## 6. Detection

- Two hypotheses $H_{0}$ and $H_{1}$. Observe a random variable $Y$ Decide if $H_{0}$ or $H_{1}$ occurred based only on $Y$ using a decision rule $D(y)$.
Discrete Case
$P_{Y \mid H_{0}}(y)$ if $H_{0}$ occurs
$P_{Y \mid H_{1}}(y)$ if $H_{1}$ occurs
Continuous Case
$f_{Y \mid H_{0}}(y)$ if $H_{0}$ occurs
$f_{Y \mid H_{1}}(y)$ if $H_{1}$ occurs
- Decision Regions:
$A_{0}=\left\{y \in R_{Y}: D(y)=0\right\} \quad A_{1}=\left\{y \in R_{Y}: D(y)=1\right\}$
- Probability of False Alarm: $P_{\mathrm{FA}}=\mathbb{P}\left[Y \in A_{1} \mid H_{0}\right]$
- Probability of Missed Detection: $P_{\mathrm{MD}}=\mathbb{P}\left[Y \in A_{0} \mid H_{1}\right]$
- Goal is to minimize the probability of error:

$$
P_{e}=\mathbb{P}[\{\text { error }\}]=P_{\mathrm{FA}} \mathbb{P}\left[H_{0}\right]+P_{\mathrm{MD}} \mathbb{P}\left[H_{1}\right]
$$

- Likelihood Ratio: $L(y)=\frac{P_{Y \mid H_{1}}(y)}{P_{Y \mid H_{0}}(y)}$.
- Log-Likelihood Ratio: $\ln (L(y))=\ln \left(\frac{P_{Y \mid H_{1}}(y)}{P_{Y \mid H_{0}}(y)}\right)$.
- For vector observations $\underline{Y}$, we simply replace all occurrences of $Y$ with $\underline{Y}$. For example, $P_{Y \mid H_{0}}(y)$ becomes $P_{\underline{Y} \mid H_{0}}(\underline{y})$ and $P_{Y \mid H_{1}}(y)$ becomes $P_{\underline{Y} \mid H_{1}}(\underline{y})$.


## Maximum Likelihood (ML) Rule

- Intuition: Choose hypothesis that best explains $Y$.
- In terms of the conditional PMFs for the discrete case,

$$
D^{\mathrm{ML}}(y)= \begin{cases}1, & P_{Y \mid H_{1}}(y) \geq P_{Y \mid H_{0}}(y), \\ 0, & P_{Y \mid H_{1}}(y)<P_{Y \mid H_{0}}(y) .\end{cases}
$$

- In terms of the conditional PDFs for the continuous case,

$$
D^{\mathrm{ML}}(y)= \begin{cases}1, & f_{Y \mid H_{1}}(y) \geq f_{Y \mid H_{0}}(y), \\ 0, & f_{Y \mid H_{1}}(y)<f_{Y \mid H_{0}}(y) .\end{cases}
$$

- In terms of the likelihood or log-likelihood ratio,

$$
D^{\mathrm{ML}}(y)=\left\{\begin{array}{ll}
1, & L(y) \geq 1, \\
0, & L(y)<1 .
\end{array}= \begin{cases}1, & \ln (L(y)) \geq 0 \\
0, & \ln (L(y))<0\end{cases}\right.
$$

## Maximum a Posteriori (MAP) Rule

- Intuition: Choose the most likely hypothesis.
- In terms of the conditional PMFs for the discrete case,

$$
D^{\mathrm{MAP}}(y)= \begin{cases}1, & P_{Y \mid H_{1}}(y) \mathbb{P}\left[H_{1}\right] \geq P_{Y \mid H_{0}}(y) \mathbb{P}\left[H_{0}\right], \\ 0, & P_{Y \mid H_{1}}(y) \mathbb{P}\left[H_{1}\right]<P_{Y \mid H_{0}}(y) \mathbb{P}\left[H_{0}\right] .\end{cases}
$$

- In terms of the conditional PDFs for the continuous case,

$$
D^{\mathrm{MAP}}(y)= \begin{cases}1, & f_{Y \mid H_{1}}(y) \mathbb{P}\left[H_{1}\right] \geq f_{Y \mid H_{0}}(y) \mathbb{P}\left[H_{0}\right], \\ 0, & f_{Y \mid H_{1}}(y) \mathbb{P}\left[H_{1}\right]<f_{Y \mid H_{0}}(y) \mathbb{P}\left[H_{0}\right] .\end{cases}
$$

