
EK381 Exam 2 Formula Sheet

3. Continuous Random Variables
Probability Density Function (PDF)

• The PDF is the derivative of the CDF: fX(x) = d
dx
FX(x)

• It does not tell us the probability of X = x, which is always
0. Instead, it tells us the density of probability around x.

• The PDF satisfies the following properties:

◦ Normalization:

∫ ∞
−∞

fX(x) dx = 1.

◦ Non-negativity: fX(x) ≥ 0.

◦ Probability of an interval: P[a < X ≤ b] =

∫ b

a
fX(x) dx.

◦ PDF → CDF:

∫ x

−∞
fX(u) du = FX(x).

Expected Value
• The expected value of a continuous random variable X is

E[X] =

∫ ∞
−∞

xfX(x) dx

• The expected value of a function of a continuous random
variable X is

E[g(X)] =

∫ ∞
−∞

g(x)fX(x) dx

• Linearity of Expectation: E[aX + b] = aE[X] + b

Variance
• The variance of a random variable X is

Var[X] = E
[(
X − E[X]

)2]
• Another useful formula is Var[X] = E[X2]−

(
E[X]

)2
• The standard deviation is the square root of the variance:

σX =
√

Var[X] .

• Variance of a Linear Function: Var[aX + b] = a2Var[X]

Important Families of Random Variables

Uniform Random Variables

• X is a Uniform(a, b) random variable if it has PDF

fX(x) =


1

b− a
a ≤ x < b

0 otherwise.

• CDF: FX(x) =


0 x < a
x− a
b− a

a ≤ x < b

1 b ≤ x

• Expected Value: E[X] =
a+ b

2
.

• Variance: Var[X] =
(b− a)2

12
.

Exponential Random Variables

• X is an Exponential(λ) random variable if it has PDF

fX(x) =

{
λe−λx x ≥ 0

0 x < 0 .

• CDF: FX(x) =

{
1− e−λx x ≥ 0

0 x < 0 .

• Expected Value: E[X] =
1

λ
.

• Variance: Var[X] =
1

λ2
.

Gaussian Random Variables

• X is a Gaussian(µ, σ2) random variable if it has PDF

fX(x) =
1

√
2πσ2

exp

(
−

(x− µ)2

2σ2

)
• CDF: FX(x) = Φ

(
x− µ
σ

)
• Standard Normal CDF: Φ(z) =

∫ z

−∞

1
√

2π
e−

w2

2 dw

• Standard Normal Complementary CDF:

Q(z) = Φ(−z) = 1− Φ(z)

• Expected Value: E[X] = µ.
• Variance: Var[X] = σ2.
• Probability of an Interval:

P[a < X ≤ b] = Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

)
• A linear function of a Gaussian is Gaussian:

If X is Gaussian(µ, σ2) and Y = aX + b,
then Y is Gaussian(aµ+ b, a2σ2).

Conditioning for Continuous RVs
• The conditional PDF of X given an event B is

fX|B(x) =


fX(x)

P[X ∈ B]
x ∈ B

0 x /∈ B

where P[X ∈ B] =

∫
B
fX(x) dx.

• The conditional expected value of X given an event B is

E[X|B] =

∫ ∞
−∞

x fX|B(x) dx .

• The conditional expected value of a function g(X) given
an event B is

E
[
g(X)|B

]
=

∫ ∞
−∞

g(x) fX|B(x) dx .

• The conditional variance of X given an event B is

Var
[
X|B

]
= E

[(
X − E[X|B]

)2∣∣∣B] = E
[
X2|B]−

(
E[X|B])2

4. Pairs of Random Variables
• Joint CDF: FX,Y (x, y) = P[X ≤ x, Y ≤ y]

Pairs of Discrete Random Variables
• Joint PMF: PX,Y (x, y) = P[X = x, Y = y].
• Range RX,Y = {(x, y) : PX,Y (x, y) > 0}.
• Marginal PMFs PX(x) and PY (y) are just the PMFs of the

individual random variables X and Y , respectively.

PX(x) =
∑
y∈RY

PX,Y (x, y) PY (y) =
∑
x∈RX

PX,Y (x, y)

• Conditional PMFs give the probability of one random
variable when the other is fixed to a value:

PX|Y (x|y) =
PX,Y (x, y)

PY (y)
PY |X(y|x) =

PX,Y (x, y)

PX(x)

for (x, y) ∈ RX,Y , otherwise the conditional PMF is 0.

