2.1 Discrete Random Variables

- A random variable is a mapping that assigns real numbers to outcomes in the sample space.
- Random variables are denoted by capital letters (such as X) and their specific values are denoted by lowercase letters (such as x).
- The range of a random variable X is denoted by R_X .

2.1.1 Probability Mass Function

• The **probability mass function (PMF)** specifies the probability that a discrete random variable X takes the value x:

$$P_X(x) = \mathbb{P}[X = x].$$

- The PMF satisfies the following basic properties:
 - 1. Non-negativity: $P_X(x) \ge 0$ for all x.
 - 2. Normalization: $\sum_{x \in R_X} P_X(x) = 1.$
 - 3. Additivity: For any event $B \subset R_X$, the probability that X falls in B is

$$\mathbb{P}[\{X \in B\}] = \sum_{x \in B} P_X(x).$$

2.1.2 Cumulative Distribution Function

• The **cumulative distribution function (CDF)** returns the probability that a random variable X is less than or equal to a value x:

$$F_X(x) = \mathbb{P}[X \le x].$$

- The CDF satisfies the following basic properties:
 - Normalization: $F_X(-\infty) = 0$ and $F_X(\infty) = 1$.
 - Non-negativity: $F_X(x)$ is a non-decreasing function of x.
 - For $b \ge a$, $F_X(b) F_X(a) = \mathbb{P}[a < X \le b]$.
 - $F_X(x)$ is piecewise constant and jumps at points x where $P_X(x) > 0$ by height $P_X(x)$.

2.2 Expectation

2.2.1 Expected Value

• The **expected value** of a discrete random variable X is

$$\mathbb{E}[X] = \sum_{x \in R_X} x P_X(x).$$

- This is also known as the **mean** or **average**.
- Sometimes denoted as $\mu_X = \mathbb{E}[X]$.

2.2.2 Variance

• The variance measures how spread out a random variable is around its mean,

$$\operatorname{Var}[X] = \mathbb{E}\Big[\big(X - \mathbb{E}[X]\big)^2\Big] = \sum_{x \in R_X} (x - \mu_X)^2 P_X(x).$$

- Alternate formula: $\operatorname{Var}[X] = \mathbb{E}[X^2] (\mathbb{E}[X])^2$.
- Standard Deviation: $\sigma_X = \sqrt{Var[X]}$.
- The variance is sometimes written as $\sigma_X^2 = \mathsf{Var}[X]$.

2.2.3 Moments

- n^{th} Moment: $\mathbb{E}[X^n] = \sum_{x \in R_X} x^n P_X(x).$
- n^{th} Central Moment: $\mathbb{E}\left[\left(X \mathbb{E}[X]\right)^n\right] = \sum_{x \in R_X} (x \mu_X)^n P_X(x).$

2.3 Functions of a Random Variable

- A function Y = g(X) of a discrete random variable X is itself a discrete random variable.
- Sometimes referred to as a **derived random variable**.
- Range: $R_Y = \{g(x) : x \in R_X\}.$

• PMF:
$$P_Y(y) = \sum_{x:g(x)=y} P_X(x)$$

• Expected Value:
$$\mathbb{E}[Y] = \sum_{y \in R_Y} y P_Y(y) = \sum_{x \in R_X} g(x) P_X(x)$$
.

- Linearity of Expectation: $\mathbb{E}[aX + b] = a \mathbb{E}[X] + b$.
- Variance of a Linear Function: $Var[aX + b] = a^2 Var[X]$.

2.4 Important Families of Discrete Random Variables

2.4.1 Bernoulli Random Variables

• X is a **Bernoulli**(p) random variable if it has PMF

$$P_X(x) = \begin{cases} 1-p & x=0, \\ p & x=1 \end{cases}.$$

- Range: $R_X = \{0, 1\}.$
- Expected Value: $\mathbb{E}[X] = p$.
- Variance: Var[X] = p(1-p).
- Interpretation: single trial with success probability *p*.

