5.1 Covariance and Correlation

- The covariance of random variables X and Y is

$$
\operatorname{Cov}[X, Y]=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]
$$

- Another useful formula is $\operatorname{Cov}[X, Y]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$.
- Intuition: Captures the (average) linear relationship between $X-\mathbb{E}[X]$ and $Y-\mathbb{E}[Y]$.
- If $\operatorname{Cov}[X, Y]>0$, then $X-\mathbb{E}[X]$ and $Y-\mathbb{E}[Y]$ tend to have the same sign and a line with positive slope will fit the data better.
- If $\operatorname{Cov}[X, Y]<0$, then $X-\mathbb{E}[X]$ and $Y-\mathbb{E}[Y]$ tend to have the opposite sign and a line with negative slope will fit the data better.
- The covariance satisfies the following basic properties:
- $\operatorname{Cov}[X, Y]=\operatorname{Cov}[Y, X]$
- $\operatorname{Cov}[X, X]=\operatorname{Var}[X]$
- $\operatorname{Cov}[X, a]=0$ for any number a.
- Variance of Sums: $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{Cov}[X, Y]$.
- Variance of Linear Functions: $\operatorname{Var}[a X+b Y+c]=a^{2} \operatorname{Var}[X]+b^{2} \operatorname{Var}[Y]+2 a b \operatorname{Cov}[X, Y]$.
- Covariance of Linear Functions:

$$
\operatorname{Cov}[a X+b Y+c, d X+e Y+f]=a d \operatorname{Var}[X]+b e \operatorname{Var}[Y]+(a e+b d) \operatorname{Cov}[X, Y]
$$

- The correlation coefficient is $\rho_{X, Y}=\frac{\operatorname{Cov}[X, Y]}{\sqrt{\operatorname{Var}[X] \operatorname{Var}[Y]}}$.
- Intuition: The correlation coefficient as a "scale-invariant" version of the covariance. The closer $\left|\rho_{X, Y}\right|$ is to 1 , the better a line explains the relationship between X and Y.
- The correlation coefficient satisfies the following basic properties:
- $-1 \leq \rho_{X, Y} \leq 1$.
- $\rho_{X, Y}=1$ if and only if $X=a Y+b$ for some $a>0$ and any b.
- $\rho_{X, Y}=-1$ if and only if $X=a Y+b$ for some $a<0$ and any b.
- Correlation Coefficient of Linear Functions: If $U=a X+b$ and $V=c Y+d$, then

$$
\rho_{U, V}=\operatorname{sign}(a c) \rho_{X, Y} \quad \text { where } \operatorname{sign}(z)= \begin{cases}+1 & z>0 \\ 0 & z=0 \\ -1 & z<0\end{cases}
$$

- Two random variables X and Y are uncorrelated if $\operatorname{Cov}[X, Y]=0$ (or $\rho_{X, Y}=0$).
- If X and Y are uncorrelated, we have that
* $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$
* $\operatorname{Var}[a X+b Y+c]=a^{2} \operatorname{Var}[X]+b^{2} \operatorname{Var}[Y]$
* $\operatorname{Cov}[a X+b Y+c, d X+e Y+f]=a d \operatorname{Var}[X]+b e \operatorname{Var}[Y]$
* $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$.
- Independence implies uncorrelatedness but uncorrelatedness does not imply independence.

5.2 Jointly Gaussian Random Variables

- U and V are called independent, standard Gaussian random variables if they are independent $\operatorname{Gaussian}(0,1)$ random variables. In this case, the joint PDF is

$$
f_{U, V}(u, v)=\frac{1}{2 \pi} \exp \left(-\frac{1}{2}\left(u^{2}+v^{2}\right)\right)
$$

- X and Y are jointly Gaussian random variables if they can be expressed as linear functions of independent, standard Gaussian random variables

$$
X=a U+b V+c \quad Y=d U+e V+f
$$

However, this representation is usually left implicit, and the joint Gaussian distribution of X and Y is specified by 5 parameters:

- Means: $\mu_{X}=\mathbb{E}[X], \mu_{Y}=\mathbb{E}[Y]$
- Variances: $\sigma_{X}^{2}=\operatorname{Var}[X], \sigma_{Y}^{2}=\operatorname{Var}[Y]$
- Covariance: $\operatorname{Cov}[X, Y]$ or Correlation Coefficient: $\rho_{X, Y}$.
- The joint PDF is
$f_{X, Y}(x, y)$

$$
=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho_{X, Y}^{2}}} \exp \left(-\frac{1}{2\left(1-\rho_{X, Y}^{2}\right)}\left(\frac{\left(x-\mu_{X}\right)^{2}}{\sigma_{X}^{2}}-2 \rho_{X, Y} \frac{\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)}{\sigma_{X} \sigma_{Y}}+\frac{\left(y-\mu_{Y}\right)^{2}}{\sigma_{Y}^{2}}\right)\right)
$$

- Jointly Gaussian random variables X and Y satisfy the following properties:
- Linear functions are Gaussian: If $W=a X+b Y+c$ and $Z=d X+e Y+f$, then W and Z are jointly Gaussian with parameters that be determined via the linearity of expectation and the variance and covariance of linear functions.
- Marginal PDFs are Gaussian: X is $\operatorname{Gaussian}\left(\mu_{X}, \sigma_{X}\right)$ and Y is $\operatorname{Gaussian}\left(\mu_{Y}, \sigma_{Y}\right)$.
- Uncorrelated implies Independence: X and Y are uncorrelated ($\rho_{X, Y}=0$) if and only if X and Y are independent.
- Conditional Expected Value: $\mathbb{E}[X \mid Y=y]=\mu_{X}+\rho_{X, Y} \frac{\sigma_{X}}{\sigma_{Y}}\left(y-\mu_{Y}\right)$

$$
=\mu_{X}+\frac{\operatorname{Cov}[X, Y]}{\operatorname{Var}[Y]}\left(y-\mu_{Y}\right)
$$

- Conditional Variance: $\sigma_{X \mid Y}^{2}=\operatorname{Var}[X \mid Y=y]=\left(1-\rho_{X, Y}^{2}\right) \sigma_{X}^{2}$.
- Conditional PDF is Gaussian: The conditional PDF $f_{X \mid Y}(x \mid y)$ of X given Y is $\operatorname{Gaussian}\left(\mathbb{E}[X \mid Y=y], \sigma_{X \mid Y}^{2}\right)$.

5.3 More than Two Random Variables

- All of the concepts from pairs of random variables generalize to n random variables X_{1}, \ldots, X_{n}.
- The joint cumulative distribution function (CDF) is

$$
F_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=\mathbb{P}\left[X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right]
$$

- For discrete random variables, the joint probability mass function (PMF) is

$$
P_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=\mathbb{P}\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]
$$

and the range is $R_{X_{1}, \ldots, X_{n}}=\left\{\left(x_{1}, \ldots, x_{n}\right): P_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)>0\right\}$.

- For continuous random variables, the joint probability density function (PDF) is

$$
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=\frac{\partial^{n} F_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{1} \cdots \partial x_{n}}
$$

and the range is $R_{X_{1}, \ldots, X_{n}}=\left\{\left(x_{1}, \ldots, x_{n}\right): f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)>0\right\}$.

- The basic PMF/PDF properties apply:
- Non-negativity: $P_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) \geq 0$

$$
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) \geq 0
$$

- Normalization: $\sum_{x_{1} \in R_{X_{1}}} \cdots \sum_{x_{n} \in R_{X_{n}}} P_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=1$

$$
\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}=1
$$

- Probability of an event:

$$
\mathbb{P}\left[\left(X_{1}, \ldots, X_{n}\right) \in B\right]= \begin{cases}\sum_{\left(x_{1}, \ldots, x_{n}\right) \in B} P_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) & \text { Discrete } \\ \iiint_{B} f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n} & \text { Continuous }\end{cases}
$$

- X_{1}, \ldots, X_{n} are independent if and only if the joint PMF/PDF factors into the product of the marginal PMFs/PDFs: $P_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=P_{X_{1}}\left(x_{1}\right) \cdots P_{X_{n}}\left(x_{n}\right)$

$$
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=f_{X_{1}}\left(x_{1}\right) \cdots f_{X_{n}}\left(x_{n}\right)
$$