Pairs of Continuous Random Variables
• Joint PDF: fX,Y (x, y) = ∂2

∂x∂y
FX,Y (x, y).

• Range RX,Y = {(x, y) : fX,Y (x, y) > 0}.
• Marginal PDFs fX(x) and fY (y) are just the PDFs of the

individual random variables X and Y , respectively.

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx

• Conditional PDFs give the probability density of one
random variable when the other is fixed to a value:

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
fY |X(y|x) =

fX,Y (x, y)

fX(x)

for (x, y) ∈ RX,Y , otherwise the conditional PDF is 0.

Joint PMF/PDF Properties
• Non-negativity: PX,Y (x, y) ≥ 0

fX,Y (x, y) ≥ 0

• Normalization:
∑
x∈RX

∑
y∈RY

PX,Y (x, y) = 1

∫ ∞
−∞

∫ ∞
−∞

fX,Y (x, y) dx dy = 1

• Probability of an Event B ⊂ RX,Y :

P[(X,Y ) ∈ B] =
∑

(x,y)∈B
PX,Y (x, y) (discrete)

P[(X,Y ) ∈ B] =

∫∫
B
fX,Y (x, y) dx dy (continuous)



Conditional PMF/PDF Properties
• Non-negativity: PX|Y (x|y) ≥ 0 PY |X(y|x) ≥ 0

fX|Y (x|y) ≥ 0 fY |X(y|x) ≥ 0

• Normalization:
∑
x∈RX

PX|Y (x|y) =
∑
y∈RY

PY |X(y|x) = 1

∫ ∞
−∞

fX|Y (x|y) dx =

∫ ∞
−∞

fY |X(y|x) dy = 1

• Additivity: For any event B ⊂ RX , the probability that X
falls in B given Y = y is

P[X ∈ B|Y = y] =
∑
x∈B

PX|Y (x|y) (discrete)

P[X ∈ B|Y = y] =

∫
B
fX|Y (x|y) dx (continuous)

• Multiplication Rule:

PX,Y (x, y) = PX|Y (x|y)PY (y) = PY |X(y|x)PX(x)

fX,Y (x, y) = fX|Y (x|y)fY (y) = fY |X(y|x)fX(x)

Independence of Random Variables
• X and Y are independent if and only

◦ Discrete: PX,Y (x, y) = PX(x)PY (y).
◦ Continuous: fX,Y (x, y) = fX(x)fY (y).

• Special cases where X and Y are not independent:

◦ Discrete: If there is a zero entry in the joint PMF table
for which neither the entire column or entire row is zero.

◦ Continuous: If the range is not a collection of rectangles
parallel to the axes

Expected Value of a Function
• The expected value of a function W = g(X,Y ) is

Discrete: E[W ] =
∑
x∈RX

∑
y∈RY

g(x, y)PX,Y (x, y)

Continuous: E[W ] =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)fX,Y (x, y) dx dy

• Linearity of Expectation:
E[aX + bY + c] = aE[X] + bE[Y ] + c.

• Expectation of Products: If X and Y are independent,
then E[g(X)h(Y )] = E[g(X)]E[h(Y )].

Conditional Expectation
• The conditional expected value of X given Y = y is

Discrete: E[X|Y = y] =
∑
x∈RX

xPX|Y (x|y)

Continuous: E[X|Y = y] =

∫ ∞
−∞

x fX|Y (x|y) dx

• Law of Total Expectation: E
[
E[X|Y ]

]
= E[X].

5. Second-Order Analysis
Covariance
• The covariance of random variables X and Y is

Cov[X,Y ] = E
[(
X − E[X]

)(
Y − E[Y ])

]
• Another useful formula is Cov[X,Y ] = E[XY ]− E[X]E[Y ]
• Variance of Linear Functions:

Var[aX + bY + c] = a2 Var[X] + b2 Var[Y ] + 2abCov[X,Y ]

• Covariance of Linear Functions:

Cov[aX + bY + c, dX + eY + f ]

= adVar[X] + beVar[Y ] + (ae+ bd)Cov[X,Y ]

• The covariance satisfies the following basic properties:

◦ Cov[X,Y ] = Cov[Y,X]
◦ Cov[X,X] = Var[X]
◦ Cov[X, a] = 0 for any number a.

