1.1 Set Theory

Probability theory is built upon set theory. This is a very brief primer.

- A set is a collection of elements.
- We usually use capital letters (such as A) to refer to sets and lowercase letters (such as x) to refer to elements.
- $x \in A$ means " x is an element of the set A."
- $x \notin A$ means " x is not an element of the set A."
- The empty set or null set is the set with no elements. Notation: ϕ or $\}$.
- The universal set Ω is the set of all elements (for the specific context).
- A subset A of a set B is a set consisting of some (or none or all) of the elements of B. Notation: $A \subset B$.
- Two sets A and B are equal if and only if $A \subset B$ and $B \subset A$.

1.1.1 Set Operations

- Complement: $A^{c}=\{x: x \notin A\}$.
- Union: $A \cup B=\{x: x \in A$ or $x \in B\}$.
- Intersection: $A \cap B=\{x: x \in A$ and $x \in B\}$.
- Set Difference: $A-B=\{x: x \in A$ and $x \notin B\}$.

1.1.2 Other Set Concepts

- A collection of sets A_{1}, \ldots, A_{n} is mutually exclusive if $A_{i} \cap A_{j}=\phi$ for $i \neq j$.
- A collection of sets A_{1}, \ldots, A_{n} is collectively exhaustive if $A_{1} \cup \cdots \cup A_{n}=\Omega$.
- A collection of sets A_{1}, \ldots, A_{n} is a partition if it is both mutually exclusive and collectively exhaustive.

1.1.3 De Morgan's Laws

$$
\begin{array}{ll}
(A \cup B)^{c}=A^{\mathrm{c}} \cap B^{\mathrm{c}} & \left(\bigcup_{i=1}^{n} A_{i}\right)^{c}=\bigcap_{i=1}^{n} A_{i}^{c} \\
(A \cap B)^{c}=A^{\mathrm{c}} \cup B^{\mathrm{c}} & \left(\bigcap_{i=1}^{n} A_{i}\right)^{c}=\bigcup_{i=1}^{n} A_{i}^{c}
\end{array}
$$

1.2 Axiomatic Theory of Probability

We need a formal, principled method for assigning probabilities to sets. This will be especially useful as a foundation for complex probabilisitic reasoning (later in the course).

1.2.1 Basic Probability Model

- An experiment is a procedure that generates observable outcomes.
- An outcome is a possible observation of an experiment.
- The sample space Ω is the set of all possible outcomes.
- An event is a subset of Ω : it is a set of possible outcomes.

1.2.2 Probability Axioms

A probability measure $\mathbb{P}[\cdot]$ is a function that maps events to real numbers. It must satisfy the following axioms:

1. Non-negativity: For any event $A, \mathbb{P}[A] \geq 0$.
2. Normalization: $\mathbb{P}[\Omega]=1$.
3. Additivity: For any countable collective A_{1}, A_{2}, \ldots of mutually exclusive events,

$$
\mathbb{P}\left[A_{1} \cup A_{2} \cup \cdots\right]=\mathbb{P}\left[A_{1}\right]+\mathbb{P}\left[A_{2}\right]+\cdots
$$

- The next two properties follow directly from the axioms, and are useful to name explicitly:
- Complement: $\mathbb{P}\left[A^{c}\right]=1-\mathbb{P}[A]$.
- Inclusion-Exclusion: $\mathbb{P}[A \cup B]=\mathbb{P}[A]+\mathbb{P}[B]-\mathbb{P}[A \cap B]$.

1.3 Conditional Probability

- The conditional probability of event A given that B occurs is

$$
\mathbb{P}[A \mid B]=\frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}
$$

- For $\mathbb{P}[B]=0, \mathbb{P}[A \mid B]$ is undefined.
- Conditional probability satisfies the probability axioms:
- Non-negativity: For any event $A, \mathbb{P}[A \mid B] \geq 0$.
- Normalization: $\mathbb{P}[\Omega \mid B]=1$.
- Additivity: For any countable collective A_{1}, A_{2}, \ldots of mutually exclusive events,

$$
\mathbb{P}\left[A_{1} \cup A_{2} \cup \cdots \mid B\right]=\mathbb{P}\left[A_{1} \mid B\right]+\mathbb{P}\left[A_{2} \mid B\right]+\cdots .
$$

- Multiplication Rule: For two events A and $B, \mathbb{P}[A \cap B]=\mathbb{P}[A] \mathbb{P}[B \mid A]=\mathbb{P}[B] \mathbb{P}[A \mid B]$.