- To obtain a marginal PMF/PDF of a subset X_{1}, \ldots, X_{m} of the random variables, we sum/integrate over the undesired variables X_{m+1}, \ldots, X_{n} :

$$
\begin{aligned}
P_{X_{1}, \ldots, X_{m}}\left(x_{1}, \ldots, x_{m}\right) & =\sum_{x_{m+1} \in R_{X_{m+1}}} \cdots \sum_{x_{n} \in R_{X_{n}}} P_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) \\
f_{X_{1}, \ldots, X_{m}}\left(x_{1}, \ldots, x_{m}\right) & =\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) d x_{m+1} \cdots d x_{n}
\end{aligned}
$$

- The expected value of a function is

$$
\text { Discrete: } \mathbb{E}\left[g\left(X_{1}, \ldots, X_{n}\right)\right]=\sum_{x_{1} \in R_{X_{1}}} \ldots \sum_{x_{n} \in R_{X_{n}}} g\left(x_{1}, \ldots, x_{n}\right) P_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)
$$

Continuous: $\mathbb{E}\left[g\left(X_{1}, \ldots, X_{n}\right)\right]=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} g\left(x_{1}, \ldots, x_{n}\right) f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}$

- Linearity of Expectation: For any functions $g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{m}\left(x_{1}, \ldots, x_{n}\right)$
and constants a_{1}, \ldots, a_{m},

$$
\begin{aligned}
& \mathbb{E}\left[a_{1} g_{1}\left(X_{1}, \ldots, X_{n}\right)+\cdots+a_{m} g_{m}\left(X_{1}, \ldots, X_{n}\right)\right] \\
& =a_{1} \mathbb{E}\left[g_{1}\left(X_{1}, \ldots, X_{n}\right)\right]+\cdots+a_{m} \mathbb{E}\left[g_{m}\left(X_{1}, \ldots, X_{n}\right)\right]
\end{aligned}
$$

- The conditional PMF of X_{1}, \ldots, X_{m} given X_{m+1}, \ldots, X_{n} is

$$
P_{X_{1}, \ldots, X_{m}}\left(x_{1}, \ldots, x_{m}\right)=\left\{\begin{array}{cl}
\frac{P_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)}{P_{X_{m+1}, \ldots, X_{n}}\left(x_{m+1}, \ldots, x_{n}\right)} & \left(x_{1}, \ldots, x_{n}\right) \in R_{X_{1}, \ldots, X_{n}} \\
0 & \text { otherwise } .
\end{array}\right.
$$

- The conditional PDF of X_{1}, \ldots, X_{m} given X_{m+1}, \ldots, X_{n} is

$$
f_{X_{1}, \ldots, X_{m}}\left(x_{1}, \ldots, x_{m}\right)=\left\{\begin{array}{cl}
\frac{f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)}{f_{X_{m+1}, \ldots, X_{n}}\left(x_{m+1}, \ldots, x_{n}\right)} & \left(x_{1}, \ldots, x_{n}\right) \in R_{X_{1}, \ldots, X_{n}} \\
0 & \text { otherwise } .
\end{array}\right.
$$

- The conditional expected value is

$$
\begin{aligned}
& \mathbb{E}\left[g\left(X_{1}, \ldots, X_{n}\right) \mid X_{m+1}=x_{m+1}, \ldots, X_{n}=x_{n}\right] \\
& =\left\{\begin{array}{lll}
\sum_{x_{1} \in R_{X_{1}}} \ldots \sum_{x_{m} \in R_{X_{m}}} g\left(x_{1}, \ldots, x_{n}\right) P_{X_{1}, \ldots, X_{m} \mid X_{m+1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{m} \mid x_{m+1}, \ldots, x_{n}\right) \quad \text { Discrete } \\
\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g\left(x_{1}, \ldots, x_{n}\right) f_{X_{1}, \ldots, X_{m} \mid X_{m+1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{m} \mid x_{m+1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{m} \quad \text { Continuous }
\end{array}\right.
\end{aligned}
$$

5.4 Random Vectors

- A random vector $\underline{X}=\left[\begin{array}{c}X_{1} \\ \vdots \\ X_{n}\end{array}\right]$ is a vector whose entries X_{1}, \ldots, X_{n} are random variables.
- If the entries are discrete random variables, the random vector has a joint PMF $P_{\underline{X}}(\underline{x})=P_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)$.
- If the entries are continuous random variables, the random vector has a joint PDF $f_{\underline{X}}(\underline{x})=f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)$.
- The mean vector $\underline{\mu}_{X}$ is a column vector whose entries are the expected values of the corresponding entries of \underline{X} :

$$
\underline{\mu}_{\underline{X}}=\mathbb{E}[\underline{X}]=\left[\begin{array}{c}
\mathbb{E}\left[X_{1}\right] \\
\vdots \\
\mathbb{E}\left[X_{n}\right]
\end{array}\right]
$$

