1.1 Set Theory

Probability theory is built upon set theory. This is a very brief primer.

- A set is a collection of elements.
- We usually use capital letters (such as A) to refer to sets and lowercase letters (such as x) to refer to elements.
- $x \in A$ means "x is an element of the set A."
- $x \notin A$ means "x is not an element of the set A."
- The empty set or null set is the set with no elements. Notation: ϕ or $\{ \}$.
- The universal set Ω is the set of all elements (for the specific context).
- A subset A of a set B is a set consisting of some (or none or all) of the elements of B. Notation: $A \subset B$.
- Two sets A and B are equal if and only if $A \subset B$ and $B \subset A$.

1.1.1 Set Operations

- Complement: $A^{c} = \{x : x \notin A\}.$
- Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}.$
- Intersection: $A \cap B = \{x : x \in A \text{ and } x \in B\}.$
- Set Difference: $A B = \{x : x \in A \text{ and } x \notin B\}.$

1.1.2 Other Set Concepts

- A collection of sets A_1, \ldots, A_n is **mutually exclusive** if $A_i \cap A_j = \phi$ for $i \neq j$.
- A collection of sets A_1, \ldots, A_n is collectively exhaustive if $A_1 \cup \cdots \cup A_n = \Omega$.
- A collection of sets A_1, \ldots, A_n is a **partition** if it is both mutually exclusive and collectively exhaustive.

1.1.3 De Morgan's Laws

$$(A \cup B)^{\mathsf{c}} = A^{\mathsf{c}} \cap B^{\mathsf{c}} \qquad \left(\bigcup_{i=1}^{n} A_{i}\right)^{\mathsf{c}} = \bigcap_{i=1}^{n} A_{i}^{\mathsf{c}}$$
$$(A \cap B)^{\mathsf{c}} = A^{\mathsf{c}} \cup B^{\mathsf{c}} \qquad \left(\bigcap_{i=1}^{n} A_{i}\right)^{\mathsf{c}} = \bigcup_{i=1}^{n} A_{i}^{\mathsf{c}}$$

1.2 Axiomatic Theory of Probability

We need a formal, principled method for assigning probabilities to sets. This will be especially useful as a foundation for complex probabilisitic reasoning (later in the course).

1.2.1 Basic Probability Model

- An **experiment** is a procedure that generates observable outcomes.
- An **outcome** is a possible observation of an experiment.
- The sample space Ω is the set of all possible outcomes.
- An event is a subset of Ω : it is a set of possible outcomes.

1.2.2 Probability Axioms

A **probability measure** $\mathbb{P}[\cdot]$ is a function that maps events to real numbers. It must satisfy the following axioms:

- 1. Non-negativity: For any event A, $\mathbb{P}[A] \ge 0$.
- 2. Normalization: $\mathbb{P}[\Omega] = 1$.
- 3. Additivity: For any countable collective A_1, A_2, \ldots of mutually exclusive events,

$$\mathbb{P}[A_1 \cup A_2 \cup \cdots] = \mathbb{P}[A_1] + \mathbb{P}[A_2] + \cdots$$

- The next two properties follow directly from the axioms, and are useful to name explicitly:
 - $\circ \text{ Complement: } \mathbb{P}[A^{\mathsf{c}}] = 1 \mathbb{P}[A].$
 - Inclusion-Exclusion: $\mathbb{P}[A \cup B] = \mathbb{P}[A] + \mathbb{P}[B] \mathbb{P}[A \cap B].$

1.3 Conditional Probability

• The **conditional probability** of event A given that B occurs is

$$\mathbb{P}[A|B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]} \; .$$

- For $\mathbb{P}[B] = 0$, $\mathbb{P}[A|B]$ is undefined.
- Conditional probability satisfies the probability axioms:
 - Non-negativity: For any event A, $\mathbb{P}[A|B] \ge 0$.
 - Normalization: $\mathbb{P}[\Omega|B] = 1$.
 - Additivity: For any countable collective A_1, A_2, \ldots of mutually exclusive events,

$$\mathbb{P}[A_1 \cup A_2 \cup \cdots | B] = \mathbb{P}[A_1 | B] + \mathbb{P}[A_2 | B] + \cdots$$

