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Detection

Binary Hypothesis Testing:
® Two hypotheses Hy and H;. Observe a random variable Y. Decide
if Hy or Hy occurred based only on Y using a decision rule D(Y).
Discrete Case Continuous Case
Py n,(y) if Hy occurs fy |, (y) if Ho occurs
Pyp, (y) if Hy occurs fy |, (y) if Hy occurs
Decision Regions:
Ao={yeRy:D(y)=0t Ai={yeRy:D{y) =1}
Probability of False Alarm: Pea = P[Y € A;|H)
Probability of Missed Detection: Pyp = P[Y € Ag|H1]
Goal is to minimize the probability of error:

P, = Prp P[Ho] + Pup ]P)[Hl]

Likelihood Ratio (and Log-Likelihood Ratio):

_ PY|H1 (y) In (L(y)) —In (

Ly = PY|H0(y)

Py n, (y)>
PY|H0 (y)



Detection

Maximum Likelihood (ML) Rule:

® |ntuition: Choose the hypothesis that best explains the observation.

® In terms of the conditional PMFs for the discrete case,
DML(y) _ 17 PY|H1 (y) > PY‘HO (y)7
0, Pyim, (y) < Pym,(v)-

® |n terms of the conditional PDFs for the continuous case,

DML(y) _ {17 fY|H1(y) > fY|Ho(y)a
0, fyim ) < fyim, (y)-

® |n terms of the likelihood or log-likelihood ratio,
Likelihood Ratio Log-Likelihood Ratio

DML(y):{l, L(y) > 1, DML(y):{l, In(L(y)) > 0,

0, L(y) < 1. 0, In(L(y)) < 0.



Detection

Maximum a Posteriori (MAP) Rule:
® |ntuition: Choose the most likely hypothesis given the observation.
® Attains the minimum probability of error.

® |n terms of the conditional PMFs for the discrete case,
DMAP () — 1, Pyg, (y) P[H1] > Pyn,(y) P[Hol,
0, Py, (y) P[H1] < Py g, (y) P[Ho].
In terms of the conditional PDFs for the continuous case,
DMAP () — L fyia (y) PIH1] > fyym, (v) P[Ho),
0, fyim (y) PIHA] < fyym, (y) P[Ho.

® |n terms of the likelihood or log-likelihood ratio,
Likelihood Ratio Log-Likelihood Ratio
P[Ho] P[Ho]
() L, L(y) = ]PHT Py 1, In(L(y)) = In Bl
0, Liy) < o 0, In(L(y)) < In ( LHo
LS EE Y P[]




Detection

Vector Observations:
® Two hypotheses Hy and H;. Observe a random vector Y. Decide
which hypothesis occurred using a decision rule D(Y).

Discrete Case Continuous Case
Py \n,(y) if Ho occurs fy |, (y) if Ho occurs
Py, (y) if Hy occurs fym, (y) if Hy occurs

® Decision Regions:

Ay={y€Ry:D(y) =0} Air={y€Ry:D(y)

1}

® Probability of False Alarm: Pga = P[Y € A;|Hg]
® Probability of Missed Detection: Pyp = P[Y € Ap|H/]
® Probability of Error: P, = Pea P[Hy| + Pup P[H;]

® The likelihood ratio as well as the ML and MAP rules are the same
as on the previous slides, just substitute in ¥ for Y and y for y in
each equation.



Estimation

Scalar Estimation:
® \We observe a random variable Y and want to estimate an
unobserved random variable X using an estimator Z(Y).

® Goal: Minimize the mean-squared error: MSE = E[(X - :?:(Y))z}

Minimum Mean-Squared Error (MMSE) Estimator:

® Attains the minimum MSE amongst all possible estimators.

® Given by the conditional expectation: Zmmse(y) = E[X|Y = y]
Linear Least-Squares Error (LLSE) Estimator:

® Attains the minimum MSE amongst all linear estimators.

o dusely) = BX] + S (v - BIY) = BIX) + py 2y - EIY)
2
® MSE, sg = Var[X] — w = Var[X](1 - pX y)

® For jointly Gaussian X and Y, Zmmse(y) = ZLise(y).



Estimation

Vector Estimation:

® \We observe a random vector Y and want to estimate an unobserved
random vector X using an estimator Z(Y).

® Mean-Squared Error: MSE = E[(X—E(X))T(X_Q(X))}

Vector Minimum Mean-Squared Error (MMSE) Estimator:

® Attains the minimum MSE amongst all possible estimators.

