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5.1 Covariance and Correlation

• The covariance of random variables X and Y is

Cov[X,Y ] = E
[(
X − E[X]

)(
Y − E[Y ])

]
.

• Another useful formula is Cov[X,Y ] = E[XY ]− E[X]E[Y ].

• Intuition: Captures the (average) linear relationship between X − E[X] and Y − E[Y ].

◦ If Cov[X,Y ] > 0, then X − E[X] and Y − E[Y ] tend to have the same sign
and a line with positive slope will fit the data better.

◦ If Cov[X,Y ] < 0, then X − E[X] and Y − E[Y ] tend to have the opposite sign
and a line with negative slope will fit the data better.

• The covariance satisfies the following basic properties:

◦ Cov[X,Y ] = Cov[Y,X]

◦ Cov[X,X] = Var[X]

◦ Cov[X, a] = 0 for any number a.

◦ Variance of Sums: Var[X + Y ] = Var[X] + Var[Y ] + 2Cov[X,Y ].

◦ Variance of Linear Functions: Var[aX+bY+c] = a2 Var[X] + b2 Var[Y ]+2abCov[X,Y ].

◦ Covariance of Linear Functions:
Cov[aX + bY + c, dX + eY + f ] = adVar[X] + beVar[Y ] + (ae+ bd)Cov[X,Y ].

• The correlation coefficient is ρX,Y =
Cov[X,Y ]√
Var[X]Var[Y ]

.

• Intuition: The correlation coefficient as a “scale-invariant” version of the covariance. The
closer |ρX,Y | is to 1, the better a line explains the relationship between X and Y .

• The correlation coefficient satisfies the following basic properties:

◦ −1 ≤ ρX,Y ≤ 1.

◦ ρX,Y = 1 if and only if X = aY + b for some a > 0 and any b.

◦ ρX,Y = −1 if and only if X = aY + b for some a < 0 and any b.

◦ Correlation Coefficient of Linear Functions: If U = aX + b and V = cY + d, then

ρU,V = sign(ac)ρX,Y where sign(z) =


+1 z > 0

0 z = 0

−1 z < 0

• Two random variables X and Y are uncorrelated if Cov[X,Y ] = 0 (or ρX,Y = 0).

◦ If X and Y are uncorrelated, we have that

∗ Var[X + Y ] = Var[X] + Var[Y ]

∗ Var[aX + bY + c] = a2 Var[X] + b2 Var[Y ]

∗ Cov[aX + bY + c, dX + eY + f ] = adVar[X] + beVar[Y ]

∗ E[XY ] = E[X]E[Y ].

◦ Independence implies uncorrelatedness but uncorrelatedness does not imply indepen-
dence.
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5.2 Jointly Gaussian Random Variables

• U and V are called independent, standard Gaussian random variables if they are
independent Gaussian(0, 1) random variables. In this case, the joint PDF is

fU,V (u, v) =
1

2π
exp

(
− 1

2
(u2 + v2)

)
.

• X and Y are jointly Gaussian random variables if they can be expressed as linear
functions of independent, standard Gaussian random variables

X = aU + bV + c Y = dU + eV + f .

However, this representation is usually left implicit, and the joint Gaussian distribution of X
and Y is specified by 5 parameters:

◦ Means: µX = E[X], µY = E[Y ]

◦ Variances: σ2X = Var[X], σ2Y = Var[Y ]

◦ Covariance: Cov[X,Y ] or Correlation Coefficient: ρX,Y .

• The joint PDF is

fX,Y (x, y)

=
1

2πσXσY
√

1− ρ2X,Y

exp

(
− 1

2(1− ρ2X,Y )

(
(x− µX)2

σ2X
− 2ρX,Y

(x− µX)(y − µY )

σXσY
+

(y − µY )2

σ2Y

))

• Jointly Gaussian random variables X and Y satisfy the following properties:

◦ Linear functions are Gaussian: If W = aX + bY + c and Z = dX + eY + f , then
W and Z are jointly Gaussian with parameters that be determined via the linearity of
expectation and the variance and covariance of linear functions.

◦ Marginal PDFs are Gaussian: X is Gaussian(µX , σX) and Y is Gaussian(µY , σY ).

◦ Uncorrelated implies Independence: X and Y are uncorrelated (ρX,Y = 0) if and
only if X and Y are independent.

◦ Conditional Expected Value: E[X|Y = y] = µX + ρX,Y
σX
σY

(y − µY )

= µX +
Cov[X,Y ]

Var[Y ]
(y − µY )

◦ Conditional Variance: σ2X|Y = Var[X|Y = y] = (1− ρ2X,Y )σ2X .

