3.1 Continuous Random Variables

- A random variable is **continuous** if it has a continuous CDF (see below) which is differentiable almost everywhere.
- The probability mass function (PMF) is not defined since, for a continuous random variable, the probability of taking an exact value is always zero, $\mathbb{P}[X = x] = 0$. Therefore, open vs. closed interval has no effect: $\mathbb{P}[a < X < b] = \mathbb{P}[a < X \leq b] = \mathbb{P}[a \leq X < b] = \mathbb{P}[a \leq X \leq b]$.

3.1.1 Cumulative Distribution Function

• The cumulative distribution function (CDF) returns the probability that a random variable X is less than or equal to a value x:

$$F_X(x) = \mathbb{P}[X \le x]$$

- The CDF satisfies the following basic properties:
 - Non-negativity: $F_X(x)$ is a non-decreasing function of x.
 - Normalization: $F_X(-\infty) = 0$ and $F_X(\infty) = 1$.
 - Probability of an interval: $\mathbb{P}[a < X \leq b] = F_X(b) F_X(a)$.

$$\circ$$
 CDF \rightarrow **PDF**: $\frac{d}{dx}F_X(x) = f_X(x).$

3.1.2 Probability Density Function

• The probability density function (PDF) is the derivative of the CDF:

$$f_X(x) = \frac{d}{dx} F_X(x).$$

- The PDF plays the role of the PMF for continuous random variables in many ways, but it does not tell us the probability of X = x, which is always 0 for continuous random variables.
- The PDF satisfies the following basic properties:
 - Non-negativity: $f_X(x) \ge 0$.
 - Normalization: $\int_{-\infty}^{\infty} f_X(x) \, dx = 1.$

• Probability of an interval: $\mathbb{P}[a < X \le b] = \int_a^b f_X(x) dx.$ • PDF \rightarrow CDF: $\int_a^x f_Y(u) du = F_X(x).$

$$\circ \mathbf{PDF} \to \mathbf{CDF}: \int_{-\infty} f_X(u) \, du = F_$$

3.2 Expectation

3.2.1 Expected Value

• The **expected value** of a continuous random variable X is

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx.$$

- This is also known as the **mean** or **average**.
- Sometimes denoted as $\mu_X = \mathbb{E}[X]$.

3.2.2 Expected Value of a Function of a Random Variable

- A function Y = g(X) of a continuous random variable X might be continuous or not, depending on the function g(x).
- However, we can always calculate the expected value using only the function and PDF,

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) \, dx.$$

• Linearity of Expectation: $\mathbb{E}[aX + b] = a \mathbb{E}[X] + b$.

3.2.3 Variance

• The variance measures how spread out a random variable is around its mean,

$$\operatorname{Var}[X] = \mathbb{E}\left[\left(X - \mathbb{E}[X]\right)^2\right] = \int_{-\infty}^{\infty} (x - \mu_X)^2 f_X(x) \, dx.$$

- Alternate formula: $\operatorname{Var}[X] = \mathbb{E}[X^2] (\mathbb{E}[X])^2$.
- Standard Deviation: $\sigma_X = \sqrt{\mathsf{Var}[X]}$.
- The variance is sometimes written as $\sigma_X^2 = \operatorname{Var}[X]$.
- Variance of a Linear Function: $Var[aX + b] = a^2 Var[X]$.

3.2.4 Moments

•
$$n^{th}$$
 Moment: $\mathbb{E}[X^n] = \int_{-\infty}^{\infty} x^n f_X(x) dx.$

• n^{th} Central Moment: $\mathbb{E}\left[\left(X - \mathbb{E}[X]\right)^n\right] = \int_{-\infty}^{\infty} (x - \mu_X)^n f_X(x) dx.$

3.3 Important Families of Discrete Random Variables

3.3.1 Uniform Random Variables

• X is a **Uniform**(a, b) random variable if it has PDF $f_X(x) = \begin{cases} \frac{1}{b-a} & a \le x < b \\ 0 & \text{otherwise.} \end{cases}$

• CDF:
$$F_X(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x < b \\ 1 & b \le x \end{cases}$$

- Expected Value: $\mathbb{E}[X] = \frac{a+b}{2}$.
- Variance: $\operatorname{Var}[X] = \frac{(b-a)^2}{12}$.
- Interpretation: Equally likely to take any value between a and b.

3.3.2 Exponential Random Variables

- X is an **Exponential**(λ) random variable if it has PDF $f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0, \\ 0 & x < 0. \end{cases}$
- CDF: $F_X(x) = \begin{cases} 1 e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}$.
- Expected Value: $\mathbb{E}[X] = \frac{1}{\lambda}$.
- Variance: $\operatorname{Var}[X] = \frac{1}{\lambda^2}$.
- Interpretation: Continuous waiting time. "Continuous version" of geometric RV.

3.3.3 Gaussian Random Variables

• X is a **Gaussian**(μ, σ^2) random variable if it has PDF $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$.

• CDF:
$$F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$
 where $\Phi(z) = \int_{-\infty}^z \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{w^2}{2}\right) dw$

- $\Phi(z)$ is called the standard normal CDF. (Evaluated via MATLAB, lookup table, etc.)
- $Q(z) = 1 \Phi(z)$ is the standard normal complementary CDF.

•
$$\Phi(-z) = 1 - \Phi(z) = Q(z).$$

- Expected Value: $\mathbb{E}[X] = \mu$.
- Variance: $Var[X] = \sigma^2$.
- Probability of an Interval: $\mathbb{P}[a \le X \le b] = \Phi\left(\frac{b-\mu}{\sigma}\right) \Phi\left(\frac{a-\mu}{\sigma}\right)$
- Linear function of a Gaussian is Gaussian: If X is a Gaussian(μ, σ^2) random variable, then Y = aX + b is a Gaussian($a\mu + b, a^2\sigma^2$) random variable.
- Interpretation: Sum (or average) of many small random effects.

3.4 Conditional Probability Models

• The conditional PDF of X given an event B is

$$f_{X|B}(x) = \begin{cases} \frac{f_X(x)}{\mathbb{P}[X \in B]} & x \in B\\ 0 & x \notin B \end{cases} \quad \text{where} \quad \mathbb{P}[X \in B] = \int_B f_X(x) \, dx \; .$$

- The conditional PDF satisfies the following basic properties:
 - Non-negativity: $f_{X|B}(x) \ge 0$.

- Normalization: $\int_{-\infty}^{\infty} f_{X|B}(x) dx = 1.$
- $\circ\,$ Conditional probability of an interval:

$$\mathbb{P}\big[\{a \le X \le b\} \big| \{X \in B\}\big] = \int_a^b f_{X|B}(x) \, dx \; .$$

• The conditional expected value of X given an event B is

$$\mathbb{E}[X|B] = \int_{-\infty}^{\infty} x f_{X|B}(x) \, dx \; .$$

• The conditional expected value of a function g(X) given an event B is

$$\mathbb{E}\big[g(X)|B\big] = \int_{-\infty}^{\infty} g(x) f_{X|B}(x) \, dx \; .$$

• The **conditional variance** of X given an event B is

$$\operatorname{Var}[X|B] = \mathbb{E}\Big[\left(X - \mathbb{E}[X|B]\right)^2 \Big| B\Big] = \int_B \left(x - \mathbb{E}[X|B]\right)^2 f_{X|B}(x) \, dx$$
$$= \mathbb{E}[X^2|B] - \left(\mathbb{E}[X|B]\right)^2$$