® Given by the conditional expectation: Zymse(y) = E[X]Y = y]
Vector Linear Least-Squares Error (LLSE) Estimator:

® Attains the minimum MSE amongst all linear estimators.

* 2 5e(y) = E[X] + Zx vy 3y (y — E[Y))

* Covariance Matrix of Y: By =E[(Y — E[Y])(Y — E[Y])T]

® Cross-Covariance Matrix: Xxy = E[(X — E[X])(Y — E[Y])T]
® For jointly Gaussian X and Y, Zymse(v) = 2 se(v)-



Sums of Random Variables

Joint PMF for n discrete random variables Px,  x,(z1,...,2)

Joint PDF for n continuous random variables fx, . x, (z1,...,2p)

n

Expected Value of a Sum: E[X; + -+ X,| = ZE[XZ}
i—1

n n
Variance of a Sum: Var[X; + -+ X,,| = ZZCOV[XZ',XJ']
i=1 j=1

Independent and ldentically Distributed Random Variables:

Joint PMF Px,  x,(x1,...,2n) = Px(z1)--- Px(xy)
Joint PDF fx,  x,(x1,...,2n) = fx(x1) - fx(2n)
Expected Value of a Sum: E[X; + -+ + X,,| = nE[X]
Variance of a Sum: Var[X; + --- 4+ X,,| = nVar[X]



Sums of Random Variables

® Weak Law of Large Numbers: Let X1, X5,..., X, bei.i.d.
random variables with finite mean p. For any constant € > 0,

: 1 ¢
nh_}rr;()P(‘n ElXi—u‘ >e) =0
1=

e Strong Law of Large Numbers: Let X1, Xo,..., X, bei.i.d.
random variables with finite mean p. Then,

N
P fim 3o =) =1

e Central Limit Theorem: Let X1, X5, ..., X, bei.i.d. random

variables with finite mean y and finite variance o2. The CDF of
Y, = % converges to the standard normal CDF,

lim Fy, (y) = ®(y) .

n—o0



Statistics

Parameter Estimation:

® We collect data X7, ..., X, which we assume is i.i.d. with some
unknown true mean p and true variance o2. How can we estimate
these parameters?

1 n
® Sample Mean: M, = — g X;
n
=1

1 n
® Sample Variance: V,, = | (Xi — Mn)2
i=1

® The sample mean and sample variance are estimators:

E[M,] = u E[V,] = o*
Confidence Intervals:

® [M,, £ €] is a confidence interval for the mean with
confidence level 1 —a if Plu—e < M, <pu+e=1—a.



Statistics

Confidence Interval: Known Variance

® Assumes data is i.i.d. Gaussian(u, 02) with o known.

® [M, + €] with e = ﬁ@‘l(%) is a confidence interval for the mean

with confidence level 1 — a.

® When to use: Variance is known or n > 30 samples.

e |f the variance o is unknown and we have n > 30 samples,

substitute o2 with the sample variance V.

Confidence Interval: Unknown Variance

® Assumes data is i.i.d. Gaussian(u,0?) with o unknown.

® Let Fr;p, ,(t) be the CDF for a Student’s t-distribution with n — 1
degrees-of-freedom.

® [M, + €| with e = —‘/\/?anl_l(%) is a confidence interval for the

mean with confidence level 1 — a.

® When to use: Variance is unknown and n < 30 samples.



Statistics

Significance Testing
® Only have a probability model for the null hypothesis Hy.
® The significance level 0 < a < 1 is used to determine when to reject
the null hypothesis.
® Given a statistic calculated from the dataset, the p-value is the
probability of observing a value at least this extreme under the null
hypothesis.
® [f p-value < a, then reject the null hypothesis.
® |f p-value > «, then fail to reject the null hypothesis.
One-Sample Z-Test
® Null Hypothesis: X1, ..., X, is i.i.d. Gaussian(u,o?).
® When to use: Variance o2 is known or n > 30 samples.
® Informally, is the mean not equal to ©?
@ Calculate the sample mean M,,.
@® Z-statistic: Z =+/n(M, —p)/o.
© p-value = 29(—|Z)).
e |f the variance o is unknown and we have n > 30 samples,
substitute o2 with the sample variance V.



Statistics

One-Sample T-Test
® Null Hypothesis: X1, ..., X, is i.i.d. Gaussian(u,o?).
® When to use: Variance o2 is unknown and n < 30 samples.
® Informally, is the mean not equal to ©?
@ Calculate the sample mean M,, and variance V,.