• Multiplication Rule: For two events A and B, $\mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B|A] = \mathbb{P}[B]\mathbb{P}[A|B]$. For n events A_1, A_2, \ldots, A_n ,

$$\mathbb{P}\left[\bigcap_{i=1}^{n} A_{i}\right] = \mathbb{P}[A_{1}] \mathbb{P}[A_{2}|A_{1}] \mathbb{P}[A_{3}|A_{1} \cap A_{2}] \cdots \mathbb{P}[A_{n}|A_{1} \cap \cdots \cap A_{n-1}].$$

• Law of Total Probability: For a partition B_1, \ldots, B_n satisfying $\mathbb{P}[B_i] > 0$ for all i,

$$\mathbb{P}[A] = \sum_{i=1}^{n} \mathbb{P}[A|B_i]\mathbb{P}[B_i]$$

• Bayes' Rule: This is a method to "flip" conditioning:

$$\mathbb{P}[B|A] = \frac{\mathbb{P}[A|B]\mathbb{P}[B]}{\mathbb{P}[A]}$$

Sometimes, it is useful to solve for the denominator using the total probability theorem. For a partition B_1, \ldots, B_n satisfying $\mathbb{P}[B_i] > 0$ for all i,

$$\mathbb{P}[B_j|A] = \frac{\mathbb{P}[A|B_j]\mathbb{P}[B_j]}{\mathbb{P}[A]} = \frac{\mathbb{P}[A|B_j]\mathbb{P}[B_j]}{\sum_{i=1}^n \mathbb{P}[A|B_i]\mathbb{P}[B_i]}$$

1.4 Independence

- Two events A and B are independent if $\mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B]$.
- Independence of A and B means that knowing if A occurs cannot help predict whether B also occurs (and vice versa).
- Events A_1, \ldots, A_n are independent if
 - All collections of n-1 events chosen from A_1, \ldots, A_n are independent.

$$\circ \mathbb{P}[A_1 \cap \dots \cap A_n] = \mathbb{P}[A_1] \cdots \mathbb{P}[A_n]$$

- This recursive condition can be tedious to check. However, in most cases, we will use independence as a modeling assumption.
- Independence means that no subset of the events can be used to help predict the occurrence of any other subset of events.
- If A₁,..., A_n only satisfy P[A_i ∩ A_j] = P[A_i]P[A_j] for all i ≠ j, then we say they are pairwise independent (but not independent).

1.4.1 Conditional Independence

• The events A and B are **conditionally independent** given C if

$$\mathbb{P}[A \cap B | C] = \mathbb{P}[A | C] \mathbb{P}[B | C] .$$

- Conditional independence means that, given C occurs, knowing that A occurs cannot help predict whether B also occurs (and vice versa).
- Events A_1, \ldots, A_n are conditionally independent given B if
 - All collections of n-1 events chosen from A_1, \ldots, A_n are conditionally independent given B.

$$\circ \mathbb{P}[A_1 \cap \cdots \cap A_n | B] = \mathbb{P}[A_1 | B] \cdots \mathbb{P}[A_n | B]$$

- Independence does not imply conditional independence.
- Conditional independence does not imply independence.

1.5 Counting

- If an experiment is composed of m subexperiments and the i^{th} subexperiment consists of n_i outcomes (that can be freely chosen), then the total number of outcomes is $n_1 n_2 \cdots n_m$.
- Counting techniques are especially useful in scenarios where all outcomes are equally likely, since the probability of an event can be expressed as

$$\mathbb{P}[A] = \frac{\# \text{ outcomes in } A}{\# \text{ outcomes in } \Omega}$$

1.5.1 Sampling

- A sampling problem consists of *n* distinguishable elements with *k* selections to be made.
 - Selections may be made either with or without replacement.
 - The final outcome is either order dependent or order independent.

	Order	
	Dependent	Independent
With Replacement	n^k	$\left(\begin{array}{c} n+k-1 \\ k \end{array} \right)$
Without Replacement	$\frac{n!}{(n-k)!}$	$\binom{n}{k}$