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11 Markov Chains

• Consider a sequence of discrete random variables X0, X1, X2, . . . where the index represents
discrete time. Recall that an infinite sequence of discrete random variables is described by a
collection of joint PMFs PXt1 ,Xt2 ,...,Xtm

(xt1 , xt2 , . . . , xtm) for every possible choice of indices
t1 < t2 < · · · < tm and any positive integer m.

• If the sequence X0, X1, X2, . . . is independent and identically distributed (i.i.d.), then

PXt1 ,Xt2 ,...,Xtm
(xt1 , xt2 , . . . , xtm) = PX(xt1)PX(xt2) · · ·PX(xtm) ,

i.e., there is no dependence across time.

• The sequence X0, X1, X2, . . . has the Markov property if, any choice of m and indices
t1 < t2 < · · · < tm, Xtm conditioned on Xtm−1 , . . . , Xt1 only depends on the most recent
random variable Xtm−1 ,

PXtm |Xtm−1 ,...,Xt1
(xtm |xtm−1 , . . . , xt1) = PXtm |Xtm−1

(xtm |xtm−1) ,

• A discrete-time Markov chain is a sequence of discrete random variables X0, X1, X2, . . .
satisfying the Markov property.

◦ The random variable Xi is often called the state at time i.

◦ The Markov property in this context is equivalent to the following statement: The state
Xt+1, conditioned on the full history X0, . . . , Xt, only depends on the current state Xt,

PXt+1|Xt,...,X0
(xt+1|xt, . . . , x0) = PXt+1|Xt

(xt+1|xt) .

• We focus on discrete-time Markov chains with the following properties:

◦ Finite Range (i.e., Finite State Space): To simplify notation, we always label the range
as RX = {1, 2, . . . ,K}.
◦ Homogeneous: The conditional PMF PXt+1|Xt

(xt+1|xt) only depends on the values of
xt+1 and xt, not the time index t, and is described by the transition probabilities defined
below.

• The transition probabilities Pjk are the probabilities of moving from state j to state k in
one time step for j, k ∈ RX ,

P
[
Xt+1 = k

∣∣Xt = j] = PXt+1|Xt
(k|j) = Pjk for all t.

• The n-step transition probabilities Pjk(n) are the probabilities of moving from state j to
state k in exactly n time steps,

P
[
Xt+n = k

∣∣Xt = j] = PXt+n|Xt
(k|j) = Pjk(n) for all t,

and can be determined via the Chapman-Kolmogorov equations,

Pjk(n+m) =
K∑
i=1

Pji(n)Pik(m).



2 EK381 Probability: 11. Markov Chains

• It is often more convenient to write out all of the transition probabilities as matrix. Specifi-
cally, the state transition matrix is

P =


P11 P12 · · · P1K

P21 P22 · · · P2K
...

...
. . .

...
PK1 PK2 · · · PKK


The row index j is for the current state, and the column index k is for the next state. To
satisfy the normalization property, each row must sum to 1. We can also write the Chapman-
Kolmogorov equations in matrix form, P(n+m) = P(n)P(m) where P(n) = Pn.

• The state probability vector at time t is

p
t

=

 PXt(1)
...

PXt(K)


where the jth entry PXt(j) = P[Xt = j] is the probability of occupying state j at time t. By
normalization, the entries must sum to 1.

• We can determine how the state probabilities change in one time step using either the

Transition Probabilities: PXt+1(k) =
K∑
j=1

PXt(j)Pjk or,

State Transition Matrix: p
t+1

= PTp
t
,

• We can determine how the state probabilities change in n time steps using either the

n-Step Transition Probabilities: PXt+n(k) =

K∑
j=1

PXt(j)Pjk(n) or,

State Transition Matrix: p
t+n

= (P(n))Tp
t
.

11.1 State Classification

• State classification is a systematic way to classify Markov chains, and is useful for deter-
mining which Markov chains have certain properties.

• State k is accessible from state j if it is possible to reach state k starting from state j in one
or more time steps, Pjk(n) > 0 for some n ≥ 0. Notation: j → k

◦ Pjk(0) is the probability of going from state j to state k in exactly 0 time steps. Thus,

Pjk(0) =

{
1 j = k

0 j 6= k
and we always have that j is accessible from itself, j → j.

• States j and k communicate if j → k and k → j. Notation: j ↔ k

◦ Since we always have j → j, we also always have that j communicates with itself, j ↔ j.

• A communicating class C is a subset of the states such that all states that belong to C
communicate with each other. That is, if j ∈ C, then k ∈ C if and only if j ↔ k.
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◦ A finite-state Markov chain can always be partitioned into disjoint communicating
classes.

• A Markov chain is irreducible if all of its states belong to a single communicating class.

• A state j is transient if there is a state k such that k is accessible from j but j is not
accessible from k, i.e., j → k but k 9 j.

◦ Intuitively, once we reach state k from state j, we can never return to state j.

◦ If a state j is not transient, then it is recurrent.

◦ The states in a communicating classes are either all transient or all recurrent.

◦ At least one communicating class is recurrent.

• The period d of a state j is the greatest common divisor of the length of all cycles from j
back to itself.

◦ A state is aperiodic if it has period 1.

◦ If there are no cycles from a state back to itself, then its period is set to 1 by default.

◦ All states in a communicating class have the same period. A communicating class is
aperiodic if all of its states have period 1.

◦ Shortcut: If a communicating class contains a cycle of length 1, then it is aperiodic.

◦ A Markov chain is aperiodic if all its states are aperiodic.

11.2 Limiting State Probability Vector

• Intuitively, if we let a Markov chain run for a long time, we might expect the state probability
vector to stabilize.

• Mathematically, are interested in the limit lim
t→∞

p
t
, when it exists.

• If a finite-state, homogeneous, discrete-time Markov chain is irreducible and aperiodic, then
it has a unique limiting probability state vector π = lim

t→∞
p
t
.

• The limiting state probability vector satisfies the following properties:

◦ Normalization:

K∑
j=1

πj = 1

◦ Any initial state probability vector p
0

will converge to π as t→∞.

◦ Steady-State Distribution: π = PTπ.

◦ π is an eigenvector of PT with eigenvalue 1.

• To solve for π, we use a system of K linear equations obtained from π = PTπ and
K∑
j=1

πj = 1.

• We can also handle Markov chains that have a single recurrent communicating class along
with additional transient communicating classes. Specifically, if the Markov chain has only
one recurrent communicating class, there is still a unique limiting state probability vector.
To calculate it, we set the probabilities of the transient states to 0, and then solve for the
remaining values as in the irreducible case.
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