1. Foundations of Probability

Set Theory

- A set is a collection of elements
- We usually use capital letters (such as A) to refer to sets and lowercase letters (such as x) to refer to elements.
- $x \in A$ means " x is an element of the set A."
- $x \notin A$ means " x is not an element of the set A."
- The empty set or null set is the set with no elements. Notation: ϕ or $\}$.
- The universal set Ω is the set of all elements (for the specific context).
- A subset A of a set B is a set consisting of some (or none or all) of the elements of B. Notation: $A \subset B$.
- Two sets A and B are equal if and only if $A \subset B$ and $B \subset A$.

Set Operations

- Complement: $A^{\mathrm{c}}=\{x: x \notin A\}$
- Union: $A \cup B=\{x: x \in A$ or $x \in B\}$.
- Intersection: $A \cap B=\{x: x \in A$ and $x \in B\}$.
- Set Difference: $A-B=\{x: x \in A$ and $x \notin B\}$.

Other Set Concepts

- A collection of sets A_{1}, \ldots, A_{n} is mutually exclusive if $A_{i} \cap A_{j}=\phi$ for $i \neq j$.
- A collection of sets A_{1}, \ldots, A_{n} is collectively exhaustive if $A_{1} \cup \cdots \cup A_{n}=\Omega$.
- A collection of sets A_{1}, \ldots, A_{n} is a partition if it is both mutually exclusive and collectively exhaustive.

De Morgan's Laws

$$
\begin{array}{ll}
(A \cup B)^{\mathrm{c}}=A^{\mathrm{c}} \cap B^{\mathrm{c}} & \left(\bigcup_{i=1}^{n} A_{i}\right)^{\mathrm{c}}=\bigcap_{i=1}^{n} A_{i}^{\mathrm{c}} \\
(A \cap B)^{\mathrm{c}}=A^{\mathrm{c}} \cup B^{\mathrm{c}} & \left(\bigcap_{i=1}^{n} A_{i}\right)^{\mathrm{c}}=\bigcup_{i=1}^{n} A_{i}^{\mathrm{c}}
\end{array}
$$

Probability Axioms

- An experiment is a procedure that generates observable outcomes.
- An outcome is a possible observation of an experiment.
- The sample space Ω is the set of all possible outcomes.
- An event is a subset of Ω : it is a set of possible outcomes.
- A probability measure $\mathbb{P}[\cdot]$ is a function that maps events to real numbers. It must satisfy the following axioms

1. Non-negativity: For any event $A, \mathbb{P}[A] \geq 0$.
2. Normalization: $\mathbb{P}[\Omega]=1$.
3. Additivity: For any countable collective A_{1}, A_{2}, \ldots of mutually exclusive events,

$$
\mathbb{P}\left[A_{1} \cup A_{2} \cup \cdots\right]=\mathbb{P}\left[A_{1}\right]+\mathbb{P}\left[A_{2}\right]+\cdots
$$

- These axioms imply the following properties:
- Complement: $\mathbb{P}\left[A^{\complement}\right]=1-\mathbb{P}[A]$.
- Inclusion-Exclusion: $\mathbb{P}[A \cup B]=\mathbb{P}[A]+\mathbb{P}[B]-\mathbb{P}[A \cap B]$.

EK381 Exam 1 Formula Sheet

Conditional Probability

- The conditional probability of event A given that B occurs is

$$
\mathbb{P}[A \mid B]=\frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}
$$

- For $\mathbb{P}[B]=0, \mathbb{P}[A \mid B]$ is undefined.
- Conditional probability satisfies the probability axioms:
- Non-negativity: For any event $A, \mathbb{P}[A \mid B] \geq 0$.
- Normalization: $\mathbb{P}[\Omega \mid B]=1$.
- Additivity: For any countable collective A_{1}, A_{2}, \ldots of mutually exclusive events,

$$
\mathbb{P}\left[A_{1} \cup A_{2} \cup \cdots \mid B\right]=\mathbb{P}\left[A_{1} \mid B\right]+\mathbb{P}\left[A_{2} \mid B\right]+\cdots
$$

