EK381 Exam 3 Formula Sheet

6. Detection

Two hypotheses H₀ and H₁. Observe a random variable Y.
 Decide if H₀ or H₁ occurred based only on Y using a decision rule D(y).

Discrete Case	Continuous Case
$P_{Y H_0}(y)$ if H_0 occurs	$f_{Y H_0}(y)$ if H_0 occurs
$P_{Y H_1}(y)$ if H_1 occurs	$f_{Y H_1}(y)$ if H_1 occurs

- Decision Regions:
 - $A_0 = \{ y \in R_Y : D(y) = 0 \}$ $A_1 = \{ y \in R_Y : D(y) = 1 \}$
- Probability of False Alarm: $P_{\text{FA}} = \mathbb{P}[Y \in A_1 | H_0]$
- Probability of Missed Detection: $P_{\text{MD}} = \mathbb{P}[Y \in A_0|H_1]$
- Goal is to minimize the probability of error:

$$P_e = \mathbb{P}[\{\text{error}\}] = P_{\text{FA}} \, \mathbb{P}[H_0] + P_{\text{MD}} \, \mathbb{P}[H_1]$$

- Likelihood Ratio: $L(y) = \frac{P_{Y|H_1}(y)}{P_{Y|H_0}(y)}$.
- Log-Likelihood Ratio: $\ln \left(L(y)\right) = \ln \left(\frac{P_{Y|H_1}(y)}{P_{Y|H_0}(y)}\right)$
- For vector observations \underline{Y} , we simply replace all occurrences of Y with \underline{Y} . For example, $P_{Y|H_0}(y)$ becomes $P_{\underline{Y}|H_0}(\underline{y})$ and $P_{Y|H_1}(y)$ becomes $P_{\underline{Y}|H_1}(\underline{y})$.

Maximum Likelihood (ML) Rule

- \bullet Intuition: Choose hypothesis that best explains Y.
- In terms of the conditional PMFs for the discrete case,

$$D^{\mathrm{ML}}(y) = \begin{cases} 1, & P_{Y|H_1}(y) \ge P_{Y|H_0}(y), \\ 0, & P_{Y|H_1}(y) < P_{Y|H_0}(y). \end{cases}$$

• In terms of the conditional PDFs for the continuous case,

$$D^{\mathrm{ML}}(y) = \begin{cases} 1, & f_{Y|H_1}(y) \ge f_{Y|H_0}(y), \\ 0, & f_{Y|H_1}(y) < f_{Y|H_0}(y). \end{cases}$$

• In terms of the likelihood or log-likelihood ratio,

$$D^{\mathrm{ML}}(y) = \begin{cases} 1, & L(y) \geq 1, \\ 0, & L(y) < 1. \end{cases} = \begin{cases} 1, & \ln(L(y)) \geq 0, \\ 0, & \ln(L(y)) < 0. \end{cases}$$

Maximum a Posteriori (MAP) Rule

- Intuition: Choose the most likely hypothesis.
- In terms of the conditional PMFs for the discrete case,

$$D^{\text{MAP}}(y) = \begin{cases} 1, & P_{Y|H_1}(y) \, \mathbb{P}[H_1] \ge P_{Y|H_0}(y) \, \mathbb{P}[H_0], \\ 0, & P_{Y|H_1}(y) \, \mathbb{P}[H_1] < P_{Y|H_0}(y) \, \mathbb{P}[H_0]. \end{cases}$$

• In terms of the conditional PDFs for the continuous case,

$$D^{\text{MAP}}(y) = \begin{cases} 1, & f_{Y|H_1}(y) \, \mathbb{P}[H_1] \ge f_{Y|H_0}(y) \, \mathbb{P}[H_0], \\ 0, & f_{Y|H_1}(y) \, \mathbb{P}[H_1] < f_{Y|H_0}(y) \, \mathbb{P}[H_0]. \end{cases}$$