- In terms of the likelihood or log-likelihood ratio,
$D^{\mathrm{MAP}}(y)=\left\{\begin{array}{ll}1, & L(y) \geq \frac{\mathbb{P}\left[H_{0}\right]}{\mathbb{P}}, \\ 0, & L(y)<\frac{\left.\mathbb{P} H_{1}\right]}{\mathbb{P}\left[H_{0}\right]},\end{array}= \begin{cases}1, & \ln (L(y)) \geq \ln \left(\frac{\mathbb{P}\left[H_{0}\right]}{\mathbb{P}} H_{1}\right], \\ 0, & \ln (L(y))<\ln \left(\frac{\mathbb{P}}{\mathbb{P}\left[H_{0}\right]}\left[\begin{array}{l}{\left[H_{1}\right]}\end{array},\right.\right.\end{cases}\right.$
- This is the optimal decision rule in terms of minimizing the probability of error. However, it requires knowledge of $\mathbb{P}\left[H_{0}\right]$ and $\mathbb{P}\left[H_{1}\right]$ to implement the decision rule.


## EK381 Exam 3 Formula Sheet

## 7. Estimation

- We observe a random variable $Y$ and want to estimate an unobserved random variable $X$ using an estimator $\hat{x}(Y)$.
- Goal: Minimize the mean-squared error:

$$
\mathrm{MSE}=\mathbb{E}\left[(X-\hat{x}(Y))^{2}\right]
$$

## MMSE Estimator

- The minimum mean-squared error (MMSE) estimator is

$$
\hat{x}_{\operatorname{MMSE}}(y)=\mathbb{E}[X \mid Y=y] .
$$

- This is the optimal estimator in terms of MSE.


## LLSE Estimator

- The linear least-squares error (LLSE) estimator is

$$
\begin{aligned}
\hat{x}_{\mathrm{LLSE}}(y) & =\mathbb{E}[X]+\frac{\operatorname{Cov}[X, Y]}{\operatorname{Var}[Y]}(y-\mathbb{E}[Y]) \\
& =\mathbb{E}[X]+\rho_{X, Y} \frac{\sigma_{X}}{\sigma_{Y}}(y-\mathbb{E}[Y])
\end{aligned}
$$

- Attains the minimum MSE amongst all linear estimators.

$$
\mathrm{MSE}_{L L S E}=\operatorname{Var}[X]-\frac{(\operatorname{Cov}[X, Y])^{2}}{\operatorname{Var}[Y]}=\sigma_{X}^{2}\left(1-\rho_{X, Y}^{2}\right)
$$

- For jointly Gaussian $X$ and $Y, \hat{x}_{\text {LLSE }}(y)=\hat{x}_{\text {MMSE }}(y)$.


## Vector Estimation

- We observe a random vector $\underline{Y}$ and want to estimate an unobserved random vector $\underline{X}$ using an estimator $\hat{\hat{x}}(\underline{Y})$.
- Mean-Squared Error: MSE $=\mathbb{E}\left[(\underline{X}-\underline{\hat{x}}(\underline{Y}))^{\top}(\underline{X}-\underline{\hat{x}}(\underline{Y}))\right]$
- The vector MMSE estimator is

$$
\underline{\underline{\hat{x}}}_{\mathrm{MMSE}}(\underline{y})=\mathbb{E}[\underline{X} \mid \underline{Y}=\underline{y}]
$$

- The vector MMSE estimator attains the optimal MSE.
- The vector LLSE estimator is

$$
\underline{\hat{x}}_{\mathrm{LLSE}}(\underline{y})=\mathbb{E}[\underline{X}]+\boldsymbol{\Sigma}_{\underline{X}, \underline{Y}} \boldsymbol{\Sigma}_{\underline{Y}}^{-1}(\underline{y}-\mathbb{E}[\underline{Y}])
$$

where $\boldsymbol{\Sigma}_{\underline{Y}}$ is the covariance matrix of $\underline{Y}$ and $\boldsymbol{\Sigma}_{\underline{X}, \underline{Y}}$ is the cross-covariance matrix

$$
\boldsymbol{\Sigma}_{\underline{X}, \underline{Y}}=\mathbb{E}\left[(\underline{X}-\mathbb{E}[\underline{X}])(\underline{Y}-\mathbb{E}[\underline{Y}])^{\mathrm{T}}\right]
$$

- The vector LLSE estimator attains the optimal MSE amongst all linear estimators.
- If $\left[\frac{X}{\underline{Y}}\right]$ is a Gaussian vector, $\underline{\hat{x}}_{\text {LLSE }}(\underline{y})=\underline{\hat{\hat{x}}}_{\text {MMSE }}(\underline{y})$.


