4.1 Pairs of Random Variables

- Formally, multiple random variables are the result of a mapping that assigns multiple real numbers to outcomes in the sample space.
- Intuitively, we can think of multiple random variables as the observations from an experiment that simultaneously produces two or more numbers.
- Multiple random variables are denoted by capital letters and their values by lowercase letters.
- n random variables are often denoted by $X_{1}, X_{2}, \ldots, X_{n}$ and their values by $x_{1}, x_{2}, \ldots, x_{n}$ - a pair of random variables $(n=2)$ is often denoted by X, Y and their values by x, y
- The relationship between multiple random variables is more general than a function. A function maps one number to another number whereas, for a given value of X, the random variable Y may randomly take one of several values.
- Most of the basic concepts are well-captured by the special case of pairs of random variables, which we focus on below.

4.1.1 Joint Cumulative Distribution Function

- The joint cumulative distribution function (CDF) returns the probability that the random variables X and Y are less than or equal to the values x and y, respectively:

$$
F_{X, Y}(x, y)=\mathbb{P}[X \leq x, Y \leq y]=\mathbb{P}[\{X \leq x\} \cap\{Y \leq y\}] .
$$

- Unifies discrete and continuous random variables.
- The joint CDF satisfies the following basic properties:
- Non-negativity: $F_{X, Y}(x, y) \geq 0$.
- Normalization: $\lim _{x, y \rightarrow \infty} F_{X, Y}(x, y)=1$.
- Non-decreasing: For any $x \leq \tilde{x}$ and $y \leq \tilde{y}, F_{X, Y}(x, y) \leq F_{X, Y}(\tilde{x}, \tilde{y})$.
- Marginalization: $\lim _{y \rightarrow \infty} F_{X, Y}(x, y)=F_{X}(x)$ and $\lim _{x \rightarrow \infty} F_{X, Y}(x, y)=F_{Y}(y)$.

4.2 Pairs of Discrete Random Variables

- A pair of random variables X, Y is discrete if X and Y are discrete random variables.

4.2.1 Joint Probability Mass Function

- The joint probability mass function (PMF) of a pair of discrete random variables X and Y is

$$
P_{X, Y}(x, y)=\mathbb{P}[X=x, Y=x]=\mathbb{P}[\{X=x\} \cap\{Y=y\}] .
$$

- The range $R_{X, Y}$ of a pair of discrete random variables is the set of all possible pairs of values,

$$
R_{X, Y}=\left\{(x, y): P_{X, Y}(x, y)>0\right\}
$$

- The joint PMF satisfies the following basic properties:
- Non-negativity: $P_{X, Y}(x, y) \geq 0$.
- Normalization: $\sum_{(x, y) \in R_{X, Y}} P_{X, Y}(x, y)=1$.
- Additivity: $\mathbb{P}[(X, Y) \in B]=\sum_{(x, y) \in B} P_{X, Y}(x, y)$.

4.2.2 Marginal PMF

- The marginal PMF $P_{X}(x)$ is just the PMF of X. Similarly, the marginal PMF $P_{Y}(y)$ is just the PMF Y.
- A marginal PMF can be obtained by summing the joint PMF over the undesired variable:

$$
P_{X}(x)=\sum_{y \in R_{Y}} P_{X, Y}(x, y) \quad P_{Y}(y)=\sum_{x \in R_{X}} P_{X, Y}(x, y)
$$

4.2.3 Conditional PMF

- The conditional PMF gives the probability of one random variable when the other is fixed to a certain value:
Conditional PMF of X given Y: $\quad P_{X \mid Y}(x \mid y)=\mathbb{P}[X=x \mid Y=y]=\left\{\begin{array}{cl}\frac{P_{X, Y}(x, y)}{P_{Y}(y)} & (x, y) \in R_{X, Y} \\ 0 & \text { otherwise. }\end{array}\right.$
Conditional PMF of Y given X: $\quad P_{Y \mid X}(y \mid x)=\mathbb{P}[Y=y \mid X=x]=\left\{\begin{array}{cl}\frac{P_{X, Y}(x, y)}{P_{X}(x)} & (x, y) \in R_{X, Y} \\ 0 & \text { otherwise. }\end{array}\right.$
- The conditional PMF satisfies the following basic properties:
- Non-negativity: $P_{X \mid Y}(x \mid y) \geq 0$ and $P_{Y \mid X}(y \mid x) \geq 0$ for all x and y.
- Normalization: $\sum_{x \in R_{X}} P_{X \mid Y}(x \mid y)=1$ for any y and $\sum_{y \in R_{Y}} P_{Y \mid X}(y \mid x)=1$ for any x.
- Additivity: For any event $B \subset R_{X}$, the probability that X falls in B given $Y=y$ is