• In terms of the likelihood or log-likelihood ratio,

$$D^{\mathrm{MAP}}(y) = \begin{cases} 1, & L(y) \geq \frac{\mathbb{P}[H_0]}{\mathbb{P}[H_1]}, \\ 0, & L(y) < \frac{\mathbb{P}[H_0]}{\mathbb{P}[H_1]}. \end{cases} = \begin{cases} 1, & \ln(L(y)) \geq \ln\left(\frac{\mathbb{P}[H_0]}{\mathbb{P}[H_0]}\right), \\ 0, & \ln(L(y)) < \ln\left(\frac{\mathbb{P}[H_0]}{\mathbb{P}[H_1]}\right). \end{cases}$$

• This is the optimal decision rule in terms of minimizing the probability of error. However, it requires knowledge of $\mathbb{P}[H_0]$ and $\mathbb{P}[H_1]$ to implement the decision rule.

7. Estimation

- We observe a random variable Y and want to estimate an unobserved random variable X using an estimator $\hat{x}(Y)$.
- Goal: Minimize the mean-squared error:

$$\mathsf{MSE} = \mathbb{E}\big[(X - \hat{x}(Y))^2\big]$$

MMSE Estimator

 $\bullet\,$ The minimum mean-squared error (MMSE) estimator is

$$\hat{x}_{\text{MMSE}}(y) = \mathbb{E}[X|Y=y]$$
.

• This is the optimal estimator in terms of MSE.

LLSE Estimator

• The linear least-squares error (LLSE) estimator is

$$\begin{split} \hat{x}_{\text{LLSE}}(y) &= \mathbb{E}[X] \, + \, \frac{\mathsf{Cov}[X,Y]}{\mathsf{Var}[Y]} \big(y \, - \, \mathbb{E}[Y] \big) \\ &= \mathbb{E}[X] \, + \, \rho_{X,Y} \frac{\sigma_X}{\sigma_Y} \big(y \, - \, \mathbb{E}[Y] \big) \end{split}$$

• Attains the minimum MSE amongst all linear estimators.

$$\mathsf{MSE}_{\mathrm{LLSE}} = \mathsf{Var}[X] - \frac{\left(\mathsf{Cov}[X,Y]\right)^2}{\mathsf{Var}[Y]} = \sigma_X^2 (1 - \rho_{X,Y}^2)$$

• For jointly Gaussian X and Y, $\hat{x}_{LLSE}(y) = \hat{x}_{MMSE}(y)$.

Vector Estimation

- We observe a random vector \underline{Y} and want to estimate an unobserved random vector X using an estimator $\hat{x}(Y)$.
- Mean-Squared Error: $MSE = \mathbb{E}\left[\left(\underline{X} \hat{\underline{x}}(\underline{Y})\right)^{\mathsf{T}}\left(\underline{X} \hat{\underline{x}}(\underline{Y})\right)^{\mathsf{T}}\right]$
- The vector MMSE estimator is

$$\hat{\underline{x}}_{\text{MMSE}}(y) = \mathbb{E}[\underline{X}|\underline{Y} = y]$$

- The vector MMSE estimator attains the optimal MSE.
- The vector LLSE estimator is

$$\underline{\hat{x}}_{\mathrm{LLSE}}(y) = \mathbb{E}[\underline{X}] + \mathbf{\Sigma}_{X,Y} \mathbf{\Sigma}_{Y}^{-1} \big(y - \mathbb{E}[\underline{Y}] \big)$$

where $\Sigma_{\underline{Y}}$ is the covariance matrix of \underline{Y} and $\Sigma_{\underline{X},\underline{Y}}$ is the cross-covariance matrix

$$\Sigma_{X,Y} = \mathbb{E}\left[\left(\underline{X} - \mathbb{E}[\underline{X}]\right)\left(\underline{Y} - \mathbb{E}[\underline{Y}]\right)^{\mathsf{T}}\right]$$

- The vector LLSE estimator attains the optimal MSE amongst all linear estimators.
- If $\left[\frac{X}{Y}\right]$ is a Gaussian vector, $\hat{\underline{x}}_{\text{LLSE}}(\underline{y}) = \hat{\underline{x}}_{\text{MMSE}}(\underline{y})$.