◦ Conditional PDF is Gaussian: The conditional PDF fX|Y (x|y) of X given Y is
Gaussian(E[X|Y = y], σ2X|Y ).

5.3 More than Two Random Variables

• All of the concepts from pairs of random variables generalize to n random variablesX1, . . . , Xn.

• The joint cumulative distribution function (CDF) is

FX1,...,Xn(x1, . . . , xn) = P[X1 ≤ x1, . . . , Xn ≤ xn] .
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• For discrete random variables, the joint probability mass function (PMF) is

PX1,...,Xn(x1, . . . , xn) = P[X1 = x1, . . . , Xn = xn]

and the range is RX1,...,Xn = {(x1, . . . , xn) : PX1,...,Xn(x1, . . . , xn) > 0}.

• For continuous random variables, the joint probability density function (PDF) is

fX1,...,Xn(x1, . . . , xn) =
∂nFX1,...,Xn(x1, . . . , xn)

∂x1 · · · ∂xn
and the range is RX1,...,Xn = {(x1, . . . , xn) : fX1,...,Xn(x1, . . . , xn) > 0}.

• The basic PMF/PDF properties apply:

◦ Non-negativity: PX1,...,Xn(x1, . . . , xn) ≥ 0

fX1,...,Xn(x1, . . . , xn) ≥ 0

◦ Normalization:
∑

x1∈RX1

· · ·
∑

xn∈RXn

PX1,...,Xn(x1, . . . , xn) = 1

∫ ∞
−∞
· · ·
∫ ∞
−∞

fX1,...,Xn(x1, . . . , xn) dx1 · · · dxn = 1

◦ Probability of an event:

P
[
(X1, . . . , Xn) ∈ B

]
=


∑

(x1,...,xn)∈B

PX1,...,Xn(x1, . . . , xn) Discrete∫
· · ·
∫
B
fX1,...,Xn(x1, . . . , xn) dx1 . . . dxn Continuous

• X1, . . . , Xn are independent if and only if the joint PMF/PDF factors into the product of
the marginal PMFs/PDFs: PX1,...,Xn(x1, . . . , xn) = PX1(x1) · · ·PXn(xn)

fX1,...,Xn(x1, . . . , xn) = fX1(x1) · · · fXn(xn)

• To obtain a marginal PMF/PDF of a subset X1, . . . , Xm of the random variables, we
sum/integrate over the undesired variables Xm+1, . . . , Xn:

PX1,...,Xm(x1, . . . , xm) =
∑

xm+1∈RXm+1

· · ·
∑

xn∈RXn

PX1,...,Xn(x1, . . . , xn)

fX1,...,Xm(x1, . . . , xm) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

fX1,...,Xn(x1, . . . , xn) dxm+1 · · · dxn

• The expected value of a function is

Discrete: E[g(X1, . . . , Xn)] =
∑

x1∈RX1

· · ·
∑

xn∈RXn

g(x1, . . . , xn)PX1,...,Xn(x1, . . . , xn)

Continuous: E[g(X1, . . . , Xn)] =

∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x1, . . . , xn) fX1,...,Xn(x1, . . . , xn) dx1 · · · dxn

• Linearity of Expectation: For any functions g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)
and constants a1, . . . , am,

E
[
a1g1(X1, . . . , Xn) + · · · + amgm(X1, . . . , Xn)

]
= a1E[g1(X1, . . . , Xn)] + · · · + amE[gm(X1, . . . , Xn)]
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• The conditional PMF of X1, . . . , Xm given Xm+1, . . . , Xn is

PX1,...,Xm(x1, . . . , xm) =


PX1,...,Xn(x1, . . . , xn)

PXm+1,...,Xn(xm+1, . . . , xn)
(x1, . . . , xn) ∈ RX1,...,Xn

0 otherwise.

• The conditional PDF of X1, . . . , Xm given Xm+1, . . . , Xn is

fX1,...,Xm(x1, . . . , xm) =


fX1,...,Xn(x1, . . . , xn)

fXm+1,...,Xn(xm+1, . . . , xn)
(x1, . . . , xn) ∈ RX1,...,Xn

0 otherwise.

