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4.1 Pairs of Random Variables

• Formally, multiple random variables are the result of a mapping that assigns multiple real
numbers to outcomes in the sample space.

• Intuitively, we can think of multiple random variables as the observations from an experiment
that simultaneously produces two or more numbers.

• Multiple random variables are denoted by capital letters and their values by lowercase letters.

◦ n random variables are often denoted by X1, X2, . . . , Xn and their values by x1, x2, . . . , xn

◦ a pair of random variables (n = 2) is often denoted by X,Y and their values by x, y

• The relationship between multiple random variables is more general than a function. A
function maps one number to another number whereas, for a given value of X, the random
variable Y may randomly take one of several values.

• Most of the basic concepts are well-captured by the special case of pairs of random variables,
which we focus on below.

4.1.1 Joint Cumulative Distribution Function

• The joint cumulative distribution function (CDF) returns the probability that the
random variables X and Y are less than or equal to the values x and y, respectively:

FX,Y (x, y) = P[X ≤ x, Y ≤ y] = P
[
{X ≤ x} ∩ {Y ≤ y}

]
.

• Unifies discrete and continuous random variables.

• The joint CDF satisfies the following basic properties:

◦ Non-negativity: FX,Y (x, y) ≥ 0.

◦ Normalization: lim
x,y→∞

FX,Y (x, y) = 1.

◦ Non-decreasing: For any x ≤ x̃ and y ≤ ỹ, FX,Y (x, y) ≤ FX,Y (x̃, ỹ).

◦ Marginalization: lim
y→∞

FX,Y (x, y) = FX(x) and lim
x→∞

FX,Y (x, y) = FY (y).

4.2 Pairs of Discrete Random Variables

• A pair of random variables X,Y is discrete if X and Y are discrete random variables.

4.2.1 Joint Probability Mass Function

• The joint probability mass function (PMF) of a pair of discrete random variables X
and Y is

PX,Y (x, y) = P[X = x, Y = x] = P
[
{X = x} ∩ {Y = y}

]
.

• The range RX,Y of a pair of discrete random variables is the set of all possible pairs of values,

RX,Y = {(x, y) : PX,Y (x, y) > 0}.

• The joint PMF satisfies the following basic properties:
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◦ Non-negativity: PX,Y (x, y) ≥ 0.

◦ Normalization:
∑

(x,y)∈RX,Y

PX,Y (x, y) = 1.

◦ Additivity: P
[
(X,Y ) ∈ B

]
=

∑
(x,y)∈B

PX,Y (x, y).

4.2.2 Marginal PMF

• The marginal PMF PX(x) is just the PMF of X. Similarly, the marginal PMF PY (y) is
just the PMF Y .

• A marginal PMF can be obtained by summing the joint PMF over the undesired variable:

PX(x) =
∑
y∈RY

PX,Y (x, y) PY (y) =
∑

x∈RX

PX,Y (x, y)

4.2.3 Conditional PMF

• The conditional PMF gives the probability of one random variable when the other is fixed
to a certain value:

Conditional PMF of X given Y: PX|Y (x|y) = P[X = x|Y = y] =


PX,Y (x, y)

PY (y)
(x, y) ∈ RX,Y

0 otherwise.

Conditional PMF of Y given X: PY |X(y|x) = P[Y = y|X = x] =


PX,Y (x, y)

PX(x)
(x, y) ∈ RX,Y

0 otherwise.

• The conditional PMF satisfies the following basic properties:

◦ Non-negativity: PX|Y (x|y) ≥ 0 and PY |X(y|x) ≥ 0 for all x and y.

◦ Normalization:
∑

x∈RX

PX|Y (x|y) = 1 for any y and
∑
y∈RY

PY |X(y|x) = 1 for any x.

◦ Additivity: For any event B ⊂ RX , the probability that X falls in B given Y = y is

P[X ∈ B|Y = y] =
∑
x∈B

PX|Y (x|y).

For any event B ⊂ RY , the probability that Y falls in B given X = x is

P[Y ∈ B|X = x] =
∑
y∈B

PY |X(y|x).

• The techniques we developed for conditional probabilities also apply to conditional PMFs:

◦ Multiplication Rule: PX,Y (x, y) = PX|Y (x|y)PY (y) = PY |X(y|x)PX(x).

◦ Law of Total Probability: PX(x) =
∑
y∈RY

PX|Y (x|y)PY (y) PY (y) =
∑

x∈RX

PY |X(y|x)PX(x).

◦ Bayes’ Rule: PX|Y (x|y) =
PY |X(y|x)PX(x)

PY (y)
PY |X(y|x) =

PX|Y (x|y)PY (y)

PX(x)
.
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4.3 Pairs of Continuous Random Variables

• A pair of random variables X,Y is continuous if their joint CDF is continuous and differen-
tiable almost everywhere.

4.3.1 Joint Probability Density Function

• The joint probability density function (PDF) of a pair of continuous random variables
X and Y is

fX,Y (x, y) =


∂2FX,Y (x, y)

∂x∂y
if FX,Y (x, y) is differentiable at (x, y),

any non-negative value otherwise.

• The range RX,Y of a pair of continuous random variables is the set of all possible pairs of
values,

RX,Y =
{

(x, y) : fX,Y (x, y) > 0
}
.

4.3.2 Marginal PDF

• The marginal PDF fX(x) is just the PDF of X. Similarly, the marginal PDF fY (y) is just
the PDF of Y .