@ Z-statistic: T = /n(M,, — 1)/ Vn.
© p-value = 2Fp,_, (—|T)).
Two-Sample Z-Test
® Null Hypothesis: X7i,..., Xy, is i.i.d. Gaussian(u,0?) and
Yi,...,Y,, isiid. Gaussian(u,03).
® When to use: Variances o7 and o3 are known or min(ny,nz) > 30.
® |nformally, do the datasets have the same mean?
@ Calculate the sample means M,(i) and M,(é)
® Zstatistic: 7 = (M) — M) /\/Z + 2.
© p-value = 28(—|Z]).
® |f the variances O‘%,O‘% are unknown and we have min(ny,ny) > 30

samples, substitute o2 = V1) and 02 = V2.



Statistics

Two-Sample T-Test

® Null Hypothesis: X1,..., X, is i.i.d. Gaussian(yu,o?) and
Y1,..., Yy, isiid. Gaussian(u,0?). The mean p is unknown.

® When to use: (Equal) variance o2 is unknown and min(ny,ns) < 30.
® Informally, do the datasets have the same mean?

@ Calculate the sample means MT(LP, Mr(i) sample variances Vé}), TS?
and the pooled sample variance

5% = ((nl — 1)Vn(11) + (ng — l)VﬂEf))/(nl +ng — 2)

[,(1 1
o (7 + 7)
ny %)

© p-value = 2Fr, ., (—[T]).

@® T-statistic: T =



Intro to Machine Learning

Binary Classification:

The goal is to decide between two hypotheses, but we do not have
access to the underlying probability model.

Instead, we have a dataset consisting of n samples,

{(X1. 1), (X5, Y2), ..., (X, Yy) }.

The ith sample (X, Y;) has an observation vector X; and a label Y;,
which we assume is —1 or +1.

We use this dataset to come up with a classifier D(x), which is a
function that maps any possible observation vector x into a guess of
its label.

We measure performance via the error rate, the fraction of
misclassified examples (usually reported as a percentage).



Intro to Machine Learning

Training and Test Error:

® To make sure we are not overfitting, we split our dataset into
non-overlapping training and test datasets,

{(Ktraim]_v Ytraiml); (Ktrain,Za }/train,2)7 st (Ktrain,n"aina Y:crain,ntrain)}a
{(Xtest,lv Ytest,1)7 (Xtest,% Ytest72)a SRR (Xtest,ntesta Y:cest,ntest)}-

® The training set is used to construct our classifier D(z) and the test
set can only be used to evaluate its performance.

Training Error = fraction of misclassified training examples,

Test Error = fraction of misclassified test examples



Intro to Machine Learning

Basic Classifiers:

The closest average classifier first computes the average vector for
each label. Given a new observation vector, it computes the distance
to each average and choose the label with the smallest distance.
The nearest neighbor classifier, when given a new observation vector,
computes the distance to every sample in the training set to find the
closest point. It then outputs the label of this point as its guess.
The LDA classifier assumes the observation vectors are Gaussian,
with different mean vectors and the same covariance matrix. It
estimates these parameters and then applies the resulting ML rule.
The QDA classifier assumes the observation vectors are Gaussian,
with different mean vectors and covariance matrices. It estimates
these parameters and then applies the resulting ML rule.

Dimensionality Reduction:

Principal component analysis allows us to reduce the dimensionality
of our observations, by only keeping the (orthogonal) directions
corresponding the largest variance.



Markov Chains

Markov Chain:

® Sequence of (discrete) random variables X, X1, Xo, ... such that,
given the history Xy, ..., X,, the next state X,,+1 only depends on
the current state X,,,

Py 11X, X0 @nt1|Tn, - 20) = Px, g )x, (Tn|2n)

® We assume the range is finite Ry = {1,..., K}.

® The transition probabilities Pj; are the probabilities of moving from
state j to state k in one time step. We assume the Markov chain is
homogeneous, Px, ,x, (klj) = Pj.

® The n-step transition probabilities Pj;(n) are the probabilities of
moving from state j to state k in exactly n time steps. They can be
determined via the Chapman—KoImogorov equations:

Pji(n+m) = ZP]Z Py(m)



Markov Chains

State Transition Matrix:

Py P - Pk
" . Py Py - Py

® The state transition matrix is P = ] ] ]
Pg1 Pgo -+ Pggk

® Row index is for the current state, column index is for the next state.

® All rows must sum to 1.

Probability State Vector:

Py, (1)
® The probability state vector is p, = :
Py, (K)
® Moving forward one time step: Ppiq = PTQt.

