3. Continuous Random Variables

Probability Density Function (PDF)

- The PDF is the derivative of the CDF: $f_{X}(x)=\frac{d}{d x} F_{X}(x)$
- It does not tell us the probability of $X=x$, which is always

0 . Instead, it tells us the density of probability around x.

- The PDF satisfies the following properties:
- Normalization: $\int_{-\infty}^{\infty} f_{X}(x) d x=1$.
- Non-negativity: $f_{X}(x) \geq 0$.
- Non-negativity: $f_{X}(x) \geq 0$.
- Probability of an interval: $\mathbb{P}[a<X \leq b]=\int_{a}^{b} f_{X}(x) d x$. - $\mathrm{PDF} \rightarrow \mathrm{CDF}: \int_{-\infty}^{x} f_{X}(u) d u=F_{X}(x)$.

Expected Value

- The expected value of a continuous random variable X is

$$
\mathbb{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

- The expected value of a function of a continuous random variable X is

$$
\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

- Linearity of Expectation: $\mathbb{E}[a X+b]=a \mathbb{E}[X]+b$

Variance

- The variance of a random variable X is

$$
\operatorname{Var}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]
$$

- Another useful formula is $\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}$.
- The standard deviation is the square root of the variance:

$$
\sigma_{X}=\sqrt{\operatorname{Var}[X]} .
$$

- Variance of a Linear Function: $\operatorname{Var}[a X+b]=a^{2} \operatorname{Var}[X]$

Important Families of Random Variables

Uniform Random Variables

- X is a Uniform (a, b) random variable if it has PDF

$$
f_{X}(x)= \begin{cases}\frac{1}{b-a} & a \leq x<b \\ 0 & \text { otherwise }\end{cases}
$$

- CDF: $F_{X}(x)= \begin{cases}0 & x<a \\ \frac{x-a}{b-a} & a \leq x<b \\ 1 & b \leq x\end{cases}$
- Expected Value: $\mathbb{E}[X]=\frac{a+b}{2}$.
- Variance: $\operatorname{Var}[X]=\frac{(b-a)^{2}}{12}$.

EK381 Exam 2 Formula Sheet

Exponential Random Variables

- X is an $\operatorname{Exponential(~} \lambda$) random variable if it has PDF

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

- CDF: $F_{X}(x)= \begin{cases}1-e^{-\lambda x} & x \geq 0 \\ 0 & x<0 .\end{cases}$
- Expected Value: $\mathbb{E}[X]=\frac{1}{\lambda}$.
- Variance: $\operatorname{Var}[X]=\frac{1}{\lambda^{2}}$.

Gaussian Random Variables

- X is a $\operatorname{Gaussian}\left(\mu, \sigma^{2}\right)$ random variable if it has PDF

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

- CDF: $F_{X}(x)=\Phi\left(\frac{x-\mu}{\sigma}\right)$
- Standard Normal CDF: $\Phi(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-\frac{w^{2}}{2}} d w$
- Standard Normal Complementary CDF:

$$
Q(z)=\Phi(-z)=1-\Phi(z)
$$

- Expected Value: $E[X]=\mu$.
- Variance: $\operatorname{Var}[X]=\sigma^{2}$.
- Probability of an Interval:

$$
\mathbb{P}[a<X \leq b]=\Phi\left(\frac{b-\mu}{\sigma}\right)-\Phi\left(\frac{a-\mu}{\sigma}\right)
$$

- A linear function of a Gaussian is Gaussian: If X is $\operatorname{Gaussian}\left(\mu, \sigma^{2}\right)$ and $Y=a X+b$, then Y is $\operatorname{Gaussian}\left(a \mu+b, a^{2} \sigma^{2}\right)$.

Conditioning for Continuous RVs

- The conditional PDF of X given an event B is

$$
f_{X \mid B}(x)=\left\{\begin{array}{cc}
\frac{f_{X}(x)}{\mathbb{P}[X \in B]} & x \in B \\
0 & x \notin B
\end{array}\right.
$$

where $\mathbb{P}[X \in B]=\int_{B} f_{X}(x) d x$.