8. Sums of Random Variables

- Consider n random variables X_1, X_2, \ldots, X_n .
- We are often interested in the behavior of the sum $S_n = \sum_{i=1}^n X_i$ or the sample mean $M_n = \frac{1}{n} \sum_{i=1}^n X_i$.
- Expected Value of the Sum: $\mathbb{E}[S_n] = \sum_{i=1}^n \mathbb{E}[X_i]$

- Variance of the Sum: $Var[S_n] = \sum_{i=1}^n \sum_{j=1}^n Cov[X_i, X_j]$
- Random variables X₁,..., X_n are said to be independent and identically distributed (i.i.d.) if they are independent and all X_i have the same marginal distribution, which is a PMF P_X(x) in the discrete case and a PDF f_X(x) in the continuous case.
- For i.i.d. X_1, \ldots, X_n , we have that $\mathbb{E}[S_n] = n\mathbb{E}[X]$, $\operatorname{Var}[S_n] = n\operatorname{Var}[X]$, $\mathbb{E}[M_n] = \mathbb{E}[X]$, $\operatorname{Var}[M_n] = \operatorname{Var}[X]/n$.

Laws of Large Numbers

- Weak Law of Large Numbers: Let $X_1, X_2, ..., X_n$ be i.i.d. random variables with finite mean μ and sample mean M_n . For any $\epsilon > 0$, $\lim_{n \to \infty} \mathbb{P}[|M_n \mu| > \epsilon] = 0$.
- Strong Law of Large Numbers: Let $X_1, X_2, ..., X_n$ be i.i.d. random variables with finite mean μ and sample mean M_n . Then, $\mathbb{P}[\lim_{n\to\infty} M_n = \mu] = 1$.

Central Limit Theorem

- Central Limit Theorem: Let $X_1, X_2, ..., X_n$ be i.i.d. random variables with finite mean μ and finite variance σ^2 . The CDF of $Y_n = \frac{\sum_{i=1}^n (X_i \mu)}{\sigma \sqrt{n}}$ converges to the standard normal CDF, $\lim_{n \to \infty} FY_n(y) = \Phi(y)$.
- For i.i.d. random variables with finite mean and variance, then $F_{Y_n}(y) \approx \Phi(y)$ is a good approximation for $n \geq 30$.

9. Statistics

- Let X_1, \ldots, X_n be i.i.d. random variables with mean $\mathbb{E}[X_i] = \mu$ and variance $\mathsf{Var}[X_i] = \sigma^2$.
- The sample mean is $\hat{\mu} = M_n = \frac{1}{n} \sum_{i=1}^n X_i$.
- M_n is unbiased estimator for the mean, $\mathbb{E}[M_n] = \mu$, with variance $\mathsf{Var}[M_n] = \sigma^2/n$.
- The sample variance is $\hat{\sigma}^2 = V_n = \frac{1}{n-1} \sum_{i=1}^n (X_i M_n)^2$.
- V_n is an unbiased estimator for the variance, $\mathbb{E}[V_n] = \sigma^2$.
- If Z₁,..., Z_n are i.i.d. Gaussian(0,1) random variables, then
 Y = ∑_{i=1}ⁿ Z_i² is a chi-squared random variable with n
 degrees-of-freedom, Y ~ χ_n².
- If Z is a Gaussian(0, 1) random variable, Y is a chi-squared random variable with n degrees-of-freedom, and Y and Z are independent, then $W = Z\sqrt{n/Y}$ has a **Student's t-distribution with** n **degrees-of-freedom**, $W \sim T_n$. CDF: $F_{T_n}(t)$. PDF: Symmetric about 0.