• The conditional expected value is

E
[
g(X1, . . . , Xn)

∣∣Xm+1 = xm+1, . . . , Xn = xn
]

=



∑
x1∈RX1

· · ·
∑

xm∈RXm

g(x1, . . . , xn)PX1,...,Xm|Xm+1,...,Xn
(x1, . . . , xm|xm+1, . . . , xn) Discrete

∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x1, . . . , xn) fX1,...,Xm|Xm+1,...,Xn
(x1, . . . , xm|xm+1, . . . , xn) dx1 · · · dxm Continuous

5.4 Random Vectors

• A random vector X =

X1
...
Xn

 is a vector whose entries X1, . . . , Xn are random variables.

◦ If the entries are discrete random variables, the random vector has a joint PMF
PX(x) = PX1,...,Xn(x1, . . . , xn).

◦ If the entries are continuous random variables, the random vector has a joint PDF
fX(x) = fX1,...,Xn(x1, . . . , xn).

• The mean vector µ
X

is a column vector whose entries are the expected values of the corre-

sponding entries of X:

µ
X

= E[X] =

E[X1]
...

E[Xn]

 .
• Linearity of Expectation: E

[
AX + b] = AE[X] + b

• The covariance matrix ΣX is a matrix whose (i, j)th entry is the covariance between the
ith and jth entry of the vector,

ΣX = E
[
(X − E[X])(X − E[X])T

]
=

Cov[X1, X1] · · · Cov[X1, Xn]
...

...
Cov[Xn, X1] · · · Cov[Xn, Xn]


• Another useful formula is ΣX = E

[
XXT

]
− E

[
X
](
E
[
X
])T

• Covariance of a Linear Transform: If Y = AX + b, then ΣY = AΣXAT.
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• The covariance matrix ΣX satisfies the following properties:

◦ Symmetry: ΣX = ΣT
X

◦ Positive Semi-Definite: aTΣXa ≥ 0

◦ n real, non-negative eigenvalues λ1 ≥ · · · ≥ λn ≥ 0 and n real eigenvectors v1, . . . , vn ∈
Rn that are orthonormal, vTi vj = 0 for i 6= j and vTi vi = 1 for i = 1, . . . , n.

◦ Collecting the eigenvalues and the eigenvectors into matrices

Λ =

λ1 0 · · · 0
...

...
. . .

...
0 0 · · · λn

 V =

v1 · · · vn

 ,
we have that Λ ∈ Rn×n is a diagonal matrix with real, non-negative entries and V ∈
Rn×n is a real, orthogonal matrix, VVT = VTV = I. The eigendecomposition of the
covariance matrix is ΣX = VΛVT.

5.5 Gaussian Vectors

• A standard Gaussian vector is a random vector Z whose entries Z1, . . . , Zn are independent
Gaussian(0, 1) random variables.

• A (jointly) Gaussian vector is a random vector X that can be written as a linear transform
X = AZ + b of a standard Gaussian vector Z. However, this representation is usually left
implicit, and the distribution of a Gaussian vector X is specified by its mean vector µ

X
and

covariance matrix ΣX .

• Shorthand notation: We often write X ∼ N (µ
X
,ΣX) to mean that X is a Gaussian vector

with mean vector µ
X

and covariance matrix ΣX .

• A Gaussian vector X ∼ N (µ
X
,ΣX) satisfies the following properties:

◦ The entries of X are independent if and only if ΣX is a diagonal matrix.

◦ For any choice of vector a ∈ Rn, aTX is a scalar Gaussian random variable.

◦ If ΣX is invertible, the joint PDF of X ∼ N (µ
X
,ΣX) is

fX(x) =
1√

(2π)n det(ΣX)
exp

(
− 1

2

(
x− µ

X

)T
Σ−1X

(
x− µ

X

))
◦ Linear transformations of Gaussian vectors are themselves Gaussian vectors:

If Y = BX + c, then Y ∼ N (Bµ
X

+ c,BΣXBT).

◦ Let Y be a Gaussian vector with mean vector µ
Y

and covariance matrix ΣY , and assume

that

[
X
Y

]
concatenated together is also a Gaussian vector with mean vector

[
µ
X

µ
Y

]
and

covariance matrix

[
ΣX ΣX,Y

ΣT
X,Y ΣY

]
where ΣX,Y = E[(X − µ

X
)(Y − µ

Y
)T] is sometimes

called the cross-covariance matrix. Then, the conditional PDF of X given Y is Gaussian
with mean vector E[X|Y = y] and covariance matrix ΣX|Y where

E[X|Y = y] = µ
X

+ ΣX,Y Σ−1X

(
y − µ

Y

)
ΣX|Y = ΣX −ΣX,Y Σ−1Y ΣT

X,Y
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