- The conditional expected value of X given an event B is

$$
\mathbb{E}[X \mid B]=\int_{-\infty}^{\infty} x f_{X \mid B}(x) d x
$$

- The conditional expected value of a function $g(X)$ given an event B is

$$
\mathbb{E}[g(X) \mid B]=\int_{-\infty}^{\infty} g(x) f_{X \mid B}(x) d x .
$$

- The conditional variance of X given an event B is $\operatorname{Var}[X \mid B]=\mathbb{E}\left[(X-\mathbb{E}[X \mid B])^{2} \mid B\right]=\mathbb{E}\left[X^{2} \mid B\right]-(\mathbb{E}[X \mid B])^{2}$

4. Pairs of Random Variables

- Joint CDF: $F_{X, Y}(x, y)=\mathbb{P}[X \leq x, Y \leq y]$

Pairs of Discrete Random Variables

- Joint PMF: $P_{X, Y}(x, y)=\mathbb{P}[X=x, Y=y]$.
- Range $R_{X, Y}=\left\{(x, y): P_{X, Y}(x, y)>0\right\}$.
- Marginal PMFs $P_{X}(x)$ and $P_{Y}(y)$ are just the PMFs of the individual random variables X and Y, respectively

$$
P_{X}(x)=\sum_{y \in R_{Y}} P_{X, Y}(x, y) \quad P_{Y}(y)=\sum_{x \in R_{X}} P_{X, Y}(x, y)
$$

- Conditional PMFs give the probability of one random variable when the other is fixed to a value:

$$
P_{X \mid Y}(x \mid y)=\frac{P_{X, Y}(x, y)}{P_{Y}(y)} \quad P_{Y \mid X}(y \mid x)=\frac{P_{X, Y}(x, y)}{P_{X}(x)}
$$

for $(x, y) \in R_{X, Y}$, otherwise the conditional PMF is 0 .

Pairs of Continuous Random Variables

- Joint PDF: $f_{X, Y}(x, y)=\frac{\partial^{2}}{\partial x \partial y} F_{X, Y}(x, y)$.
- Range $R_{X, Y}=\left\{(x, y): f_{X, Y}(x, y)>0\right\}$.
- Marginal PDFs $f_{X}(x)$ and $f_{Y}(y)$ are just the PDFs of the individual random variables X and Y, respectively.

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y \quad f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x
$$

- Conditional PDFs give the probability density of one random variable when the other is fixed to a value:

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)} \quad f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}
$$

for $(x, y) \in R_{X, Y}$, otherwise the conditional PDF is 0 .

Joint PMF/PDF Properties

- Non-negativity: $P_{X, Y}(x, y) \geq 0$
- Normalization: $\sum_{x \in R_{X}}^{f_{X, Y}} \sum_{y \in R_{Y}} P_{X, Y}(x, y) \geq 0$

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1
$$

- Probability of an Event $B \subset R_{X, Y}$

$$
\begin{aligned}
& \mathbb{P}[(X, Y) \in B]=\sum_{(x, y) \in B} P_{X, Y}(x, y) \quad \text { (discrete) } \\
& \mathbb{P}[(X, Y) \in B]=\iint_{B} f_{X, Y}(x, y) d x d y \text { (continuous) }
\end{aligned}
$$

Conditional PMF /PDF Properties

- Non-negativity: $P_{X \mid Y}(x \mid y) \geq 0 \quad P_{Y \mid X}(y \mid x) \geq 0$

$$
\begin{aligned}
& f_{X \mid Y}(x \mid y) \geq 0 \quad f_{Y \mid X}(y \mid x) \geq 0 \\
& \sum_{x \in R_{X}} P_{X \mid Y}(x \mid y)=\sum_{y \in R_{Y}} P_{Y \mid X}(y \mid x)=1 \\
& \int_{-\infty}^{\infty} f_{X \mid Y}(x \mid y) d x=\int_{-\infty}^{\infty} f_{Y \mid X}(y \mid x) d y=1
\end{aligned}
$$

- Normalization:
- Additivity: For any event $B \subset R_{X}$, the probability that X falls in B given $Y=y$ is

$$
\begin{aligned}
& \mathbb{P}[X \in B \mid Y=y]=\sum_{x \in B} P_{X \mid Y}(x \mid y) \quad \text { (discrete) } \\
& \mathbb{P}[X \in B \mid Y=y]=\int_{B} f_{X \mid Y}(x \mid y) d x \text { (continuous) }
\end{aligned}
$$

- Multiplication Rule:

$$
\begin{aligned}
P_{X, Y}(x, y) & =P_{X \mid Y}(x \mid y) P_{Y}(y)=P_{Y \mid X}(y \mid x) P_{X}(x) \\
f_{X, Y}(x, y) & =f_{X \mid Y}(x \mid y) f_{Y}(y)=f_{Y \mid X}(y \mid x) f_{X}(x)
\end{aligned}
$$

Independence of Random Variables

- X and Y are independent if and only
- Discrete: $P_{X, Y}(x, y)=P_{X}(x) P_{Y}(y)$.
- Continuous: $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$.
- Special cases where X and Y are not independent:
- Discrete: If there is a zero entry in the joint PMF table for which neither the entire column or entire row is zero.
- Continuous: If the range is not a collection of rectangles parallel to the axes