Confidence Intervals for the Mean

- Let X_1, \ldots, X_n be i.i.d. random variables with mean μ , variance σ^2 , sample mean M_n , and sample variance V_n .
- $[M_n \pm \epsilon]$ is a confidence interval for the mean with confidence level 1α if $\mathbb{P}[\mu \epsilon \le M_n \le \mu + \epsilon] = 1 \alpha$.

Confidence Interval: Known Variance

- When to use: Variance is known or n > 30 samples.
- Set $\epsilon = \sigma Q^{-1}(\alpha/2)/\sqrt{n}$
- If the variance σ^2 is unknown and we have n > 30 samples, substitute σ^2 with the sample variance V_n .
- $Q^{-1}(0.05) = 1.64, Q^{-1}(0.025) = 1.96, Q^{-1}(0.005) = 2.57$

Confidence Interval: Unknown Variance

- When to use: Variance is unknown and n < 30 samples.
- Set $\epsilon = -\sqrt{V_n} F_{T_{n-1}}^{-1}(\alpha/2)/\sqrt{n}$ where $F_{T_{n-1}}(t)$ is the CDF for a Student's t-distribution with n-1 degrees-of-freedom.

Significance Testing

- Only have a probability model for the **null hypothesis** H_0 .
- The significance level $0 \le \alpha \le 1$ is used to determine when to reject the null hypothesis.
- Given a statistic calculated from the dataset, the **p-value** is the probability of observing a value at least this extreme under the null hypothesis.
 - \circ If p-value $< \alpha$, then reject the null hypothesis.
 - \circ If p-value $> \alpha$, then fail to reject the null hypothesis.

One-Sample Z-Test

- Null Hypothesis: X₁,..., X_n is i.i.d. Gaussian(μ, σ²).
 When to use: Variance σ² is known or n > 30 samples.
- Informally, is the mean not equal to μ ?
 - 1. Calculate the sample mean M_n .
 - 2. Z-statistic: $Z = \sqrt{n}(M_n \mu)/\sigma$.
 - 3. p-value = $2\Phi(-|Z|)$.
- If the variance σ^2 is unknown and we have n > 30 samples. substitute σ^2 with the sample variance V_n .
- $2\Phi(-1.64) = 0.1$, $2\Phi(-1.96) = 0.05$, $2\Phi(-2.57) = 0.01$

One-Sample T-Test

- Null Hypothesis: X_1, \ldots, X_n is i.i.d. Gaussian (μ, σ^2) .
- When to use: Variance σ^2 is unknown and $n \leq 30$ samples.
- Informally, is the mean not equal to μ ?
 - 1. Calculate the sample mean M_n and variance V_n .
 - 2. T-statistic: $T = \sqrt{n}(M_n \mu)/\sqrt{V_n}$.
 - 3. p-value = $2F_{T_{n-1}}(-|T|)$.

Two-Sample Z-Test

- Null Hypothesis: X_1, \ldots, X_{n_1} is i.i.d. Gaussian (μ, σ_1^2) and Y_1, \ldots, Y_{n_2} is i.i.d. Gaussian (μ, σ_2^2) .
- When to use: Variances σ_1^2 and σ_2^2 are known or $\min(n_1, n_2) > 30.$
- Informally, do the datasets have the same mean?
 - 1. Calculate the sample means $M_{n_1}^{(1)}$ and $M_{n_2}^{(2)}$.
 - 2. Z-statistic: $Z = \left(M_{n_1}^{(1)} M_{n_2}^{(2)}\right) / \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$.
 - 3. p-value = $2\Phi(-|Z|)$
- If the variances σ_1^2, σ_2^2 are unknown and we have $\min(n_1, n_2) > 30$ samples, substitute σ_1^2 with the sample variance $V_{n_1}^{(1)}$ and σ_2^2 with the sample variance $V_{n_2}^{(2)}$. • $2\Phi(-1.64)=0.1, 2\Phi(-1.96)=0.05, 2\Phi(-2.57)=0.01$

