11 Markov Chains

- Consider a sequence of discrete random variables X_0, X_1, X_2, \ldots where the index represents discrete time. Recall that an infinite sequence of discrete random variables is described by a collection of joint PMFs $P_{X_{t_1}, X_{t_2}, \ldots, X_{t_m}}(x_{t_1}, x_{t_2}, \ldots, x_{t_m})$ for every possible choice of indices $t_1 < t_2 < \cdots < t_m$ and any positive integer m.
- If the sequence X_0, X_1, X_2, \ldots is independent and identically distributed (i.i.d.), then

$$P_{X_{t_1}, X_{t_2}, \dots, X_{t_m}}(x_{t_1}, x_{t_2}, \dots, x_{t_m}) = P_X(x_{t_1}) P_X(x_{t_2}) \cdots P_X(x_{t_m})$$

i.e., there is no dependence across time.

• The sequence X_0, X_1, X_2, \ldots has the **Markov property** if, any choice of m and indices $t_1 < t_2 < \cdots < t_m, X_{t_m}$ conditioned on $X_{t_{m-1}}, \ldots, X_{t_1}$ only depends on the most recent random variable $X_{t_{m-1}}, \ldots$

$$P_{X_{t_m}|X_{t_{m-1}},\dots,X_{t_1}}(x_{t_m}|x_{t_{m-1}},\dots,x_{t_1}) = P_{X_{t_m}|X_{t_{m-1}}}(x_{t_m}|x_{t_{m-1}})$$

- A discrete-time Markov chain is a sequence of discrete random variables X_0, X_1, X_2, \ldots satisfying the Markov property.
 - The random variable X_i is often called the **state** at time *i*.
 - The Markov property in this context is equivalent to the following statement: The state X_{t+1} , conditioned on the full history X_0, \ldots, X_t , only depends on the current state X_t ,

$$P_{X_{t+1}|X_t,\dots,X_0}(x_{t+1}|x_t,\dots,x_0) = P_{X_{t+1}|X_t}(x_{t+1}|x_t)$$

- We focus on discrete-time Markov chains with the following properties:
 - Finite Range (i.e., Finite State Space): To simplify notation, we always label the range as $R_X = \{1, 2, ..., K\}$.
 - Homogeneous: The conditional PMF $P_{X_{t+1}|X_t}(x_{t+1}|x_t)$ only depends on the values of x_{t+1} and x_t , not the time index t, and is described by the transition probabilities defined below.
- The transition probabilities P_{jk} are the probabilities of moving from state j to state k in one time step for $j, k \in R_X$,

$$\mathbb{P}[X_{t+1} = k | X_t = j] = P_{X_{t+1}|X_t}(k|j) = P_{jk}$$
 for all t.

• The *n*-step transition probabilities $P_{jk}(n)$ are the probabilities of moving from state *j* to state *k* in exactly *n* time steps,

$$\mathbb{P}[X_{t+n} = k | X_t = j] = P_{X_{t+n}|X_t}(k|j) = P_{jk}(n) \quad \text{for all } t,$$

and can be determined via the Chapman-Kolmogorov equations,

$$P_{jk}(n+m) = \sum_{i=1}^{K} P_{ji}(n) P_{ik}(m)$$

• It is often more convenient to write out all of the transition probabilities as matrix. Specifically, the **state transition matrix** is

$$\mathbf{P} = \begin{bmatrix} P_{11} & P_{12} & \cdots & P_{1K} \\ P_{21} & P_{22} & \cdots & P_{2K} \\ \vdots & \vdots & \ddots & \vdots \\ P_{K1} & P_{K2} & \cdots & P_{KK} \end{bmatrix}$$

The row index j is for the current state, and the column index k is for the next state. To satisfy the normalization property, each row must sum to 1. We can also write the **Chapman-Kolmogorov equations in matrix form,** $\mathbf{P}(n+m) = \mathbf{P}(n)\mathbf{P}(m)$ where $\mathbf{P}(n) = \mathbf{P}^n$.

• The state probability vector at time t is

$$\underline{p}_t = \begin{bmatrix} P_{X_t}(1) \\ \vdots \\ P_{X_t}(K) \end{bmatrix}$$

where the j^{th} entry $P_{X_t}(j) = \mathbb{P}[X_t = j]$ is the probability of occupying state j at time t. By normalization, the entries must sum to 1.

