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1.1 Set Theory

Probability theory is built upon set theory. This is a very brief primer.

• A set is a collection of elements.

• We usually use capital letters (such as A) to refer to sets and lowercase letters (such as x) to
refer to elements.

• x ∈ A means “x is an element of the set A.”

• x /∈ A means “x is not an element of the set A.”

• The empty set or null set is the set with no elements. Notation: φ or { }.

• The universal set Ω is the set of all elements (for the specific context).

• A subset A of a set B is a set consisting of some (or none or all) of the elements of B.
Notation: A ⊂ B.

• Two sets A and B are equal if and only if A ⊂ B and B ⊂ A.

1.1.1 Set Operations

• Complement: Ac = {x : x /∈ A}.

• Union: A ∪B = {x : x ∈ A or x ∈ B}.

• Intersection: A ∩B = {x : x ∈ A and x ∈ B}.

• Set Difference: A−B = {x : x ∈ A and x /∈ B}.

1.1.2 Other Set Concepts

• A collection of sets A1, . . . , An is mutually exclusive if Ai ∩Aj = φ for i 6= j.

• A collection of sets A1, . . . , An is collectively exhaustive if A1 ∪ · · · ∪An = Ω.

• A collection of sets A1, . . . , An is a partition if it is both mutually exclusive and collectively
exhaustive.

1.1.3 De Morgan’s Laws
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1.2 Axiomatic Theory of Probability

We need a formal, principled method for assigning probabilities to sets. This will be especially
useful as a foundation for complex probabilisitic reasoning (later in the course).



2 EK381 Probability: 1. Foundations of Probability

1.2.1 Basic Probability Model

• An experiment is a procedure that generates observable outcomes.

• An outcome is a possible observation of an experiment.

• The sample space Ω is the set of all possible outcomes.

• An event is a subset of Ω: it is a set of possible outcomes.

1.2.2 Probability Axioms

A probability measure P[·] is a function that maps events to real numbers. It must satisfy the
following axioms:

1. Non-negativity: For any event A, P[A] ≥ 0.

2. Normalization: P[Ω] = 1.

3. Additivity: For any countable collective A1, A2, . . . of mutually exclusive events,

P[A1 ∪A2 ∪ · · · ] = P[A1] + P[A2] + · · · .

• The next two properties follow directly from the axioms, and are useful to name explicitly:

◦ Complement: P[Ac] = 1− P[A].

◦ Inclusion-Exclusion: P[A ∪B] = P[A] + P[B]− P[A ∩B].

1.3 Conditional Probability

• The conditional probability of event A given that B occurs is

P[A|B] =
P[A ∩B]

P[B]
.

• For P[B] = 0, P[A|B] is undefined.

• Conditional probability satisfies the probability axioms:

◦ Non-negativity: For any event A, P[A|B] ≥ 0.

◦ Normalization: P[Ω|B] = 1.

◦ Additivity: For any countable collective A1, A2, . . . of mutually exclusive events,

P[A1 ∪A2 ∪ · · · |B] = P[A1|B] + P[A2|B] + · · · .

• Multiplication Rule: For two events A and B, P[A ∩B] = P[A]P[B|A] = P[B]P[A|B].
For n events A1, A2, . . . , An,

P
[ n⋂
i=1

Ai

]
= P[A1]P[A2|A1]P[A3|A1 ∩ A2] · · · P[An|A1 ∩ · · · ∩ An−1] .

• Law of Total Probability: For a partition B1, . . . , Bn satisfying P[Bi] > 0 for all i,

P[A] =
n∑

i=1

P[A|Bi]P[Bi] .
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• Bayes’ Rule: This is a method to “flip” conditioning:

P[B|A] =
P[A|B]P[B]

P[A]
.

Sometimes, it is useful to solve for the denominator using the total probability theorem. For
a partition B1, . . . , Bn satisfying P[Bi] > 0 for all i,

P[Bj |A] =
P[A|Bj ]P[Bj ]

P[A]
=

P[A|Bj ]P[Bj ]
n∑

i=1

P[A|Bi]P[Bi]

.

1.4 Independence

• Two events A and B are independent if P[A ∩B] = P[A]P[B].

• Independence of A and B means that knowing if A occurs cannot help predict whether B
also occurs (and vice versa).

• Events A1, . . . , An are independent if

◦ All collections of n− 1 events chosen from A1, . . . , An are independent.

◦ P[A1 ∩ · · · ∩An] = P[A1] · · ·P[An]

• This recursive condition can be tedious to check. However, in most cases, we will use inde-
pendence as a modeling assumption.

• Independence means that no subset of the events can be used to help predict the occurrence
of any other subset of events.

• If A1, . . . , An only satisfy P[Ai∩Aj ] = P[Ai]P[Aj ] for all i 6= j, then we say they are pairwise
independent (but not independent).

1.4.1 Conditional Independence

• The events A and B are conditionally independent given C if

P[A ∩B|C] = P[A|C]P[B|C] .

• Conditional independence means that, given C occurs, knowing that A occurs cannot help
predict whether B also occurs (and vice versa).

• Events A1, . . . , An are conditionally independent given B if

◦ All collections of n − 1 events chosen from A1, . . . , An are conditionally independent
given B.

◦ P[A1 ∩ · · · ∩An|B] = P[A1|B] · · ·P[An|B]

• Independence does not imply conditional independence.

• Conditional independence does not imply independence.
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1.5 Counting

• If an experiment is composed of m subexperiments and the ith subexperiment consists of ni
outcomes (that can be freely chosen), then the total number of outcomes is n1 n2 · · · nm.

• Counting techniques are especially useful in scenarios where all outcomes are equally likely,
since the probability of an event can be expressed as

P[A] =
# outcomes in A

# outcomes in Ω

1.5.1 Sampling

• A sampling problem consists of n distinguishable elements with k selections to be made.

◦ Selections may be made either with or without replacement.

◦ The final outcome is either order dependent or order independent.
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