- Linearity of Expectation: $\mathbb{E}[\mathbf{A} \underline{X}+\underline{b}]=\mathbf{A} \mathbb{E}[\underline{X}]+\underline{b}$
- The covariance matrix $\boldsymbol{\Sigma}_{\underline{X}}$ is a matrix whose $(i, j)^{\text {th }}$ entry is the covariance between the $i^{\text {th }}$ and $j^{\text {th }}$ entry of the vector,

$$
\boldsymbol{\Sigma}_{\underline{X}}=\mathbb{E}\left[(\underline{X}-\mathbb{E}[\underline{X}])(\underline{X}-\mathbb{E}[\underline{X}])^{\mathrm{T}}\right]=\left[\begin{array}{ccc}
\operatorname{Cov}\left[X_{1}, X_{1}\right] & \cdots & \operatorname{Cov}\left[X_{1}, X_{n}\right] \\
\vdots & & \vdots \\
\operatorname{Cov}\left[X_{n}, X_{1}\right] & \cdots & \operatorname{Cov}\left[X_{n}, X_{n}\right]
\end{array}\right]
$$

- Another useful formula is $\boldsymbol{\Sigma}_{\underline{X}}=\mathbb{E}\left[\underline{X X}^{\top}\right]-\mathbb{E}[\underline{X}](\mathbb{E}[\underline{X}])^{\top}$
- Covariance of a Linear Transform: If $\underline{Y}=\mathbf{A} \underline{X}+\underline{b}$, then $\boldsymbol{\Sigma}_{\underline{Y}}=\mathbf{A} \boldsymbol{\Sigma}_{\underline{X}} \mathbf{A}^{\top}$.
- The covariance matrix $\boldsymbol{\Sigma}_{\underline{X}}$ satisfies the following properties:
- Symmetry: $\boldsymbol{\Sigma}_{\underline{X}}=\boldsymbol{\Sigma}_{\underline{X}}^{\top}$
- Positive Semi-Definite: $\underline{a}^{\top} \boldsymbol{\Sigma}_{\underline{X} \underline{a}} \geq 0$
- n real, non-negative eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0$ and n real eigenvectors $\underline{v}_{1}, \ldots, \underline{v}_{n} \in$ \mathbb{R}^{n} that are orthonormal, $\underline{v}_{i}^{\top} \underline{v}_{j}=0$ for $i \neq j$ and $\underline{v}_{i}^{\top} \underline{v}_{i}=1$ for $i=1, \ldots, n$.
- Collecting the eigenvalues and the eigenvectors into matrices

$$
\boldsymbol{\Lambda}=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right] \quad \mathbf{V}=\left[\begin{array}{ccc}
\mid & & \mid \\
\underline{v}_{1} & \cdots & \underline{v}_{n} \\
\mid & & \mid
\end{array}\right]
$$

we have that $\boldsymbol{\Lambda} \in \mathbb{R}^{n \times n}$ is a diagonal matrix with real, non-negative entries and $\mathbf{V} \in$ $\mathbb{R}^{n \times n}$ is a real, orthogonal matrix, $\mathbf{V} \mathbf{V}^{\top}=\mathbf{V}^{\top} \mathbf{V}=\mathbf{I}$. The eigendecomposition of the covariance matrix is $\boldsymbol{\Sigma}_{\underline{X}}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\top}$.