## 8. Sums of Random Variables

- Consider $n$ random variables $X_{1}, X_{2}, \ldots, X_{n}$.
- We are often interested in the behavior of the sum $S_{n}=\sum_{i=1}^{n} X_{i}$ or the sample mean $M_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.
- Expected Value of the Sum: $\mathbb{E}\left[S_{n}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]$
- Variance of the Sum: $\operatorname{Var}\left[S_{n}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}\left[X_{i}, X_{j}\right]$
- Random variables $X_{1}, \ldots, X_{n}$ are said to be independent and identically distributed (i.i.d.) if they are independent and all $X_{i}$ have the same marginal distribution, which is a PMF $P_{X}(x)$ in the discrete case and a PDF $f_{X}(x)$ in the continuous case.
- For i.i.d. $X_{1}, \ldots, X_{n}$, we have that $\mathbb{E}\left[S_{n}\right]=n \mathbb{E}[X]$,
$\operatorname{Var}\left[S_{n}\right]=n \operatorname{Var}[X], \mathbb{E}\left[M_{n}\right]=\mathbb{E}[X], \operatorname{Var}\left[M_{n}\right]=\operatorname{Var}[X] / n$.


## Laws of Large Numbers

- Weak Law of Large Numbers: Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. random variables with finite mean $\mu$ and sample mean $M_{n}$. For any $\epsilon>0, \lim _{n \rightarrow \infty} \mathbb{P}\left[\left|M_{n}-\mu\right|>\epsilon\right]=0$.
- Strong Law of Large Numbers: Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. random variables with finite mean $\mu$ and sample mean $M_{n}$. Then, $\mathbb{P}\left[\lim _{n \rightarrow \infty} M_{n}=\mu\right]=1$.


## Central Limit Theorem

- Central Limit Theorem: Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. random variables with finite mean $\mu$ and finite variance $\sigma^{2}$. The CDF of $Y_{n}=\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)}{\sigma \sqrt{n}}$ converges to the standard normal CDF, $\lim _{n \rightarrow \infty} F_{Y_{n}}(y)=\Phi(y)$.
- For i.i.d. random variables with finite mean and variance, then $F_{Y_{n}}(y) \approx \Phi(y)$ is a good approximation for $n \geq 30$.


## 9. Statistics

- Let $X_{1}, \ldots, X_{n}$ be i.i.d. random variables with mean $\mathbb{E}\left[X_{i}\right]=\mu$ and variance $\operatorname{Var}\left[X_{i}\right]=\sigma^{2}$.
- The sample mean is $\hat{\mu}=M_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.
- $M_{n}$ is unbiased estimator for the mean, $\mathbb{E}\left[M_{n}\right]=\mu$, with variance $\operatorname{Var}\left[M_{n}\right]=\sigma^{2} / n$.
- The sample variance is $\hat{\sigma}^{2}=V_{n}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-M_{n}\right)^{2}$.
- $V_{n}$ is an unbiased estimator for the variance, $\mathbb{E}\left[V_{n}\right]=\sigma^{2}$.
- If $Z_{1}, \ldots, Z_{n}$ are i.i.d. $\operatorname{Gaussian}(0,1)$ random variables, then $Y=\sum_{i=1}^{n} Z_{i}^{2}$ is a chi-squared random variable with $n$ degrees-of-freedom, $Y \sim \chi_{n}^{2}$.
- If $Z$ is a $\operatorname{Gaussian}(0,1)$ random variable, $Y$ is a chi-squared random variable with $n$ degrees-of-freedom, and $Y$ and $Z$ are independent, then $W=Z \sqrt{n / Y}$ has a Student's t-distribution with $n$ degrees-of-freedom, $W \sim T_{n}$. CDF: $F_{T_{n}}(t)$. PDF: Symmetric about 0 .


## Confidence Intervals for the Mean

- Let $X_{1}, \ldots, X_{n}$ be i.i.d. random variables with mean $\mu$, variance $\sigma^{2}$, sample mean $M_{n}$, and sample variance $V_{n}$.
- $\left[M_{n} \pm \epsilon\right]$ is a confidence interval for the mean with confidence level $1-\alpha$ if $\mathbb{P}\left[\mu-\epsilon \leq M_{n} \leq \mu+\epsilon\right]=1-\alpha$.


