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5.1 Covariance and Correlation

e The covariance of random variables X and Y is
Cov[X,Y] =E[(X — E[X]) (Y — E[Y])].

e Another useful formula is Cov[X, Y| = E[XY] — E[X]|E[Y].
e Intuition: Captures the (average) linear relationship between X — E[X] and Y — E[Y].
o If Cov[X,Y] > 0, then X — E[X] and Y — E[Y] tend to have the same sign

and a line with positive slope will fit the data better.

o If Cov[X,Y] <0, then X — E[X] and Y — E[Y] tend to have the opposite sign
and a line with negative slope will fit the data better.

e The covariance satisfies the following basic properties:

o Cov[X,Y] = Cov]Y, X]
Cov[X, X] = Var[X]
Cov[X,a] = 0 for any number a.
o Variance of Sums: Var[X + Y| = Var[X] + Var[Y] + 2Cov[X, Y].
Variance of Linear Functions: Var[aX +bY +c| = a? Var[X] + b% Var[Y]+2ab Cov[X, Y].
o Covariance of Linear Functions:
Cov[aX +bY + ¢, dX + €Y + f] = adVar[X] + be Var[Y] + (ae + bd)Cov[X, Y].
Cov[X,Y]
e Intuition: The correlation coefficient as a “scale-invariant” version of the covariance. The
closer |px y| is to 1, the better a line explains the relationship between X and Y.

o

@)

o

e The correlation coefficient is pxy =

e The correlation coefficient satisfies the following basic properties:

o —1<pxy <1

o px,y = 1 if and only if X = aY + b for some a > 0 and any b.

o px,y = —1if and only if X = aY + b for some a < 0 and any b.

o Correlation Coefficient of Linear Functions: If U = aX + b and V = ¢Y + d, then

+1 z>0
pu,v =sign(ac)pxy where sign(z)=¢0 2z=0
-1 z<0

e Two random variables X and Y are uncorrelated if Cov[X,Y] =0 (or pxy = 0).

o If X and Y are uncorrelated, we have that

Var[X + Y] = Var[X] + Var[Y]

Var[aX + bY + ] = a® Var[X] + b Var[Y]

Cov[aX 4 bY +c¢,dX + €Y + f] = adVar[X] + be Var[Y]

E[XY] =E[X]E[Y].

o Independence implies uncorrelatedness but uncorrelatedness does not imply indepen-
dence.
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5.2 Jointly Gaussian Random Variables

e U and V are called independent, standard Gaussian random variables if they are
independent Gaussian(0, 1) random variables. In this case, the joint PDF is

fuv(u,v) = % exp ( - %(u2 - 1)2)>.

e X and Y are jointly Gaussian random variables if they can be expressed as linear
functions of independent, standard Gaussian random variables

X=aU+bV +c Y=dU +eV+f.

However, this representation is usually left implicit, and the joint Gaussian distribution of X
and Y is specified by 5 parameters:

@)

@)

@)

Means: px = E[X], py = E[Y]
Variances: 0% = Var[X], 0% = Var[Y]

Covariance: Cov[X,Y] or Correlation Coefficient: px y.

e The joint PDF is

fxy(z,y)

1

exp < — 5
2noxoy /1 — pA%(Y 2(1 - pX,Y)

(z—pux)y—py) | (y—py)?

2 - 2pxy + 2
o% oxXOYy 0¥

1 ((1'3 — px)?

e Jointly Gaussian random variables X and Y satisfy the following properties:

o

Linear functions are Gaussian: If W = aX 4+ bY + c and Z = dX + eY + f, then
W and Z are jointly Gaussian with parameters that be determined via the linearity of
expectation and the variance and covariance of linear functions.

Marginal PDF's are Gaussian: X is Gaussian(uy,ox) and Y is Gaussian(uy, oy ).

Uncorrelated implies Independence: X and Y are uncorrelated (pxy = 0) if and
only if X and Y are independent.