5.5 Gaussian Vectors

- A standard Gaussian vector is a random vector \underline{Z} whose entries Z_{1}, \ldots, Z_{n} are independent $\operatorname{Gaussian}(0,1)$ random variables.
- A (jointly) Gaussian vector is a random vector \underline{X} that can be written as a linear transform $\underline{X}=\mathbf{A} \underline{Z}+\underline{b}$ of a standard Gaussian vector \underline{Z}. However, this representation is usually left implicit, and the distribution of a Gaussian vector \underline{X} is specified by its mean vector $\underline{\mu}_{X}$ and covariance matrix $\boldsymbol{\Sigma}_{\underline{X}}$.
- Shorthand notation: We often write $\underline{X} \sim \mathcal{N}\left(\underline{\mu}_{\underline{X}}, \boldsymbol{\Sigma}_{\underline{X}}\right)$ to mean that \underline{X} is a Gaussian vector with mean vector $\underline{\mu}_{\underline{X}}$ and covariance matrix $\bar{\Sigma}_{\underline{X}}$.
- A Gaussian vector $\underline{X} \sim \mathcal{N}\left(\underline{\mu}_{\underline{X}}, \boldsymbol{\Sigma}_{\underline{X}}\right)$ satisfies the following properties:
- The entries of \underline{X} are independent if and only if $\boldsymbol{\Sigma}_{\underline{X}}$ is a diagonal matrix.
- For any choice of vector $\underline{a} \in \mathbb{R}^{n}, \underline{a}^{\top} \underline{X}$ is a scalar Gaussian random variable.
- If $\boldsymbol{\Sigma}_{\underline{X}}$ is invertible, the joint PDF of $\underline{X} \sim \mathcal{N}\left(\underline{\mu}_{\underline{X}}, \boldsymbol{\Sigma}_{\underline{X}}\right)$ is

$$
f_{\underline{X}}(\underline{x})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}\left(\boldsymbol{\Sigma}_{\underline{X}}\right)}} \exp \left(-\frac{1}{2}\left(\underline{x}-\underline{\mu}_{\underline{X}}\right)^{\top} \boldsymbol{\Sigma}_{\underline{X}}^{-1}\left(\underline{x}-\underline{\mu}_{\underline{X}}\right)\right)
$$

- Linear transformations of Gaussian vectors are themselves Gaussian vectors: If $\underline{Y}=\mathbf{B} \underline{X}+\underline{c}$, then $\underline{Y} \sim \mathcal{N}\left(\mathbf{B} \underline{\mu}_{\underline{X}}+\underline{c}, \mathbf{B} \boldsymbol{\Sigma}_{\underline{X}} \mathbf{B}^{\boldsymbol{\top}}\right)$.
- Let \underline{Y} be a Gaussian vector with mean vector $\underline{\mu}_{\underline{Y}}$ and covariance matrix $\boldsymbol{\Sigma}_{\underline{Y}}$, and assume that $\left[\begin{array}{l}\underline{X} \\ \underline{Y}\end{array}\right]$ concatenated together is also a Gaussian vector with mean vector $\left[\begin{array}{l}\underline{\mu}_{\underline{X}} \\ \underline{\mu}_{\underline{Y}}\end{array}\right]$ and covariance matrix $\left[\begin{array}{cc}\boldsymbol{\Sigma}_{\underline{X}} & \boldsymbol{\Sigma}_{\underline{X}, \underline{Y}} \\ \boldsymbol{\Sigma}_{\underline{X}, \underline{Y}}^{\top} & \boldsymbol{\Sigma}_{\underline{Y}}\end{array}\right]$ where $\boldsymbol{\Sigma}_{\underline{X}, \underline{Y}}=\mathbb{E}\left[\left(\underline{X}-\underline{\mu}_{\underline{X}}\right)\left(\underline{Y}-\underline{\mu}_{\underline{Y}}\right)^{\mathrm{T}}\right]$ is sometimes called the cross-covariance matrix. Then, the conditional PDF of \underline{X} given \underline{Y} is Gaussian with mean vector $\mathbb{E}[\underline{X} \mid \underline{Y}=\underline{y}]$ and covariance matrix $\boldsymbol{\Sigma}_{\underline{X} \mid \underline{Y}}$ where

$$
\begin{aligned}
\mathbb{E}[\underline{X} \mid \underline{Y}=\underline{y}] & =\underline{\mu}_{\underline{X}}+\boldsymbol{\Sigma}_{\underline{X}, \underline{Y}} \boldsymbol{\Sigma}_{\underline{X}}^{-1}\left(\underline{y}-\underline{\mu}_{\underline{Y}}\right) \\
\boldsymbol{\Sigma}_{\underline{X} \mid \underline{Y}} & =\boldsymbol{\Sigma}_{\underline{X}}-\boldsymbol{\Sigma}_{\underline{X}, \underline{Y}} \boldsymbol{\Sigma}_{\underline{Y}}^{-1} \boldsymbol{\Sigma}_{\underline{X}, \underline{Y}}^{\top}
\end{aligned}
$$