## Confidence Interval: Known Variance

- When to use: Variance is known or $n>30$ samples.
- Set $\epsilon=\sigma Q^{-1}(\alpha / 2) / \sqrt{n}$
- If the variance $\sigma^{2}$ is unknown and we have $n>30$ samples, substitute $\sigma^{2}$ with the sample variance $V_{n}$
- $Q^{-1}(0.05)=1.64, Q^{-1}(0.025)=1.96, Q^{-1}(0.005)=2.57$


## Confidence Interval: Unknown Variance

- When to use: Variance is unknown and $n \leq 30$ samples.
- Set $\epsilon=-\sqrt{V_{n}} F_{T_{n-1}}^{-1}(\alpha / 2) / \sqrt{n}$ where $F_{T_{n-1}}(t)$ is the CDF for a Student's t-distribution with $n-1$ degrees-of-freedom.


## Significance Testing

- Only have a probability model for the null hypothesis $H_{0}$
- The significance level $0 \leq \alpha \leq 1$ is used to determine when to reject the null hypothesis.
- Given a statistic calculated from the dataset, the $\mathbf{p}$-value is the probability of observing a value at least this extreme under the null hypothesis.
- If p-value $<\alpha$, then reject the null hypothesis.
- If p-value $\geq \alpha$, then fail to reject the null hypothesis.


## One-Sample Z-Test

- Null Hypothesis: $X_{1}, \ldots, X_{n}$ is i.i.d. $\operatorname{Gaussian}\left(\mu, \sigma^{2}\right)$.
- When to use: Variance $\sigma^{2}$ is known or $n>30$ samples.
- Informally, is the mean not equal to $\mu$ ?

1. Calculate the sample mean $M_{n}$.
2. Z-statistic: $Z=\sqrt{n}\left(M_{n}-\mu\right) / \sigma$.
3. p -value $=2 \Phi(-|Z|)$.

- If the variance $\sigma^{2}$ is unknown and we have $n>30$ samples, substitute $\sigma^{2}$ with the sample variance $V_{n}$.
- $2 \Phi(-1.64)=0.1,2 \Phi(-1.96)=0.05,2 \Phi(-2.57)=0.01$


## One-Sample T-Test

- Null Hypothesis: $X_{1}, \ldots, X_{n}$ is i.i.d. $\operatorname{Gaussian}\left(\mu, \sigma^{2}\right)$.
- When to use: Variance $\sigma^{2}$ is unknown and $n \leq 30$ samples.
- Informally, is the mean not equal to $\mu$ ?

1. Calculate the sample mean $M_{n}$ and variance $V_{n}$.
2. T-statistic: $T=\sqrt{n}\left(M_{n}-\mu\right) / \sqrt{V_{n}}$.
3. p-value $=2 F_{T_{n-1}}(-|T|)$.

## Two-Sample Z-Test

- Null Hypothesis: $X_{1}, \ldots, X_{n_{1}}$ is i.i.d. $\operatorname{Gaussian}\left(\mu, \sigma_{1}^{2}\right)$ and $Y_{1}, \ldots, Y_{n_{2}}$ is i.i.d. $\operatorname{Gaussian}\left(\mu, \sigma_{2}^{2}\right)$.
- When to use: Variances $\sigma_{1}^{2}$ and $\sigma_{2}^{2}$ are known or $\min \left(n_{1}, n_{2}\right)>30$.
- Informally, do the datasets have the same mean?

1. Calculate the sample means $M_{n_{1}}^{(1)}$ and $M_{n_{2}}^{(2)}$.
2. Z-statistic: $Z=\left(M_{n_{1}}^{(1)}-M_{n_{2}}^{(2)}\right) / \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$.
3. p -value $=2 \Phi(-|Z|)$.

- If the variances $\sigma_{1}^{2}, \sigma_{2}^{2}$ are unknown and we have $\min \left(n_{1}, n_{2}\right)>30$ samples, substitute $\sigma_{1}^{2}$ with the sample variance $V_{n_{1}}^{(1)}$ and $\sigma_{2}^{2}$ with the sample variance $V_{n_{2}}^{(2)}$.
- $2 \Phi(-1.64)=0.1,2 \Phi(-1.96)=0.05,2 \Phi(-2.57)=0.01$


## Two-Sample T-Test

- Null Hypothesis: $X_{1}, \ldots, X_{n_{1}}$ is i.i.d. $\operatorname{Gaussian}\left(\mu, \sigma^{2}\right)$ and $Y_{1}, \ldots, Y_{n_{2}}$ is i.i.d. $\operatorname{Gaussian}\left(\mu, \sigma^{2}\right)$. The mean $\mu$ is unknown.
- When to use: (Equal) variance $\sigma^{2}$ is unknown and $\min \left(n_{1}, n_{2}\right) \leq 30$.
- Informally, do the datasets have the same mean?