- Multiplication Rule: For two events A and B, $\mathbb{P}[A \cap B]=\mathbb{P}[A] \mathbb{P}[B \mid A]=\mathbb{P}[B] \mathbb{P}[A \mid B]$. For n events $A_{1}, A_{2}, \ldots, A_{n}$,

$$
\mathbb{P}\left[\bigcap_{i=1}^{n} A_{i}\right]=\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2} \mid A_{1}\right] \cdots \mathbb{P}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right] .
$$

- Law of Total Probability: For a partition B_{1}, \ldots, B_{n} satisfying $\mathbb{P}\left[B_{i}\right]>0$ for all i,

$$
\mathbb{P}[A]=\sum_{i=1}^{n} \mathbb{P}\left[A \mid B_{i}\right] \mathbb{P}\left[B_{i}\right]
$$

- Bayes' Rule: This is a method to "flip" conditioning:

$$
\mathbb{P}[B \mid A]=\frac{\mathbb{P}[A \mid B] \mathbb{P}[B]}{\mathbb{P}[A]}
$$

Sometimes, it is useful to solve for the denominator using the total probability theorem. For a partition B_{1}, \ldots, B_{n} satisfying $\mathbb{P}\left[B_{i}\right]>0$ for all i,

$$
\mathbb{P}\left[B_{j} \mid A\right]=\frac{\mathbb{P}\left[A \mid B_{j}\right] \mathbb{P}\left[B_{j}\right]}{\mathbb{P}[A]}=\frac{\mathbb{P}\left[A \mid B_{j}\right] \mathbb{P}\left[B_{j}\right]}{\sum_{i=1}^{n} \mathbb{P}\left[A \mid B_{i}\right] \mathbb{P}\left[B_{i}\right]}
$$

Independence

- Two events A and B are independent if
$\mathbb{P}[A \cap B]=\mathbb{P}[A] \mathbb{P}[B]$.
- Independence of A and B means that knowing if A occurs cannot help predict whether B also occurs (and vice versa).
- Events A_{1}, \ldots, A_{n} are independent if
- All collections of $n-1$ events chosen from A_{1}, \ldots, A_{n} are independent.
- $\mathbb{P}\left[A_{1} \cap \cdots \cap A_{n}\right]=\mathbb{P}\left[A_{1}\right] \cdots \mathbb{P}\left[A_{n}\right]$
- Independence means that no subset of the events can be used to help predict the occurrence of any other subset of events.
- If A_{1}, \ldots, A_{n} only satisfy $\mathbb{P}\left[A_{i} \cap A_{j}\right]=\mathbb{P}\left[A_{i}\right] \mathbb{P}\left[A_{j}\right]$ for all $i \neq j$, then we say they are pairwise independent (but not independent).
- If A and B are independent, then so are A and $B^{\mathrm{c}}, A^{\mathrm{c}}$ and B, and A^{c} and B^{c}.

Conditional Independence

- The events A and B are conditionally independent given C if

$$
\mathbb{P}[A \cap B \mid C]=\mathbb{P}[A \mid C] \mathbb{P}[B \mid C]
$$

- Conditional independence means that, given C occurs, knowing that A occurs cannot help predict whether B also occurs (and vice versa).
- Events A_{1}, \ldots, A_{n} are conditionally independent given B if
- All collections of $n-1$ events chosen from A_{1}, \ldots, A_{n} are conditionally independent given B.
- $\mathbb{P}\left[A_{1} \cap \cdots \cap A_{n} \mid B\right]=\mathbb{P}\left[A_{1} \mid B\right] \cdots \mathbb{P}\left[A_{n} \mid B\right]$
- Independence does not imply conditional independence.
- Conditional independence does not imply independence.

Counting

- If an experiment is composed of m subexperiments and the $i^{\text {th }}$ subexperiment consists of n_{i} outcomes (that can be freely chosen), then the total number of outcomes is $n_{1} n_{2} \cdots n_{m}$.
- Counting techniques are especially useful in scenarios where all outcomes are equally likely, since the probability of an event can be expressed as

$$
\mathbb{P}[A]=\frac{\# \text { outcomes in } A}{\# \text { outcomes in } \Omega}
$$

Sampling

- A sampling problem consists of n distinguishable elements with k selections to be made.
- Selections may be made either with or without replacement.
- The final outcome is either order dependent or order independent.