Expected Value of a Function

- The expected value of a function $W=g(X, Y)$ is

$$
\begin{array}{rc}
\text { Discrete: } & \mathbb{E}[W]=\sum_{x \in R_{X}} \sum_{y \in R_{Y}} g(x, y) P_{X, Y}(x, y) \\
\text { Continuous: } & \mathbb{E}[W]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y
\end{array}
$$

- Linearity of Expectation:
$\mathbb{E}[a X+b Y+c]=a \mathbb{E}[X]+b \mathbb{E}[Y]+c$.
- Expectation of Products: If X and Y are independent, then $\mathbb{E}[g(X) h(Y)]=\mathbb{E}[g(X)] \mathbb{E}[h(Y)]$.

Conditional Expectation

- The conditional expected value of X given $Y=y$ is

$$
\begin{aligned}
\text { Discrete: } & \mathbb{E}[X \mid Y=y]=\sum_{x \in R_{X}} x P_{X \mid Y}(x \mid y) \\
\text { Continuous: } & \mathbb{E}[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x
\end{aligned}
$$

- Law of Total Expectation: $\mathbb{E}[\mathbb{E}[X \mid Y]]=\mathbb{E}[X]$.

5. Second-Order Analysis

Covariance

- The covariance of random variables X and Y is

$$
\operatorname{Cov}[X, Y]=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]
$$

- Another useful formula is $\operatorname{Cov}[X, Y]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$
- Variance of Linear Functions:
$\operatorname{Var}[a X+b Y+c]=a^{2} \operatorname{Var}[X]+b^{2} \operatorname{Var}[Y]+2 a b \operatorname{Cov}[X, Y]$
- Covariance of Linear Functions:

$$
\begin{aligned}
& \operatorname{Cov}[a X+b Y+c, d X+e Y+f] \\
& =a d \operatorname{Var}[X]+b e \operatorname{Var}[Y]+(a e+b d) \operatorname{Cov}[X, Y]
\end{aligned}
$$

- The covariance satisfies the following basic properties:
- $\operatorname{Cov}[X, Y]=\operatorname{Cov}[Y, X]$
- $\operatorname{Cov}[X, X]=\operatorname{Var}[X]$
- $\operatorname{Cov}[X, a]=0$ for any number a.
- X and Y are uncorrelated if $\operatorname{Cov}[X, Y]=0$.
- Independence implies uncorrelatedness.
- Uncorrelatedness does not imply independence.

Correlation Coefficient

- The correlation coefficient is $\rho_{X, Y}=\frac{\operatorname{Cov}[X, Y]}{\sqrt{\operatorname{Var}[X] \operatorname{Var}[Y]}}$
- The correlation coefficient satisfies the following properties: - $-1 \leq \rho_{X, Y} \leq 1$.
- $\rho_{X, Y}=1$ if and only if $Y=a X+b$ for some $a>0$.
- $\rho_{X, Y}=-1$ if and only if $Y=a X+b$ for some $a<0$.
- If $U=a X+b$ and $V=c Y+d$, then

$$
\rho_{U, V}=\operatorname{sign}(a c) \rho_{X, Y} \quad \text { where } \quad \operatorname{sign}(z)= \begin{cases}+1 & z>0 \\ 0 & z=0 \\ -1 & z<0\end{cases}
$$

Jointly Gaussian Random Variables

- U and V are called independent, standard Gaussian random variables if they are independent $\operatorname{Gaussian}(0,1)$ random variables.
- X and Y are jointly Gaussian random variables if they can be expressed as linear functions of independent, standard Gaussian random variables

$$
X=a U+b V+c \quad Y=d U+e V+f
$$

However, this representation is usually left implicit, and the joint Gaussian distribution of X and Y is specified by 5 parameters:

- Means: $\mu_{X}=\mathbb{E}[X], \mu_{Y}=\mathbb{E}[Y]$
- Variances: $\sigma_{X}^{2}=\operatorname{Var}[X], \sigma_{Y}^{2}=\operatorname{Var}[Y]$
- Covariance: $\operatorname{Cov}[X, Y]$ or Correlation Coefficient: $\rho_{X, Y}$
- Jointly Gaussian X and Y satisfy the following properties:
- Marginal PDFs are Gaussian:
X is $\operatorname{Gaussian}\left(\mu_{X}, \sigma_{X}^{2}\right)$ and Y is $\operatorname{Gaussian}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$.
- Uncorrelated implies Independence: X and Y are uncorrelated if and only if X and Y are independent.
- Conditional Expected Value for Gaussians:
$\mathbb{E}[X \mid Y=y]=\mu_{X}+\rho_{X, Y} \frac{\sigma_{X}}{\sigma_{Y}}\left(y-\mu_{Y}\right)$

$$
=\mu_{X}+\frac{\operatorname{Cov}[X, Y]}{\operatorname{Var}[Y]}\left(y-\mu_{Y}\right)
$$