1. Calculate the sample means $M_{n_{1}}^{(1)}, M_{n_{2}}^{(2)}$, sample variances $V_{n_{1}}^{(1)}, V_{n_{2}}^{(2)}$, and the pooled sample variance $\quad \hat{\sigma}^{2}=\left(\left(n_{1}-1\right) V_{n_{1}}^{(1)}+\left(n_{2}-1\right) V_{n_{2}}^{(2)}\right) /\left(n_{1}+n_{2}-2\right)$.
2. T-statistic: $T=\left(M_{n_{1}}^{(1)}-M_{n_{2}}^{(2)}\right) / \sqrt{\hat{\sigma}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}$.
3. p -value $=2 F_{T_{n_{1}+n_{2}-2}}(-|T|)$.

## 10. Machine Learning

- We focused on binary classification where the goal is to decide between two hypotheses, but we do not have access to the underlying probability model.
- Instead, we have a dataset consisting of $n$ samples,
$\left\{\left(\underline{X}_{1}, Y_{1}\right),\left(\underline{X}_{2}, Y_{2}\right), \ldots,\left(\underline{X}_{n}, Y_{n}\right)\right\}$. The $i^{\text {th }}$ sample $\left(\underline{X}_{i}, Y_{i}\right)$ consists of a feature vector $\underline{X}_{i}$ and a label $Y_{i} \in\{-1,+1\}$.
- We use this dataset to come up with a classifier $D(\underline{x})$, which is a function that maps any possible observation vector $\underline{x}$ into a guess of its label, +1 or -1 .
- To make sure we are not overfitting, we split our dataset into non-overlapping training and test datasets,

$$
\begin{array}{r}
\left\{\left(\underline{X}_{\text {train }, 1}, Y_{\text {train }, 1}\right), \ldots,\left(\underline{X}_{\text {train }, n_{\text {train }}}, Y_{\text {train }, n_{\text {train }}}\right)\right\} \\
\left\{\left(\underline{X}_{\text {test }, 1}, Y_{\text {test }, 1}\right), \ldots,\left(\underline{X}_{\text {test }, n_{\text {test }}}, Y_{\text {test }, n_{\text {test }}}\right)\right\} .
\end{array}
$$

- The training set is used to construct our classifier $D(\underline{x})$ and the test set can only be used to evaluate its performance.
- Training Error $=$ fraction misclassified training examples.
- Test Error $=$ fraction misclassified test examples.
- The closest average classifier computes the sample mean vectors $\underline{\hat{\mu}}_{+}$and $\underline{\hat{\mu}}_{-}$for each label. Given input $\underline{x}$, it computes the distances to $\underline{\hat{\mu}}_{+}$and $\underline{\hat{\mu}}_{-}$and chooses the label with the smallest distance.

$$
D_{\operatorname{avg}}(\underline{x})= \begin{cases}+1, & \left\|\underline{x}-\hat{\hat{\mu}}_{+}\right\| \leq\left\|\underline{x}-\underline{\hat{\mu}}_{-}\right\|, \\ -1, & \text { otherwise }\end{cases}
$$

- The nearest neighbor classifier outputs the label of the closest training example as its guess.

$$
D_{\mathrm{NN}}(\underline{x})=Y_{\text {train }, i_{\text {closest }}} \quad i_{\text {closest }}=\underset{i=1, \ldots, n_{\text {train }}}{\arg \min }\left\|\underline{x}-\underline{X}_{\text {train }, i}\right\|
$$

- The LDA classifier assumes the observation vectors are Gaussian vectors, with different mean vectors $\underline{\underline{\mu}}_{+}$and $\underline{\underline{\mu}}_{-}$ and the same covariance matrix $\hat{\boldsymbol{\Sigma}}$.
$D_{\mathrm{LDA}}(\underline{x})= \begin{cases}+1 & 2\left(\underline{\hat{\mu}}_{+}-\underline{\hat{\mu}}_{-}\right)^{\top} \hat{\boldsymbol{\Sigma}}^{-1} \underline{x} \geq \underline{\hat{\mu}}_{+}^{\top} \hat{\boldsymbol{\Sigma}}^{-1} \underline{\hat{\mu}}_{+}-\underline{\hat{\mu}}_{-}^{\top} \hat{\boldsymbol{\Sigma}}^{-1} \underline{\hat{\mu}}_{-}, \\ -1 & \text { otherwise } .\end{cases}$
- The QDA classifier assumes the observation vectors are Gaussian vectors, with different mean vectors $\underline{\underline{\hat{\mu}}}_{+}$and $\underline{\hat{\mu}}$ and the covariance matrices $\hat{\boldsymbol{\Sigma}}_{+}$and $\hat{\boldsymbol{\Sigma}}_{-}$.