$$
\mathbb{P}[X \in B \mid Y=y]=\sum_{x \in B} P_{X \mid Y}(x \mid y) .
$$

For any event $B \subset R_{Y}$, the probability that Y falls in B given $X=x$ is

$$
\mathbb{P}[Y \in B \mid X=x]=\sum_{y \in B} P_{Y \mid X}(y \mid x) .
$$

- The techniques we developed for conditional probabilities also apply to conditional PMFs:
- Multiplication Rule: $P_{X, Y}(x, y)=P_{X \mid Y}(x \mid y) P_{Y}(y)=P_{Y \mid X}(y \mid x) P_{X}(x)$.
- Law of Total Probability: $P_{X}(x)=\sum_{y \in R_{Y}} P_{X \mid Y}(x \mid y) P_{Y}(y) \quad P_{Y}(y)=\sum_{x \in R_{X}} P_{Y \mid X}(y \mid x) P_{X}(x)$.
- Bayes' Rule: $P_{X \mid Y}(x \mid y)=\frac{P_{Y \mid X}(y \mid x) P_{X}(x)}{P_{Y}(y)} \quad P_{Y \mid X}(y \mid x)=\frac{P_{X \mid Y}(x \mid y) P_{Y}(y)}{P_{X}(x)}$.

4.3 Pairs of Continuous Random Variables

- A pair of random variables X, Y is continuous if their joint CDF is continuous and differentiable almost everywhere.

4.3.1 Joint Probability Density Function

- The joint probability density function (PDF) of a pair of continuous random variables X and Y is

$$
f_{X, Y}(x, y)= \begin{cases}\frac{\partial^{2} F_{X, Y}(x, y)}{\partial x \partial y} & \text { if } F_{X, Y}(x, y) \text { is differentiable at }(x, y) \\ \text { any non-negative value } & \text { otherwise } .\end{cases}
$$

- The range $R_{X, Y}$ of a pair of continuous random variables is the set of all possible pairs of values,

$$
R_{X, Y}=\left\{(x, y): f_{X, Y}(x, y)>0\right\}
$$

4.3.2 Marginal PDF

- The marginal PDF $f_{X}(x)$ is just the PDF of X. Similarly, the marginal PDF $f_{Y}(y)$ is just the PDF of Y.
- A marginal PDF can be obtained by integrating the joint PDF over the undesired variable:

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y \quad f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x
$$

4.3.3 Conditional PDF

- The conditional PDF gives the probability density of one random variable when the other is fixed to a certain value

Conditional PDF of X given Y: $\quad f_{X \mid Y}(x \mid y)=\left\{\begin{array}{cl}\frac{f_{X, Y}(x, y)}{f_{Y}(y)} & (x, y) \in R_{X, Y} \\ 0 & \text { otherwise. }\end{array}\right.$
Conditional PDF of Y given X: $\quad f_{Y \mid X}(y \mid x)=\left\{\begin{array}{cl}\frac{f_{X, Y}(x, y)}{f_{X}(x)} & (x, y) \in R_{X, Y} \\ 0 & \text { otherwise. }\end{array}\right.$

- The conditional PDF satisfies the following basic properties:
- Non-negativity: $f_{X \mid Y}(x \mid y) \geq 0$ and $f_{Y \mid X}(y \mid x) \geq 0$ for all x and y.
- Normalization: $\int_{-\infty}^{\infty} f_{X \mid Y}(x \mid y) d x=1$ for any y and $\int_{-\infty}^{\infty} f_{Y \mid X}(y \mid x) d y=1$ for any x.
- Additivity: For any event $B \subset R_{X}$, the probability that X falls in B given $Y=y$ is

$$
\mathbb{P}[X \in B \mid Y=y]=\int_{B} f_{X \mid Y}(x \mid y) d y
$$

For any event $B \subset R_{Y}$, the probability that Y falls in B given $X=x$ is

$$
\mathbb{P}[Y \in B \mid X=x]=\int_{B} f_{Y \mid X}(y \mid x) d x
$$

- The techniques we developed for conditional probabilities also apply to conditional PDFs:
- Multiplication Rule: $f_{X, Y}(x, y)=f_{X \mid Y}(x \mid y) f_{Y}(y)=f_{Y \mid X}(y \mid x) f_{X}(x)$.
- Law of Total Probability: $f_{X}(x)=\int_{-\infty}^{\infty} f_{X \mid Y}(x \mid y) f_{Y}(y) d y \quad f_{Y}(y)=\int_{-\infty}^{\infty} f_{Y \mid X}(y \mid x) f_{X}(x) d x$.
- Bayes' Rule: $f_{X \mid Y}(x \mid y)=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)} \quad f_{Y \mid X}(y \mid x)=\frac{f_{X \mid Y}(x \mid y) f_{Y}(y)}{f_{X}(x)}$.