Two-Sample T-Test

- Null Hypothesis: X_1, \ldots, X_{n_1} is i.i.d. Gaussian (μ, σ^2) and Y_1, \ldots, Y_{n_2} is i.i.d. Gaussian (μ, σ^2) . The mean μ is
- When to use: (Equal) variance σ^2 is unknown and $\min(n_1, n_2) < 30.$
- Informally, do the datasets have the same mean?
- 1. Calculate the sample means $M_{n_1}^{(1)}, M_{n_2}^{(2)}$, sample variances $V_{n_1}^{(1)}, V_{n_2}^{(2)}$, and the pooled sample variance $\hat{\sigma}^2 = ((n_1 - 1)V_{n_1}^{(1)} + (n_2 - 1)V_{n_2}^{(2)})/(n_1 + n_2 - 2)$
- 2. T-statistic: $T = \left(M_{n_1}^{(1)} M_{n_2}^{(2)}\right) / \sqrt{\hat{\sigma}^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$.
- 3. p-value = $2F_{T_{n_1+n_2-2}}(-|T|)$.

10. Machine Learning

- We focused on binary classification where the goal is to decide between two hypotheses, but we do not have access to the underlying probability model.
- Instead, we have a **dataset** consisting of n samples. $\{(\underline{X}_1, Y_1), (\underline{X}_2, Y_2), \dots, (\underline{X}_n, Y_n)\}$. The i^{th} sample (\underline{X}_i, Y_i) consists of a feature vector \underline{X}_i and a label $Y_i \in \{-1, +1\}$.
- We use this dataset to come up with a classifier D(x), which is a function that maps any possible observation vector x into a guess of its label, +1 or -1.
- To make sure we are not overfitting, we split our dataset into non-overlapping training and test datasets,

$$\{(\underline{X}_{\text{train},1}, Y_{\text{train},1}), \dots, (\underline{X}_{\text{train},n_{\text{train}}}, Y_{\text{train},n_{\text{train}}})\}, \\ \{(\underline{X}_{\text{test},1}, Y_{\text{test},1}), \dots, (\underline{X}_{\text{test},n_{\text{test}}}, Y_{\text{test},n_{\text{test}}})\}.$$

- The training set is used to construct our classifier D(x) and the test set can only be used to evaluate its performance.
- Training Error = fraction misclassified training examples.
- **Test Error** = fraction misclassified test examples.
- The closest average classifier computes the sample mean vectors $\hat{\underline{\mu}}_{\perp}$ and $\hat{\underline{\mu}}_{-}$ for each label. Given input $\underline{x},$ it computes the distances to $\hat{\mu}_{\perp}$ and $\hat{\mu}_{\parallel}$ and chooses the label with the smallest distance.

$$D_{\text{avg}}(\underline{x}) = \begin{cases} +1, & \|\underline{x} - \hat{\underline{\mu}}_+\| \le \|\underline{x} - \hat{\underline{\mu}}_-\|, \\ -1, & \text{otherwise} \end{cases}$$

• The nearest neighbor classifier outputs the label of the closest training example as its guess.

$$D_{\mathrm{NN}}(\underline{x}) = Y_{\mathrm{train},i_{\mathrm{closest}}} \quad i_{\mathrm{closest}} = \mathop{\arg\min}_{i=1,\ldots,n_{\mathrm{train}}} \|\underline{x} - \underline{X}_{\mathrm{train},i}\|$$

• The LDA classifier assumes the observation vectors are Gaussian vectors, with different mean vectors $\hat{\mu}_{\perp}$ and $\hat{\mu}_{-}$ and the same covariance matrix $\hat{\Sigma}$.

$$D_{\text{LDA}}(\underline{x}) = \begin{cases} +1 & 2\left(\hat{\underline{\mu}}_{+} - \hat{\underline{\mu}}_{-}\right)^{\mathsf{T}}\hat{\mathbf{\Sigma}}^{-1}\underline{x} \geq \hat{\underline{\mu}}_{+}^{\mathsf{T}}\hat{\mathbf{\Sigma}}^{-1}\hat{\underline{\mu}}_{+} - \hat{\underline{\mu}}_{-}^{\mathsf{T}}\hat{\mathbf{\Sigma}}^{-1}\hat{\underline{\mu}}_{-}, \\ -1 & \text{otherwise.} \end{cases}$$