	Order	
	Dependent	Independent
With Replacement	n^{k}	$\binom{n+k-1}{k}$
Without Replacement	$\frac{n!}{(n-k)!}$	$\binom{n}{k}=\frac{n!}{k!(n-k)!}$

2. Discrete Random Variables

- A random variable is a mapping that assigns real numbers to outcomes in the sample space.
- Random variables are denoted by capital letters (such as X) and their specific values are denoted by lowercase letters (such as x).
- The range of a random variable X is denoted by R_{X}.

Probability Mass Function

- The probability mass function (PMF) specifies the probability that a discrete random variable X takes the value x :

$$
P_{X}(x)=\mathbb{P}[X=x] .
$$

- The PMF satisfies the following basic properties:

1. Non-negativity: $P_{X}(x) \geq 0$ for all x.
2. Normalization: $\sum_{x \in R_{X}} P_{X}(x)=1$.
3. Additivity: For any event $B \subset R_{X}$, the probability that X falls in B is

$$
\mathbb{P}[\{X \in B\}]=\sum_{x \in B} P_{X}(x)
$$

Cumulative Distribution Function

- The cumulative distribution function (CDF) returns the probability that a random variable X is less than or equal to a value x :

$$
F_{X}(x)=\mathbb{P}[X \leq x]
$$

- The CDF satisfies the following basic properties:
- Normalization: $\lim _{x \rightarrow \infty} F_{X}(x)=1$
- Non-negativity: $F_{X}(x)$ is a non-decreasing function of x. - For $b \geq a, F_{X}(b)-F_{X}(a)=\mathbb{P}[a<X \leq b]$.
- For discrete random variables, $F_{X}(x)$ is piecewise constant and jumps at points x where $P_{X}(x)>0$ by height $P_{X}(x)$.

Expected Value

- The expected value of a discrete random variable X is

$$
\mathbb{E}[X]=\sum_{x \in R_{X}} x P_{X}(x)
$$

- This is also known as the mean or average.
- Sometimes denoted as $\mu_{X}=\mathbb{E}[X]$.

Variance

- The variance measures how spread out a random variable is around its mean

$$
\operatorname{Var}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x \in R_{X}}\left(x-\mu_{X}\right)^{2} P_{X}(x)
$$

- Alternate formula: $\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}$.
- Standard Deviation: $\sigma_{X}=\sqrt{\operatorname{Var}[X]}$.
- The variance is sometimes written as $\sigma_{X}^{2}=\operatorname{Var}[X]$.

Functions of a Random Variable

- A function $Y=g(X)$ of a discrete random variable X is itself a discrete random variable.
- Range: $R_{Y}=\left\{g(x): x \in R_{X}\right\}$.
- PMF: $P_{Y}(y)=\sum_{x: g(x)=y} P_{X}(x)$.
- Expected Value of a Function $Y=g(X)$:

$$
\mathbb{E}[g(X)]=\mathbb{E}[Y]=\sum_{y \in R_{Y}} y P_{Y}(y)=\sum_{x \in R_{X}} g(x) P_{X}(x)
$$

- Linearity of Expectation:

$$
\mathbb{E}[a X+b]=a \mathbb{E}[X]+b
$$

$$
\mathbb{E}[g(X)+h(Y)]=\mathbb{E}[g(X)]+\mathbb{E}[h(Y)]
$$

- Variance of a Linear Function:

$$
\operatorname{Var}[a X+b]=a^{2} \operatorname{Var}[X]
$$

Important Families of Discrete RVs

Bernoulli Random Variables

- X is a $\operatorname{Bernoulli}(p)$ random variable if it has PMF

$$
P_{X}(x)= \begin{cases}1-p & x=0 \\ p & x=1\end{cases}
$$

- Range: $R_{X}=\{0,1\}$.
- Expected Value: $\mathbb{E}[X]=p$
- Variance: $\operatorname{Var}[X]=p(1-p)$.
- Interpretation: single trial with success probability p.