4.4 Independence of Pairs of Random Variables

- A pair of random variables X and Y are independent if and only if $F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y)$.
- This condition is equivalent to
- Discrete: X and Y are independent if and only if $P_{X, Y}(x, y)=P_{X}(x) P_{Y}(y)$.
- Continuous: X and Y are independent if and only if $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$.
- Independence can also be connected to the conditional PMF or PDF:
- Discrete: X and Y are independent if and only if $P_{X \mid Y}(x \mid y)=P_{X}(x)$ and $P_{Y \mid X}(y \mid x)=P_{Y}(y)$. (Suffices to check one of these.)
- Continuous: X and Y are independent if and only if $f_{X \mid Y}(x \mid y)=f_{X}(x)$ and $f_{Y \mid X}(y \mid x)=f_{Y}(y)$. (Suffices to check one of these.)
- In some special cases, we can quickly rule out independence:
- Discrete: If there is a zero entry in the joint PMF table for which neither the entire column or entire row is zero, then the random variables are not independent.
- Continuous: If the range is not a collection of rectangles parallel to the axes (possibly of infinite extent in either or both dimensions), then the random variables are not independent.

4.5 Expected Value of a Function of Pairs of Random Variables

- The expected value of a function $W=g(X, Y)$ is

$$
\begin{aligned}
\text { Discrete: } & \mathbb{E}[W]=\sum_{x \in R_{X}} \sum_{y \in R_{Y}} g(x, y) P_{X, Y}(x, y) \\
\text { Continuous: } & \mathbb{E}[W]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y
\end{aligned}
$$

- Linearity of Expectation: For any functions $g_{1}(x, y), \ldots, g_{n}(x, y)$ and constants a_{1}, \ldots, a_{n},

$$
\mathbb{E}\left[a_{1} g_{1}(X, Y)+\cdots+a_{n} g_{n}(X, Y)\right]=a_{1} \mathbb{E}\left[g_{1}(X, Y)\right]+\cdots+a_{n} \mathbb{E}\left[g_{n}(X, Y)\right],
$$

which does not require independence and includes the special cases

- $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$
- For any constants $a, b, c, \mathbb{E}[a X+b Y+c]=a \mathbb{E}[X]+b \mathbb{E}[Y]+c$.
- Expectation of Products: If X and Y are independent, then $\mathbb{E}[g(X) h(Y)]=\mathbb{E}[g(X)] \mathbb{E}[h(Y)]$.

4.6 Conditional Expectation

- The conditional expected value of X given $Y=y$ is

$$
\begin{aligned}
\text { Discrete: } & \mathbb{E}[X \mid Y=y]=\sum_{x \in R_{X}} x p_{X \mid Y}(x \mid y) \\
\text { Continuous: } & \mathbb{E}[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x
\end{aligned}
$$

- Intuition: The conditional expected value $\mathbb{E}[X \mid Y=y]$ is the average value of X given that $Y=y$.
- Think of $\mathbb{E}[X \mid Y=y]$ as a deterministic function of the value y.
- Think of $\mathbb{E}[X \mid Y]$ as a random variable, which is a particular function of the random variable Y. To see this more clearly, define $h(y)=\mathbb{E}[X \mid Y=y]$ to be the function we obtain from the conditional expectation, and $\mathbb{E}[X \mid Y]=h(Y)$.
- If X and Y are independent, then $\mathbb{E}[X \mid Y=y]=\mathbb{E}[X]$.
- Law of Total Expectation: $\mathbb{E}[\mathbb{E}[X \mid Y]]=\mathbb{E}[X]$. This can be easier to understand with by first defining $h(y)=\mathbb{E}[X \mid Y=y]$, and then substituting this in to get $\mathbb{E}[h(Y)]=\mathbb{E}[X]$.
- We can similarly define the conditional expected value of Y given $X=x, \mathbb{E}[Y \mid X=x]$.
- The conditional expected value of a function $g(X)$ given $Y=y$ is

$$
\begin{aligned}
\text { Discrete: } & \mathbb{E}[g(X) \mid Y=y]=\sum_{x \in R_{X}} g(x) p_{X \mid Y}(x \mid y) \\
\text { Continuous: } & \mathbb{E}[g(X) \mid Y=y]=\int_{-\infty}^{\infty} g(x) f_{X \mid Y}(x \mid y) d x
\end{aligned}
$$

- If X and Y are independent, then $\mathbb{E}[g(X) \mid Y=y]=\mathbb{E}[g(X)]$.
- Law of Total Expectation: $\mathbb{E}[\mathbb{E}[g(X) \mid Y]]=\mathbb{E}[g(X)]$.
- We can similarly define the conditional expected value of a function $g(Y)$ given $X=x$, $\mathbb{E}[g(Y) \mid X=x]$.