® Moving forward n time steps: p, == (P”)Tgt.



Markov Chains

State Classification:

State k is accessible from state j if it is possible to reach state k
starting from state j in zero or more time steps. (State j is always
accessible from itself.) Notation: j — &

States j and k communicate if j — k and k — j. Notation: j < k

A communicating class C' is a subset of states such that if j € C,
then k € C if and only if j < k.

A Markov chain is irreducible if all of its states belong to a single
communicating class.

A state j is transient if there is a state k such that j — &k but &k - j.
Any state that is not transient is recurrent.

The period d of a state j is the greatest common divisor of the
length of all cycles from j back to itself.

If the period is 1, then the state is called aperiodic. The entire
Markov chain is aperiodic if all states are aperiodic.



Markov Chains

Limiting Probability State Vector:

® For an irreducible, aperiodic Markov chain, there is a unique limiting
state probability vector m = hm 1 p,.

Properties of the Limiting Probability State Vector:
K

. > mi=1
j=1

® Any initial probability state probability vector P, will converge to .

. 7=PTr.

Handling Transient States:

® |f there is only one recurrent communicating class and it is aperiodic,
then there is still a unique limiting state probability vector. Find by
first setting the limiting probabilities of all transient states to 0.



Practice Question #1

Consider the following detection problem.

Under hypothesis Hy, Y is a Geometric(1/2) random variable.

Under hypothesis Hy, Y is a Geometric(3/4) random variable.

The probabilities of the hypotheses are P[Hy| = 1/3 and P[H;] = 2/3.

(a) Determine the ML rule. The conditional PMFs are

1Y 3(1\y—1
1 =1,2,... 3(9) y=12,...
P _ ()" v=12 P =4\ v
Y|H0(y) {O otherwise. Y‘Hl(y) 0 otherwise.

From these, we can form the likelihood ratio,
P 1\Y

Ly) = Y|H1(y) _ 3<> 7

PY|H0(y) 2

which is greater than 1 for y = 1 and less than 1 for y > 2.

Therefore, the ML rule is to decide H; for y = 1 and decide Hy for
y>2.



Practice Question #1

Consider the following detection problem.

Under hypothesis Hy, Y is a Geometric(1/2) random variable.

Under hypothesis Hy, Y is a Geometric(3/4) random variable.

The probabilities of the hypotheses are P[Hy| = 1/3 and P[H;] = 2/3.

(b) Determine the probability of error under the ML rule. For the ML
rule, we have Ag = {Y > 2} and A; = {Y = 1}. Therefore, the
probability of error is

1
Pea = PY € A1|Ho] = P[Y = 1|Ho] = Pyp,(1) = 3
Pup =P[Y € Ao|H1] =P[Y > 2|H,]

3 1
=1-PY = 1H] =1- Py (1) =1-5 =
1 1 1 2 1
IP’[error] :PFAP[HQ] +PMDP[H1} = 5 . §_|_ 1 . g — g .



Practice Question #1

Consider the following detection problem.

Under hypothesis Hy, Y is a Geometric(1/2) random variable.

Under hypothesis Hy, Y is a Geometric(3/4) random variable.

The probabilities of the hypotheses are P[Hy| = 1/3 and P[H;] = 2/3.

(c) Determine the MAP rule. For the MAP rule, we need to compare

P[H, 1 1
the likelihood ratio L(y) to [Ho| _ 1/3 _ = We find that L(y) is

P[H,] 2/3 2

greater than % for y =1,2 and L(y) is less than % fory=3,4,....

Therefore, the MAP rule is to decide Hy for y = 1,2 and decide Hy
for y > 3.




Practice Question #1

Consider the following detection problem.

Under hypothesis Hy, Y is a Geometric(1/2) random variable.

Under hypothesis Hy, Y is a Geometric(3/4) random variable.

The probabilities of the hypotheses are P[Hy| = 1/3 and P[H;] = 2/3.

(d) Determine the probability of error under the MAP rule. For the

MAP rule, we have Ag = {Y >3} and A1 = {Y < 2}. Therefore,
the probability of error is

Prp = ]P)[Y S A1|H0] = P[Y < 2‘H0]
1 1 3
=P P 4o ="
Pup = ]P)[Y S A0|H1] = P[Y > 3‘H1] =1- P[Y < 2|H1}

3 3 1
=1~ Py, (1) = Py, (2) =1- 5 — — = —

Plerror] = Pra P[Ho) + Pwp P[H1] =



Practice Question #2

Consider the following estimation problem. The joint PDF of X and Y

is
r—y 1<x<2, 0<y<1
fX,Y(xvy) = .
0 otherwise.