For n events $A_{1}, A_{2}, \ldots, A_{n}$,

$$
\mathbb{P}\left[\bigcap_{i=1}^{n} A_{i}\right]=\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2} \mid A_{1}\right] \mathbb{P}\left[A_{3} \mid A_{1} \cap A_{2}\right] \cdots \mathbb{P}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right]
$$

- Law of Total Probability: For a partition B_{1}, \ldots, B_{n} satisfying $\mathbb{P}\left[B_{i}\right]>0$ for all i,

$$
\mathbb{P}[A]=\sum_{i=1}^{n} \mathbb{P}\left[A \mid B_{i}\right] \mathbb{P}\left[B_{i}\right]
$$

- Bayes' Rule: This is a method to "flip" conditioning:

$$
\mathbb{P}[B \mid A]=\frac{\mathbb{P}[A \mid B] \mathbb{P}[B]}{\mathbb{P}[A]}
$$

Sometimes, it is useful to solve for the denominator using the total probability theorem. For a partition B_{1}, \ldots, B_{n} satisfying $\mathbb{P}\left[B_{i}\right]>0$ for all i,

$$
\mathbb{P}\left[B_{j} \mid A\right]=\frac{\mathbb{P}\left[A \mid B_{j}\right] \mathbb{P}\left[B_{j}\right]}{\mathbb{P}[A]}=\frac{\mathbb{P}\left[A \mid B_{j}\right] \mathbb{P}\left[B_{j}\right]}{\sum_{i=1}^{n} \mathbb{P}\left[A \mid B_{i}\right] \mathbb{P}\left[B_{i}\right]}
$$

1.4 Independence

- Two events A and B are independent if $\mathbb{P}[A \cap B]=\mathbb{P}[A] \mathbb{P}[B]$.
- Independence of A and B means that knowing if A occurs cannot help predict whether B also occurs (and vice versa).
- Events A_{1}, \ldots, A_{n} are independent if
- All collections of $n-1$ events chosen from A_{1}, \ldots, A_{n} are independent.
- $\mathbb{P}\left[A_{1} \cap \cdots \cap A_{n}\right]=\mathbb{P}\left[A_{1}\right] \cdots \mathbb{P}\left[A_{n}\right]$
- This recursive condition can be tedious to check. However, in most cases, we will use independence as a modeling assumption.
- Independence means that no subset of the events can be used to help predict the occurrence of any other subset of events.
- If A_{1}, \ldots, A_{n} only satisfy $\mathbb{P}\left[A_{i} \cap A_{j}\right]=\mathbb{P}\left[A_{i}\right] \mathbb{P}\left[A_{j}\right]$ for all $i \neq j$, then we say they are pairwise independent (but not independent).

1.4.1 Conditional Independence

- The events A and B are conditionally independent given C if

$$
\mathbb{P}[A \cap B \mid C]=\mathbb{P}[A \mid C] \mathbb{P}[B \mid C]
$$

- Conditional independence means that, given C occurs, knowing that A occurs cannot help predict whether B also occurs (and vice versa).
- Events A_{1}, \ldots, A_{n} are conditionally independent given B if
- All collections of $n-1$ events chosen from A_{1}, \ldots, A_{n} are conditionally independent given B.
- $\mathbb{P}\left[A_{1} \cap \cdots \cap A_{n} \mid B\right]=\mathbb{P}\left[A_{1} \mid B\right] \cdots \mathbb{P}\left[A_{n} \mid B\right]$
- Independence does not imply conditional independence.
- Conditional independence does not imply independence.

1.5 Counting

- If an experiment is composed of m subexperiments and the $i^{\text {th }}$ subexperiment consists of n_{i} outcomes (that can be freely chosen), then the total number of outcomes is $n_{1} n_{2} \cdots n_{m}$.
- Counting techniques are especially useful in scenarios where all outcomes are equally likely, since the probability of an event can be expressed as

$$
\mathbb{P}[A]=\frac{\# \text { outcomes in } A}{\# \text { outcomes in } \Omega}
$$

1.5.1 Sampling

- A sampling problem consists of n distinguishable elements with k selections to be made.
- Selections may be made either with or without replacement.
- The final outcome is either order dependent or order independent.

	Order	
	Dependent	Independent
With Replacement	n^{k}	$\binom{n+k-1}{k}$
Without Replacement	$\frac{n!}{(n-k)!}$	$\binom{n}{k}$