• X and Y are uncorrelated if Cov[X,Y ] = 0.

◦ Independence implies uncorrelatedness.
◦ Uncorrelatedness does not imply independence.

Correlation Coefficient

• The correlation coefficient is ρX,Y =
Cov[X,Y ]√
Var[X]Var[Y ]

• The correlation coefficient satisfies the following properties:

◦ −1 ≤ ρX,Y ≤ 1.
◦ ρX,Y = 1 if and only if Y = aX + b for some a > 0.
◦ ρX,Y = −1 if and only if Y = aX + b for some a < 0.
◦ If U = aX + b and V = cY + d, then

ρU,V = sign(ac)ρX,Y where sign(z) =


+1 z > 0

0 z = 0

−1 z < 0

Jointly Gaussian Random Variables
• U and V are called independent, standard Gaussian random

variables if they are independent Gaussian(0, 1) random
variables.

• X and Y are jointly Gaussian random variables if they can
be expressed as linear functions of independent, standard
Gaussian random variables

X = aU + bV + c Y = dU + eV + f .

However, this representation is usually left implicit, and the
joint Gaussian distribution of X and Y is specified by 5
parameters:

◦ Means: µX = E[X], µY = E[Y ]
◦ Variances: σ2

X = Var[X], σ2
Y = Var[Y ]

◦ Covariance: Cov[X,Y ] or Correlation Coefficient: ρX,Y .

• Jointly Gaussian X and Y satisfy the following properties:

◦ Marginal PDFs are Gaussian:
X is Gaussian(µX , σ

2
X) and Y is Gaussian(µY , σ

2
Y ).

◦ Uncorrelated implies Independence: X and Y are
uncorrelated if and only if X and Y are independent.

◦ Conditional Expected Value for Gaussians:

E[X|Y = y] = µX + ρX,Y
σX

σY
(y − µY )

= µX +
Cov[X,Y ]

Var[Y ]
(y − µY )

◦ Conditional Variance for Gaussians: σ2
X|Y =

Var[X|Y = y] = (1− ρ2X,Y )σ2
X = Var[X]−

(
Cov[X,Y ]

)2
Var[Y ]

.

◦ Conditional PDF is Gaussian: The conditional PDF
fX|Y (x|y) of X given Y is Gaussian(E[X|Y = y], σ2

X|Y ).

◦ Linear functions of Gaussians are Gaussian: If
W = aX + bY + c and Z = dX + eY + f , then W and Z
are jointly Gaussian with parameters that be determined
via the linearity of expectation and the variance and
covariance of linear functions.

Random Vectors
• A random vector is a (column) vector whose entries are

random variables

X =

X1

.

.

.
Xn


• If the entries are discrete random variables, the random

vector has a joint PMF PX(x) = PX1,...,Xn (x1, . . . , xn).
If the entries are continuous random variables, the random
vector has a joint PDF fX(x) = fX1,...,Xn (x1, . . . , xn).

• Mean Vector: µ
X

=

E[X1]

.

.

.
E[Xn]


• Linearity of Expectation: E

[
AX + b] = AE[X] + b

• Covariance Matrix: ΣX = E
[
(X − E[X])(X − E[X])T

]
=

Cov[X1, X1] · · · Cov[X1, Xn]

.

.

.
.
.
.

Cov[Xn, X1] · · · Cov[Xn, Xn]


• Covariance of a Linear Transform:

If Y = AX + b, then ΣY = AΣXAT.

Gaussian Vectors
• A standard Gaussian vector is a random vector Z whose

entries Z1, . . . , Zn are independent Gaussian(0, 1) random
variables.

• A Gaussian vector is a random vector X that can be written
as a linear transform X = AZ + b of a standard Gaussian
vector Z. It is fully specified by its mean vector µ

X
and

covariance matrix ΣX .
• Shorthand notation: We often write X ∼ N (µ

X
,ΣX) to

mean that X is a Gaussian vector with mean vector µ
X

and

covariance matrix ΣX .
• A Gaussian vector X satisfies the following properties:

◦ The entries of X are independent if and only if ΣX is a
diagonal matrix.

◦ A linear transformation is a Gaussian vector:
If Y = BX + c, then Y ∼ N (Bµ

X
+ c,BΣXBT).
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