(a) What are the marginal PDFs fx(x) and fy(y)?
y)dy 1<x<2
/ fXnydy—{fo o=

otherwise.
241
_ (a:y—%)|0 1§x§2: x—% 1<z<2
0 otherwise. 0 otherwise.

/ fXYﬂSyda:—{jl ylde 0<y=<l

otherwise.
2

_{("”Qy—wy)\f 0§y§1_{§—y 0<y<1
0

otherwise. 0 otherwise.



Practice Question #2

Consider the following estimation problem. The joint PDF of X and Y
is

r—y 1<x<2 0<y<1
fX,Y(xvy) = .
0 otherwise.

(b) What is the conditional PDF fx |y (z|y)?

fxy(z,y)

Fev(al) = ey W0

otherwise.

- 1<2<2 0<y<1
0 otherwise.

(Remember that the range of conditional PDF will be the same as
the range of the joint PDF!)



Practice Question #2

Consider the following estimation problem. The joint PDF of X and Y
is
r—y 1<x<2 0<y<1

0 otherwise.

Ixy(z,y) = {

(c) What is the MMSE estimator of X given Y = y?
Remember that the MMSE estimator is just the conditional
expectation!

oo
bwuse(y) = BIXY =y = [ afay(aly) do
— 00
2 gy 2 _TUN2 14— gy
= [ ag—do=|"3—]| =
1 5y 95—y 1 9 — 6y




Practice Question #2

Consider the following estimation problem. The joint PDF of X and Y
is

x? = .

XY EY 0 otherwise.

(d) What is the LLSE estimator of X given Y = y?
Remember that the LLSE estimator is a linear function with slope
and offset determined through calculating certain means, variances,
and covariances. WeCW”E)lés%/the formula
A ov )
Tuse(y) = E[X] +

T{Y](y —E[Y]). Below, we calculate the
necessary integrals.

e 2 3 2
)= [ etortn= [olemg)ae= (5],
& 1 2 3\ (1
E[Y]Z/ yfy(y)dyz/o y(i—y) dy = <3Z_y3> :1%
e .




Practice Question #2

Consider the following estimation problem. The joint PDF of X and Y

is
r—y 1<x<2 0<y<1

0 otherwise.

Ixy(z,y) = {

(d) What is the LLSE estimator of X given Y = y?

E[Y?] = /Z > fy (y) dy = /01112(;) - y) dy = <y3 B f)

Var[Y] = E[Y?] — (E[Y])? = Lox» _ 1

4 144 144
E[XY] = //xyfxyxw
2,2
//xyx— dyda:_/ <xy _my) dx
3 0

v

NN




Practice Question #2

Consider the following estimation problem. The joint PDF of X and Y
is

r—y 1<x<2 0<y<1
fX,Y(xvy) = .
0 otherwise.

(d) What is the LLSE estimator of X given Y = y?

Cov[X, Y] = B[XY] ~ E[X]E[Y] = 2 — 0. > — 1

3 12 12 144

) 19 5 y 17
Trise(y) = 124‘1{4{1(1/—12) ==+
144

11 11



Practice Question #3

Let Y be a random variable with E[Y] = 2 and E[Y?] = 5. Let Z be a
random variable with E[Z] = —1 and E[Z?] = 3. Let py 7 = —% and
define X =3Y + 7.

(a) Determine the mean of X.

E[X] =E[3Y + Z] =3E[Y] +E[Z] =3-2+ (-1) =5 .

(b) Determine the variance of X. We can use the formula
Var[aY + bZ] = a? Var[Y] + b2 Var[Z] + 2ab Cov[Y, Z].
Var[Y] = E[Y? — (E[Y]) =5-22=1
Var[Z] = E[Z%] — (E[Z])? =3 — (-1)2 =2
1
CovlY, Z] = py,z+/VarlY] - Var[Z] = 5 v1-2=-1
Var[X] = Var[3Y + Z] = 32 Var[Y] + 1*Var[Z] +2- 3 - 1 Cov]Y, Z]
=9-14+1-24+6-(=1)=5.