• A marginal PDF can be obtained by integrating the joint PDF over the undesired variable:

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx.

4.3.3 Conditional PDF

• The conditional PDF gives the probability density of one random variable when the other
is fixed to a certain value

Conditional PDF of X given Y: fX|Y (x|y) =


fX,Y (x, y)

fY (y)
(x, y) ∈ RX,Y

0 otherwise.

Conditional PDF of Y given X: fY |X(y|x) =


fX,Y (x, y)

fX(x)
(x, y) ∈ RX,Y

0 otherwise.

• The conditional PDF satisfies the following basic properties:

◦ Non-negativity: fX|Y (x|y) ≥ 0 and fY |X(y|x) ≥ 0 for all x and y.

◦ Normalization:

∫ ∞
−∞

fX|Y (x|y) dx = 1 for any y and

∫ ∞
−∞

fY |X(y|x) dy = 1 for any x.

◦ Additivity: For any event B ⊂ RX , the probability that X falls in B given Y = y is

P[X ∈ B|Y = y] =

∫
B
fX|Y (x|y) dy.

For any event B ⊂ RY , the probability that Y falls in B given X = x is

P[Y ∈ B|X = x] =

∫
B
fY |X(y|x) dx.
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• The techniques we developed for conditional probabilities also apply to conditional PDFs:

◦ Multiplication Rule: fX,Y (x, y) = fX|Y (x|y)fY (y) = fY |X(y|x)fX(x).

◦ Law of Total Probability: fX(x) =

∫ ∞
−∞

fX|Y (x|y) fY (y) dy fY (y) =

∫ ∞
−∞

fY |X(y|x) fX(x) dx.

◦ Bayes’ Rule: fX|Y (x|y) =
fY |X(y|x)fX(x)

fY (y)
fY |X(y|x) =

fX|Y (x|y)fY (y)

fX(x)
.

4.4 Independence of Pairs of Random Variables

• A pair of random variables X and Y are independent if and only if FX,Y (x, y) = FX(x)FY (y).

• This condition is equivalent to

◦ Discrete: X and Y are independent if and only if PX,Y (x, y) = PX(x)PY (y).

◦ Continuous: X and Y are independent if and only if fX,Y (x, y) = fX(x)fY (y).

• Independence can also be connected to the conditional PMF or PDF:

◦ Discrete: X and Y are independent if and only if
PX|Y (x|y) = PX(x) and PY |X(y|x) = PY (y). (Suffices to check one of these.)

◦ Continuous: X and Y are independent if and only if
fX|Y (x|y) = fX(x) and fY |X(y|x) = fY (y). (Suffices to check one of these.)

• In some special cases, we can quickly rule out independence:

◦ Discrete: If there is a zero entry in the joint PMF table for which neither the entire
column or entire row is zero, then the random variables are not independent.

◦ Continuous: If the range is not a collection of rectangles parallel to the axes (possi-
bly of infinite extent in either or both dimensions), then the random variables are not
independent.

4.5 Expected Value of a Function of Pairs of Random Variables

• The expected value of a function W = g(X,Y ) is

Discrete: E[W ] =
∑

x∈RX

∑
y∈RY

g(x, y)PX,Y (x, y)

Continuous: E[W ] =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)fX,Y (x, y) dx dy

• Linearity of Expectation: For any functions g1(x, y), . . . , gn(x, y) and constants a1, . . . , an,

E
[
a1g1(X,Y ) + · · ·+ angn(X,Y )

]
= a1E[g1(X,Y )] + · · ·+ anE[gn(X,Y )],

which does not require independence and includes the special cases

◦ E[X + Y ] = E[X] + E[Y ]

◦ For any constants a, b, c, E[aX + bY + c] = aE[X] + bE[Y ] + c.

• Expectation of Products: If X and Y are independent, then E[g(X)h(Y )] = E[g(X)]E[h(Y )].
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4.6 Conditional Expectation

• The conditional expected value of X given Y = y is

Discrete: E[X|Y = y] =
∑

x∈RX

x pX|Y (x|y)

Continuous: E[X|Y = y] =

∫ ∞
−∞

x fX|Y (x|y) dx

◦ Intuition: The conditional expected value E[X|Y = y] is the average value of X given
that Y = y.

◦ Think of E[X|Y = y] as a deterministic function of the value y.

◦ Think of E[X|Y ] as a random variable, which is a particular function of the random
variable Y . To see this more clearly, define h(y) = E[X|Y = y] to be the function we
obtain from the conditional expectation, and E[X|Y ] = h(Y ).

◦ If X and Y are independent, then E[X|Y = y] = E[X].

◦ Law of Total Expectation: E
[
E[X|Y ]

]
= E[X]. This can be easier to understand with

by first defining h(y) = E[X|Y = y], and then substituting this in to get E[h(Y )] = E[X].

◦ We can similarly define the conditional expected value of Y given X = x, E[Y |X = x].

• The conditional expected value of a function g(X) given Y = y is

Discrete: E[g(X)|Y = y] =
∑

x∈RX

g(x) pX|Y (x|y)

Continuous: E[g(X)|Y = y] =

∫ ∞
−∞

g(x) fX|Y (x|y) dx

◦ If X and Y are independent, then E[g(X)|Y = y] = E[g(X)].

◦ Law of Total Expectation: E
[
E[g(X)|Y ]

]
= E[g(X)].

◦ We can similarly define the conditional expected value of a function g(Y ) given X = x,
E[g(Y )|X = x].
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