Conditional Expected Value: E[X|Y = y| = ux + pX7yU—X(y — py)
oy

B Cov[X,Y]
= pux + T[Y](y — py)

Conditional Variance: ngy =Var[X|Y =y]=(1— p%c’y)a_%(.

Conditional PDF is Gaussian: The conditional PDF fxy(z|y) of X given Y is
Gaussian(E[X|Y = y], Ug(—ly).

5.3 More than Two Random Variables

e All of the concepts from pairs of random variables generalize to n random variables X1, ..., X,,.

e The joint cumulative distribution function (CDF) is

Fx, .. x,(@x1,...,2n) =P[X1 <21,..., X, < 2] .
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e For discrete random variables, the joint probability mass function (PMF) is
PXL_..’Xn(xl, e ,Iljn) = P[Xl =T1y.-. 7Xn = :L'n]
and the range is Rx, . x, = {(z1,...,2n) : Px,,.x,(z1,...,2,) > 0}.

e For continuous random variables, the joint probability density function (PDF) is

o) = T 2
and the range is Rx, . x, = {(z1,...,2z0) : fxi,.x,(@1,...,25) > 0}.
e The basic PMF/PDF properties apply:
o Non-negativity: Px, _x,(z1,...,2,) >0
fxiox,(@1,...,2) >0
o Normalization: Z Z Px, . x,(x1,...,2n) =1
©1€Rx,  @n€Rx,

[ee] o0
/ / Ixi,xn (@1, ) dey -+ - day, =1
— 0 — 00

o Probability of an event:

Z Px,,. .. x, (1,...,Tn) Discrete

]P[(Xl, o Xn) € B] _ ) (z1,...zn)€B

| fxyox. (@1, .., 2y) doy .. dz,  Continuous
B

e Xi,...,X, are independent if and only if the joint PMF/PDF factors into the product of
the marginal PMFs/PDFs: Px, . x,(z1,...,2,) = Px,(z1) - Px, (zy)

Ixinxn (@1, 20) = fxy (1) - fx, (20)

e To obtain a marginal PMF/PDF of a subset Xj,...,X,, of the random variables, we

sum/integrate over the undesired variables X, 41, ..., Xp:
Px,.. . xp(@1,...,xm) = E . E Px,..x,(x1,...,2)
Tm+1€RX,, 4 xn€RX,,

00 00
le,...,Xm($17"‘7xm) = / / le,...,Xn(x17' . .,ZEn) dl’m+1 . d:Un
—00 —00

e The expected value of a function is

Discrete: Elg(X1,...,X,)] = Z . Z g(x1, ..., xn) Px, . x,(x1,...,2n)

T1ERX, n€RX,

o o0
Continuous: E[g(Xy,...,X,)] = / . / g1, ) fxyx, (@1, ) day - day,
—00 -0

e Linearity of Expectation: For any functions gi(x1,...,Zn), ..., gm(Z1,...,2Tp)
and constants ai,...,am,
E[algl(Xla ce. 7XTL) + -+ amgm(Xla ce. 7Xn)]
= alE[gl(Xla oo aXn)] + o amE[gm(le s 7Xn)]
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e The conditional PMF of X;,..., X,, given X,,41,..., X, is

PX 7X L1yee.y L
P 1, ”l( ? ? ’I’L) (l‘l’...,l‘n) S RXl,...,Xn
PX17..-,Xm($17...733m) = Xm+1 ----- Xn(':vm'l'l”xn)
0 otherwise.