Practice Question #3

Let Y be a random variable with E[Y] = 2 and E[Y?] = 5. Let Z be a
random variable with E[Z] = —1 and E[Z?] = 3. Let py 7 = —% and
define X =3Y + 7.
(c) Let Xy,..., X500 be i.i.d. random variables with the same
distribution as X. Using the Central Limit Theorem approximation,
estimate the probability P[|=l5 S°0% X; — E[X]| > 1]. (You may

leave your answer in terms of the ® function.) Let
500

1
% X; — E[X] and note that E[I¥] = 0 and
Var[I¥] = V[X]—i L Theres
& 500 T 500 1000 ooere
1 1
P“W’>§]: w> gl e[w < 3] =1 Fu(g) + B~

=) )

=1—3(5) + (—5) = 20(—5)

2)



Practice Question #4

You are trying out a new blood pressure drug with a control group and
an experimental group, each of consisting of 400 samples. The
variance is believed to be o = 0.40 in the control group and

03 = 0.60 in the experimental group. For the control group, you
obtain sample mean Mi(l)% = 2.10 and for the experimental group you
obtain sample mean Mg% = 2.02.

(a) What is the variance of the sample mean Var[Mié[))]?
1

400
(b) Do the groups have different means at a significance level of 0.057

Since the variances are known, a two-sample Z-test is appropriate.
The Z-statistic is

;- (MY — My 20 (2.10 — 2.02)

of L o Vi

The p-value is 2&(—|Z|) = 2®(—1.6) = 0.1 which exceeds the
significance level 0.05. Thus, we fail to reject the null hypothesis.

Var[M{})] (0.40) = 0.001

=20-0.08=1.6



Practice Question #4

You are trying out a new blood pressure drug with a control group and
an experimental group, each of consisting of 400 samples. The
variance is believed to be o = 0.40 in the control group and

03 = 0.60 in the experimental group. For the control group, you

obtain sample mean Mi(l)% = 2.10 and for the experimental group you

obtain sample mean Mg% = 2.02.

(c) Construct a confidence interval for the mean of the control group
with confidence level 0.9. First, select v such that
Q(y) =a/2=0.05 = v =1.6.

Since the variance is known,

)+ 2] = [210 % L6 ‘gm

NG 2



Practice Question #5

In this problem, you will work through the process of constructing and
evaluating an LDA binary classifier by hand. You have been given the
following 1-dimensional training and test datasets:

+2 +1

0 +1 +4 +
Xtrain — _1 Xtrain = _1 X—teSt == |: 0 :| Xtest fr [_1:|

-3 —1

(a) Compute the sample means ji+ and fi_ as well as the sample
covariance matrix 3, which in this 1-dimensional setting is just a
sample variance (and could be denoted by 62 instead if you wish).

1 1
§(+2+0) =+1 4= 5(—1—3) =2

fiq =

S.=02-124+0-1)2=2

o= (-1 = (-2 +(-3-(-2))* =2
= L((Q —DZ, +(2-1D3 ) =2

4—-2



Practice Question #5

(b) Work out the LDA classifier. Try to simplify the expression as much
as you can. Show your work for full credit.

Dipa(z) = {

+1 2(+1—(-2)iz>1-2-1—(-2)-
—1 otherwise.

[ ez
"] =1 otherwise.

+1 20y —p )2 e >y Sy — S
—1 otherwise.

(=2)

NO[—

(c) Calculate the LDA training and test error rates.

+1

+1 1
Xtrain’guess = _1 Ztest,guess = |:+1:|

1

Training Error Rate is 0% and Test Error Rate is 50%.



Practice Question #6

Consider the following Markov chain
1
2

(a) Determine the communicating classes.
01 = {1,5} and CQ = {2,3,4}.

(b) Determine which states are transient and which are recurrent.
States 1 and 5 are transient and states 2, 3, and 4 are recurrent.

(c) Determine the period of each state.
State 3 has a self-cycle and thus has period 1. All states in its
communicating class have the same period so states 2 and 4 have
period 1 as well. States 1 and 5 have period 2.



Practice Question #6

Consider the following Markov chain
1
2

(d) Write down the state transition matrix. P =

= O ONl=

0

VO O O O

(e) Does the Markov chain have a unique limiting probability state

vector w7

Yes, even though it is not irreducible, it has only a single recurrent

Qwl— = O

[e=]

W= Owlv O O

O O OoOn=

0

communicating class. This class is aperiodic. Therefore, it has a

unique limiting probability state vector where the probabilities of the

transient states are set to 0.



Practice Question #6

(f) Solve for the unique limiting probability state vector 7. Since states
1 and 5 are transient, we know that m; = 75 = 0. From the
steady-state equation PTr=mx, we get
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Plugging these into the normalization equation, we get
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Substituting back in, we get 7y = — and 13 = — sow = |3/7].
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