## 11. Markov Chains

- A Markov chain is a sequence of discrete random variables $X_{0}, X_{1}, X_{2}, \ldots$ such that, given the history $X_{0}, \ldots, X_{n}$, the next state $X_{n+1}$ only depends on the current state $X_{n}$,
$P_{X_{n+1} \mid X_{n}, \ldots, X_{0}}\left(x_{n+1} \mid x_{n}, \ldots, x_{0}\right)=P_{X_{n+1} \mid X_{n}}\left(x_{n+1} \mid x_{n}\right)$
- We assume the range is finite $R_{X}=\{1, \ldots, K\}$.
- The transition probabilities $P_{j k}$ are the probabilities of moving from state $j$ to state $k$ in one time step. We assume the Markov chain is homogeneous, $P_{X_{n+1} \mid X_{n}}(k \mid j)=P_{j k}$.
- The $n$-step transition probabilities $P_{j k}(n)$ are the probabilities of moving from state $j$ to state $k$ in exactly $n$ time steps, $P_{j k}(n+m)=\sum_{i=1}^{K} P_{j i}(n) P_{i k}(m)$.
- The state transition matrix is $\mathbf{P}=\left[\begin{array}{ccc}P_{11} & \cdots & P_{1 K} \\ \vdots & \ddots & \vdots \\ P_{K 1} & \cdots & P_{K K}\end{array}\right]$
- Row index is for current state, column index for next state.
- The probability state vector is $\underline{p}_{t}=\left[\begin{array}{c}P_{X_{t}}(1) \\ \vdots \\ P_{X_{t}}(K)\end{array}\right]$
- Moving forward one time step: $\underline{p}_{t+1}=\mathbf{P}^{\top} \underline{p}_{t}$.
- Moving forward $n$ time steps: $\underline{p}_{t+n}=\left(\mathbf{P}^{n}\right)^{\top} \underline{p}_{t}$


## State Classification

- State $k$ is accessible from state $j$ if it is possible to reach state $k$ starting from state $j$ in zero or more time steps.
Notation: $j \rightarrow k$ (State $j$ is always accessible from itself.)
- States $j$ and $k$ communicate if $j \rightarrow k$ and $k \rightarrow j$.

Notation: $j \leftrightarrow k$. (State $j$ always communicates with itself.)

- A communicating class $C$ is a subset of states such that if $j \in C$, then $k \in C$ if and only if $j \leftrightarrow k$.
- A Markov chain is irreducible if all of its states belong to a single communicating class.
- A communicating class $C$ is transient if there are states $j \in C$ and $k \notin C$ such that $j \rightarrow k$ but $k \nrightarrow j$.
- A communicating class that is not transient is recurrent.
- The period $d$ of a state $j$ is the greatest common divisor of the length of all cycles from $j$ back to itself.
- All states in a communicating class have the same period.
- If the period is 1 , then the state is called aperiodic. A Markov chain is aperiodic if all its states are aperiodic.
Limiting Probability State Vector
- For an irreducible, aperiodic Markov chain, there is a unique limiting state probability vector $\underline{\pi}=\lim _{t \rightarrow \infty} \underline{p}_{t}$ satisfying the following properties:
- Normalization: $\sum_{j=1}^{K} \pi_{j}=1$
- Any initial state $\underline{p}_{0}$ will converge to $\underline{\pi}$.
- Steady-State Distribution: $\underline{\pi}=\mathbf{P}^{\top} \underline{\pi}$.
- When $\underline{\pi}$ exists, we can solve for it using linear equations from $\underline{\pi}=\mathbf{P}^{\top} \underline{\pi}$ and $\sum_{j=1}^{K} \pi_{j}=1$.
- If there is only one recurrent communicating class and it is aperiodic, then there is still a unique limiting state probability vector. Find by first setting $\pi_{j}$ for all transient states to 0 .