Geometric Random Variables

- X is a $\operatorname{Geometric}(p)$ random variable if it has PMF

$$
P_{X}(x)= \begin{cases}p(1-p)^{x-1} & x=1,2, \ldots \\ 0 & \text { otherwise } .\end{cases}
$$

- Range: $R_{X}=\{1,2, \ldots\}$.
- Expected Value: $\mathbb{E}[X]=\frac{1}{p}$.
- Variance: $\operatorname{Var}[X]=\frac{1-p}{p^{2}}$.
- Interpretation: \# of independent $\operatorname{Bernoulli}(p)$ trials until first success.

Binomial Random Variables

- X is a $\operatorname{Binomial}(n, p)$ random variable if it has PMF

$$
P_{X}(x)= \begin{cases}\binom{n}{x} p^{x}(1-p)^{n-x} & x=0,1, \ldots, n \\ 0 & \text { otherwise }\end{cases}
$$

- Range: $R_{X}=\{0,1, \ldots, n\}$.
- Expected Value: $\mathbb{E}[X]=n p$.
- Variance: $\operatorname{Var}[X]=n p(1-p)$.
- Interpretation: \# of successes in n independent $\operatorname{Bernoulli}(p)$ trials.

Discrete Uniform Random Variables

- X is a Discrete Uniform (a, b) random variable if it has PMF

$$
P_{X}(x)= \begin{cases}\frac{1}{b-a+1} & x=a, a+1, \ldots, b \\ 0 & \text { otherwise }\end{cases}
$$

- Range: $R_{X}=\{a, a+1, \ldots, b\}$
- Expected Value: $\mathbb{E}[X]=\frac{a+b}{2}$.
- Variance: $\operatorname{Var}[X]=\frac{(b-a)(b-a+2)}{12}=\frac{(b-a+1)^{2}-1}{12}$.
- Interpretation: equally likely to take any (integer) value between a and b.

Poisson Random Variables

- X is a $\operatorname{Poisson}(\lambda)$ random variable if it has PMF

$$
P_{X}(x)= \begin{cases}\frac{\lambda^{x}}{x!} e^{-\lambda} & x=0,1, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

- Range: $R_{X}=\{0,1, \ldots\}$.
- Expected Value: $\mathbb{E}[X]=\lambda$.
- Variance: $\operatorname{Var}[X]=\lambda$.
- Interpretation: \# of arrivals in a fixed time window.

Conditioning for Discrete Random Variables

- The conditional PMF of X given an event B is

$$
P_{X \mid B}(x)=\left\{\begin{array}{cc}
\frac{P_{X}(x)}{\mathbb{P}[\{X \in B\}]} & x \in B \\
0 & x \notin B
\end{array}\right.
$$

where $\mathbb{P}[\{X \in B\}]=\sum_{x \in B} P_{X}(x)$.

- The conditional PMF satisfies the basic PMF properties

1. Non-negativity: $P_{X \mid B}(x) \geq 0$ for all x.
2. Normalization: $\sum_{x \in B} P_{X \mid B}(x)=1$.
3. Additivity: For any event $C \subset R_{X}$, the conditional probability that X falls in C given that X falls in B is

$$
\mathbb{P}[\{X \in C\} \mid\{X \in B\}]=\sum_{x \in C} P_{X \mid B}(x)
$$

- The conditional expected value of X given an event B is

$$
\mathbb{E}[X \mid B]=\sum_{x \in B} x P_{X \mid B}(x)
$$

- The conditional expected value of a function $g(X)$ given an event B is

$$
\mathbb{E}[g(X) \mid B]=\sum_{x \in B} g(x) P_{X \mid B}(x)
$$

- The conditional variance of X given an event B is

$$
\begin{aligned}
\operatorname{Var}[X \mid B] & =\mathbb{E}\left[(X-\mathbb{E}[X \mid B])^{2} \mid B\right]=\sum_{x \in B}(x-\mathbb{E}[X \mid B])^{2} P_{X \mid B}(x) \\
& =\mathbb{E}\left[X^{2} \mid B\right]-(\mathbb{E}[X \mid B])^{2}
\end{aligned}
$$