- Conditional Variance for Gaussians: $\sigma_{X \mid Y}^{2}=$
$\operatorname{Var}[X \mid Y=y]=\left(1-\rho_{X, Y}^{2}\right) \sigma_{X}^{2}=\operatorname{Var}[X]-\frac{(\operatorname{Cov}[X, Y])^{2}}{\operatorname{Var}[Y]}$
- Conditional PDF is Gaussian: The conditional PDF
$f_{X \mid Y}(x \mid y)$ of X given Y is Gaussian $\left(\mathbb{E}[X \mid Y=y], \sigma_{X \mid Y}^{2}\right)$.
- Linear functions of Gaussians are Gaussian: If $W=a X+b Y+c$ and $Z=d X+e Y+f$, then W and Z are jointly Gaussian with parameters that be determined via the linearity of expectation and the variance and covariance of linear functions.

Random Vectors

- A random vector is a (column) vector whose entries are random variables

$$
\underline{X}=\left[\begin{array}{c}
X_{1} \\
\vdots \\
X_{n}
\end{array}\right]
$$

- If the entries are discrete random variables, the random vector has a joint PMF $P_{\underline{X}}(\underline{x})=P_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)$. If the entries are continuous random variables, the random vector has a joint PDF $f_{\underline{X}}(\underline{x})=f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)$.
- Mean Vector: $\underline{\mu}_{\underline{X}}=\left[\begin{array}{c}\mathbb{E}\left[\bar{X}_{1}\right] \\ \vdots \\ \mathbb{E}\left[X_{n}\right]\end{array}\right]$
- Linearity of Expectation: $\mathbb{E}[\mathbf{A} \underline{X}+\underline{b}]=\mathbf{A} \mathbb{E}[\underline{X}]+\underline{b}$
- Covariance Matrix: $\boldsymbol{\Sigma}_{\underline{X}}=\mathbb{E}\left[(\underline{X}-\mathbb{E}[\underline{X}])(\underline{X}-\mathbb{E}[\underline{X}])^{\top}\right]$

$$
=\left[\begin{array}{ccc}
\operatorname{Cov}\left[X_{1}, X_{1}\right] & \cdots & \operatorname{Cov}\left[X_{1}, X_{n}\right] \\
\vdots & & \vdots \\
\operatorname{Cov}\left[X_{n}, X_{1}\right] & \cdots & \operatorname{Cov}\left[X_{n}, X_{n}\right]
\end{array}\right]
$$

- Covariance of a Linear Transform:

If $\underline{Y}=\mathbf{A} \underline{X}+\underline{b}$, then $\boldsymbol{\Sigma}_{\underline{Y}}=\mathbf{A} \boldsymbol{\Sigma}_{\underline{X}} \mathbf{A}^{\top}$.

Gaussian Vectors

- A standard Gaussian vector is a random vector \underline{Z} whose entries Z_{1}, \ldots, Z_{n} are independent $\operatorname{Gaussian}(0,1)$ random variables.
- A Gaussian vector is a random vector \underline{X} that can be written as a linear transform $\underline{X}=\mathbf{A} \underline{Z}+\underline{b}$ of a standard Gaussian vector \underline{Z}. It is fully specified by its mean vector $\underline{\mu}_{\underline{X}}$ and covariance matrix $\boldsymbol{\Sigma}_{X}$.
- Shorthand notation: We often write $\underline{X} \sim \mathcal{N}\left(\underline{\mu_{X}}, \boldsymbol{\Sigma}_{\underline{X}}\right)$ to mean that \underline{X} is a Gaussian vector with mean vector $\underline{\mu}_{X}$ and covariance matrix $\boldsymbol{\Sigma}_{X}$.
- A Gaussian vector \underline{X} satisfies the following properties:
- The entries of \underline{X} are independent if and only if $\boldsymbol{\Sigma}_{\underline{X}}$ is a diagonal matrix.
- A linear transformation is a Gaussian vector: If $\underline{Y}=\mathbf{B} \underline{X}+\underline{c}$, then $\underline{Y} \sim \mathcal{N}\left(\mathbf{B} \underline{\mu}_{\underline{X}}+\underline{c}, \mathbf{B} \boldsymbol{\Sigma}_{\underline{X}} \mathbf{B}^{\top}\right)$.