e The conditional PDF of X;,..., X, given X;,11,..., X, is

fxi o xn (@1, 2p)
! ! o (:L'l,...,xn)ERXI 77777 X
Ix1 X (@15 ) = § Xt X (T 1, Tn)
0 otherwise.
e The conditional expected value is
E[g(X1, ..., Xn) | Xim41 = Tma1, -, Xn = @)
Z . Z 91, T0) Py X Xomgtsens X (T15 -+ s T[T g1, - Tn) Discrete
T1€ERX, TmERX,,
oo o0
/ .- / g(x1, ..., Tp) IX o X | X1 Xin (1, Tm|Tms1,y - -+, Tpn) dxy - - - dxy,  Continuous
—0oQ —00
5.4 Random Vectors
X1
e A random vector X = | : | is a vector whose entries X;,...,X,, are random variables.
Xn
o If the entries are discrete random variables, the random vector has a joint PMF
PK(£> = Ple---7Xn (1‘1, s 7x7l>'
o If the entries are continuous random variables, the random vector has a joint PDF
fx(@) = fxy,..x, (@1, T0).

e The mean vector p, is a column vector whose entries are the expected values of the corre-

sponding entries of X: E[X1]
1y = EX] =

E[X,]

e Linearity of Expectation: E[AK—F bl =AE[X]+b

e The covariance matrix Xy is a matrix whose (i,7)'" entry is the covariance between the

ith and j*" entry of the vector,
COV[Xl,Xl] COV[Xl,Xn]

Sx =E[(X - E[X])(X - E[X))"] =

Cov[X,, X1] -+ Cov[X,, X,]

e Another useful formula is Sx = E[XXT] — E[X] (E[X])"

e Covariance of a Linear Transform: If Y = AX + b, then Xy = AZ]XAT.
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e The covariance matrix Xy satisfies the following properties:

@)

@)

o

Symmetry: X x = E£

Positive Semi-Definite: a'X xa >0

n real, non-negative eigenvalues A\; > --- > ), > 0 and n real eigenvectors vy,...,v,, €
R™ that are orthonormal, Q;I—Qj =0fori#jandvjv,=1fori=1,...,n.
Collecting the eigenvalues and the eigenvectors into matrices
M O - 0 ‘ ‘
A= 1 . V=lv, - v,
00 - A | |

we have that A € R™ " is a diagonal matrix with real, non-negative entries and V €
R™ ™ is a real, orthogonal matrix, VV' = VTV = I. The eigendecomposition of the
covariance matrix is Xy = VAVT.

5.5 Gaussian Vectors

e A standard Gaussian vector is a random vector Z whose entries Z1, ..., Z,, are independent
Gaussian(0, 1) random variables.

e A (jointly) Gaussian vector is a random vector X that can be written as a linear transform

X =

AZ + b of a standard Gaussian vector Z. However, this representation is usually left

implicit, and the distribution of a Gaussian vector X is specified by its mean vector u + and

covariance matrix Xx.

e Shorthand notation: We often write X ~ A (u,,¥x) to mean that X is a Gaussian vector

with mean vector p « and covariance matrix Xx.

e A Gaussian vector X ~ N (p PP x ) satisfies the following properties:

@)

@)

o

The entries of X are independent if and only if ¥ x is a diagonal matrix.
For any choice of vector a € R™, a' X is a scalar Gaussian random variable.
If By is invertible, the joint PDF of X ~ N (u,,Xx) is

1 1

T) = ex — —(z — TE_l T —
fte) = o - (e )22 (e

Linear transformations of Gaussian vectors are themselves Gaussian vectors:
IfY = BX +¢, then Y ~ N(By, +¢, BExBT).

Let Y be a Gaussian vector with mean vector p1,, and covariance matrix 3y, and assume

X . . . K
that [Y] concatenated together is also a Gaussian vector with mean vector [MX] and
B =Y
Xy Xxy
2}( y 2y
called the cross-covariance matrix. Then, the conditional PDF of X given Y is Gaussian
with mean vector E[X|Y = y] and covariance matrix X x|y where

EX]Y =y = py +Sxy Sy (y — 1y)

Syy =Zx - SxyIy'Zhy

covariance matrix [ } where ¥x y = E[(X — p, )Y — HY)T] is sometimes
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