 $\bullet\,$ The QDA classifier assumes the observation vectors are Gaussian vectors, with different mean vectors $\hat{\mu}_{\perp}$ and $\hat{\mu}_{\parallel}$ and the covariance matrices $\hat{\Sigma}_{+}$ and $\hat{\Sigma}_{-}$.

11. Markov Chains

• A Markov chain is a sequence of discrete random variables X_0, X_1, X_2, \dots such that, given the history X_0, \dots, X_n , the next state X_{n+1} only depends on the current state X_n ,

$$P_{X_{n+1}|X_n,...,X_0}(x_{n+1}|x_n,...,x_0) = P_{X_{n+1}|X_n}(x_{n+1}|x_n)$$
 • We assume the range is finite $R_X = \{1,\ldots,K\}$.

- The transition probabilities P_{ik} are the probabilities of moving from state j to state k in one time step. We assume the Markov chain is **homogeneous**, $P_{X_{n+1}|X_n}(k|j) = P_{jk}$.
- The *n*-step transition probabilities $P_{ik}(n)$ are the probabilities of moving from state j to state k in exactly ntime steps, $P_{ik}(n+m) = \sum_{i=1}^{K} P_{ii}(n) P_{ik}(m)$.
- The state transition matrix is $\mathbf{P} = \begin{bmatrix} \vdots & \ddots & \vdots \\ P_{K1} & \cdots & P_{KK} \end{bmatrix}$
- Row index is for current state, column index for next state.
- The probability state vector is $p_{t} =$
- Moving forward one time step: $\underline{p}_{t+1} = \mathbf{P}^{\mathsf{T}} \underline{p}_{t}$.
- Moving forward n time steps: $p_{t+n} = (\mathbf{P}^n)^\mathsf{T} p_t$

State Classification

- State k is accessible from state j if it is possible to reach state k starting from state j in zero or more time steps. Notation: $j \to k$ (State j is always accessible from itself.)
- States j and k communicate if $j \to k$ and $k \to j$. Notation: $j \leftrightarrow k$. (State j always communicates with itself.)
- A communicating class C is a subset of states such that if $j \in C$, then $k \in C$ if and only if $j \leftrightarrow k$.
- A Markov chain is **irreducible** if all of its states belong to a single communicating class.
- A communicating class C is **transient** if there are states $j \in C$ and $k \notin C$ such that $j \to k$ but $k \not\to j$.
- A communicating class that is not transient is **recurrent**.
- The **period** d of a state j is the greatest common divisor of the length of all cycles from j back to itself.
- All states in a communicating class have the same period.
- If the period is 1, then the state is called **aperiodic**. A Markov chain is aperiodic if all its states are aperiodic.

Limiting Probability State Vector

- For an irreducible, aperiodic Markov chain, there is a unique limiting state probability vector $\underline{\pi} = \lim_{t \to \infty} \underline{p}_t$ satisfying the following properties:

 - $\begin{array}{l} \circ \ \ \text{Normalization:} \ \sum_{j=1}^K \pi_j = 1 \\ \circ \ \ \text{Any initial state} \ \underline{p}_0 \ \text{will converge to} \ \underline{\pi}. \end{array}$
 - Steady-State Distribution: $\pi = \mathbf{P}^{\mathsf{T}} \pi$.
- When $\underline{\pi}$ exists, we can solve for it using linear equations from $\underline{\pi} = \mathbf{P}^{\mathsf{T}}\underline{\pi}$ and $\sum_{j=1}^{K} \pi_{j} = 1$.
- If there is only one recurrent communicating class and it is aperiodic, then there is still a unique limiting state probability vector. Find by first setting π_i for all transient states to 0.