2.4.2 Geometric Random Variables

• X is a **Geometric**(p) random variable if it has PMF

$$P_X(x) = \begin{cases} p(1-p)^{x-1} & x = 1, 2, \dots \\ 0 & \text{otherwise.} \end{cases}$$

- Range: $R_X = \{1, 2, \ldots\}.$
- Expected Value: $\mathbb{E}[X] = \frac{1}{p}$.
- Variance: $\operatorname{Var}[X] = \frac{1-p}{p^2}$.
- Interpretation: # of independent Bernoulli(p) trials until first success.

2.4.3 Binomial Random Variables

• X is a **Binomial**(n, p) random variable if it has PMF

$$P_X(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & x = 0, 1, \dots, n, \\ 0 & \text{otherwise.} \end{cases}$$

- Range: $R_X = \{0, 1, \dots, n\}.$
- Expected Value: $\mathbb{E}[X] = np$.
- Variance: Var[X] = np(1-p).
- Interpretation: # of successes in n independent Bernoulli(p) trials.

2.4.4 Discrete Uniform Random Variables

• X is a **Discrete Uniform**(a, b) random variable if it has PMF

$$P_X(x) = \begin{cases} \frac{1}{b-a+1} & x = a, a+1, \dots, b, \\ 0 & \text{otherwise.} \end{cases}$$

- Range: $R_X = \{a, a + 1, \dots, b\}.$
- Expected Value: $\mathbb{E}[X] = \frac{a+b}{2}$.
- Variance: $\operatorname{Var}[X] = \frac{(b-a)(b-a+2)}{12} = \frac{(b-a+1)^2 1}{12}.$
- Interpretation: equally likely to take any (integer) value between a and b.

2.4.5 Poisson Random Variables

• X is a $\mathbf{Poisson}(\lambda)$ random variable if it has PMF

$$P_X(x) = \begin{cases} \frac{\lambda^x}{x!} e^{-\lambda} & x = 0, 1, \dots \\ 0 & \text{otherwise.} \end{cases}$$

- Range: $R_X = \{0, 1, ...\}.$
- Expected Value: $\mathbb{E}[X] = \lambda$.
- Variance: $Var[X] = \lambda$.
- Interpretation: # of arrivals in a fixed time window.

2.5 Conditioning for Discrete Random Variables

• The conditional **PMF** of X given an event B is

$$P_{X|B}(x) = \begin{cases} \frac{P_X(x)}{\mathbb{P}[\{X \in B\}]} & x \in B\\ 0 & x \notin B \end{cases} \quad \text{where} \quad \mathbb{P}[\{X \in B\}] = \sum_{x \in B} P_X(x)$$

The conditional PMF satisfies the basic PMF properties

- 1. Non-negativity: $P_{X|B}(x) \ge 0$ for all x.
- 2. Normalization: $\sum_{x \in B} P_{X|B}(x) = 1.$
- 3. Additivity: For any event $A \subset R_X$, the conditional probability that X falls in A given that X falls in B is

$$\mathbb{P}\big[\{X \in A\} \big| \{X \in B\}\big] = \sum_{x \in A} P_{X|B}(x).$$

• The conditional expected value of X given an event B is

$$\mathbb{E}[X|B] = \sum_{x \in B} x P_{X|B}(x) \; .$$

• The conditional expected value of a function g(X) given an event B is

$$\mathbb{E}[g(X)|B] = \sum_{x \in B} g(x) P_{X|B}(x)$$

• The conditional variance of X given an event B is

$$\operatorname{Var}[X|B] = \mathbb{E}\left[\left(X - \mathbb{E}[X|B]\right)^2 \middle| B\right] = \sum_{x \in B} \left(x - \mathbb{E}[X|B]\right)^2 P_{X|B}(x)$$
$$= \mathbb{E}\left[X^2|B] - \left(\mathbb{E}[X|B]\right)^2$$