• We can determine how the state probabilities change in one time step using either the

Transition Probabilities:
$$P_{X_{t+1}}(k) = \sum_{j=1}^{K} P_{X_t}(j) P_{jk}$$
 or
State Transition Matrix: $\underline{p}_{t+1} = \mathbf{P}^{\mathsf{T}} \underline{p}_t$,

• We can determine how the state probabilities change in n time steps using either the

n-Step Transition Probabilities:
$$P_{X_{t+n}}(k) = \sum_{j=1}^{K} P_{X_t}(j) P_{jk}(n)$$
 or,
State Transition Matrix: $\underline{p}_{t+n} = (\mathbf{P}(n))^{\mathsf{T}} \underline{p}_t$.

11.1 State Classification

- State classification is a systematic way to classify Markov chains, and is useful for determining which Markov chains have certain properties.
- State k is **accessible** from state j if it is possible to reach state k starting from state j in one or more time steps, $P_{jk}(n) > 0$ for some $n \ge 0$. Notation: $j \to k$
 - $P_{jk}(0)$ is the probability of going from state j to state k in exactly 0 time steps. Thus, $P_{jk}(0) = \begin{cases} 1 & j = k \\ 0 & j \neq k \end{cases}$ and we always have that j is accessible from itself, $j \to j$.
- States j and k communicate if $j \to k$ and $k \to j$. Notation: $j \leftrightarrow k$

• Since we always have $j \to j$, we also always have that j communicates with itself, $j \leftrightarrow j$.

• A communicating class C is a subset of the states such that all states that belong to C communicate with each other. That is, if $j \in C$, then $k \in C$ if and only if $j \leftrightarrow k$.

- A finite-state Markov chain can always be partitioned into disjoint communicating classes.
- A Markov chain is **irreducible** if all of its states belong to a single communicating class.
- A state j is **transient** if there is a state k such that k is accessible from j but j is not accessible from k, i.e., $j \to k$ but $k \not\to j$.
 - Intuitively, once we reach state k from state j, we can never return to state j.
 - If a state j is not transient, then it is **recurrent**.
 - The states in a communicating classes are either all transient or all recurrent.
 - At least one communicating class is recurrent.
- The **period** d of a state j is the greatest common divisor of the length of all cycles from j back to itself.
 - A state is **aperiodic** if it has period 1.
 - If there are no cycles from a state back to itself, then its period is set to 1 by default.
 - $\circ\,$ All states in a communicating class have the same period. A communicating class is aperiodic if all of its states have period 1.
 - Shortcut: If a communicating class contains a cycle of length 1, then it is aperiodic.
 - A Markov chain is aperiodic if all its states are aperiodic.

11.2 Limiting State Probability Vector

- Intuitively, if we let a Markov chain run for a long time, we might expect the state probability vector to stabilize.
- Mathematically, are interested in the limit $\lim_{t \to \infty} \underline{p}_t$, when it exists.
- If a finite-state, homogeneous, discrete-time Markov chain is irreducible and aperiodic, then it has a **unique limiting probability state vector** $\underline{\pi} = \lim_{t \to \infty} \underline{p}_t$.
- The limiting state probability vector satisfies the following properties:
 - Normalization: $\sum_{j=1}^{K} \pi_j = 1$
 - $\circ~$ Any initial state probability vector \underline{p}_0 will converge to $\underline{\pi}$ as $t \to \infty.$
 - Steady-State Distribution: $\underline{\pi} = \mathbf{P}^{\mathsf{T}} \underline{\pi}$.
 - $\underline{\pi}$ is an eigenvector of \mathbf{P}^{T} with eigenvalue 1.
- To solve for $\underline{\pi}$, we use a system of K linear equations obtained from $\underline{\pi} = \mathbf{P}^{\mathsf{T}} \underline{\pi}$ and $\sum_{j=1}^{K} \pi_j = 1$.
- We can also handle Markov chains that have a single recurrent communicating class along with additional transient communicating classes. Specifically, if the Markov chain has only one recurrent communicating class, there is still a unique limiting state probability vector. To calculate it, we set the probabilities of the transient states to 0, and then solve for the remaining values as in the irreducible case.