and C2 = {2, 3, 4}.

(b) Determine which states are transient and which are recurrent.
States 1 and 5 are transient and states 2, 3, and 4 are recurrent.

(c) Determine the period of each state.
State 3 has a self-cycle and thus has period 1. All states in its
communicating class have the same period so states 2 and 4 have
period 1 as well. States 1 and 5 have period 2.



Practice Question #6

Consider the following Markov chain

1 2 3 4 5
1
2

1
2

1
2

1
2

1

1
1
3

2
3

(d) Write down the state transition matrix. P =


0 1

2
0 0 1

2
0 0 1 0 0
0 0 1

3
2
3

0
0 1 0 0 0
1
2

0 0 1
2

0


(e) Does the Markov chain have a unique limiting probability state

vector π?
Yes, even though it is not irreducible, it has only a single recurrent
communicating class. This class is aperiodic. Therefore, it has a
unique limiting probability state vector where the probabilities of the
transient states are set to 0.



Practice Question #6

(f) Solve for the unique limiting probability state vector π. Since states
1 and 5 are transient, we know that π1 = π5 = 0. From the
steady-state equation PTπ = π, we get

π4 = π2

π2 +
1

3
π3 = π3 =⇒ π3 =

3

2
π2 .

Plugging these into the normalization equation, we get

5∑
j=1

πj = π2 +
3

2
π2 + π2 =

7

2
π2 = 1 =⇒ π2 =

2

7
.

Substituting back in, we get π4 =
2

7
and π3 =

3

7
so π =


0

2/7
3/7
2/7
0

.


