5.1 Covariance and Correlation

• The **covariance** of random variables X and Y is

$$\mathsf{Cov}[X,Y] = \mathbb{E}\left[\left(X - \mathbb{E}[X]\right)\left(Y - \mathbb{E}[Y]\right)\right]$$

- Another useful formula is $Cov[X, Y] = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$.
- Intuition: Captures the (average) linear relationship between $X \mathbb{E}[X]$ and $Y \mathbb{E}[Y]$.
 - If $\mathsf{Cov}[X, Y] > 0$, then $X \mathbb{E}[X]$ and $Y \mathbb{E}[Y]$ tend to have the same sign and a line with positive slope will fit the data better.
 - If $\mathsf{Cov}[X, Y] < 0$, then $X \mathbb{E}[X]$ and $Y \mathbb{E}[Y]$ tend to have the opposite sign and a line with negative slope will fit the data better.
- The covariance satisfies the following basic properties:
 - $\circ \operatorname{Cov}[X,Y] = \operatorname{Cov}[Y,X]$
 - $\circ \ \mathsf{Cov}[X,X] = \mathsf{Var}[X]$
 - Cov[X, a] = 0 for any number a.
 - Variance of Sums: Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y].
 - Variance of Linear Functions: $Var[aX+bY+c] = a^2 Var[X] + b^2 Var[Y] + 2ab Cov[X, Y].$
 - $\circ \quad \textbf{Covariance of Linear Functions:} \\ \mathsf{Cov}[aX+bY+c, dX+eY+f] = ad \, \mathsf{Var}[X] + be \, \mathsf{Var}[Y] + (ae+bd) \mathsf{Cov}[X,Y]. \\ \end{cases}$

• The correlation coefficient is
$$\rho_{X,Y} = \frac{\text{Cov}[X,Y]}{\sqrt{\text{Var}[X]\text{Var}[Y]}}$$

- Intuition: The correlation coefficient as a "scale-invariant" version of the covariance. The closer $|\rho_{X,Y}|$ is to 1, the better a line explains the relationship between X and Y.
- The correlation coefficient satisfies the following basic properties:
 - $\circ -1 \leq \rho_{X,Y} \leq 1.$
 - $\circ \rho_{X,Y} = 1$ if and only if X = aY + b for some a > 0 and any b.
 - $\circ \rho_{X,Y} = -1$ if and only if X = aY + b for some a < 0 and any b.
 - Correlation Coefficient of Linear Functions: If U = aX + b and V = cY + d, then

$$\rho_{U,V} = \operatorname{sign}(ac)\rho_{X,Y} \quad \text{where} \quad \operatorname{sign}(z) = \begin{cases} +1 & z > 0\\ 0 & z = 0\\ -1 & z < 0 \end{cases}$$

- Two random variables X and Y are **uncorrelated** if Cov[X, Y] = 0 (or $\rho_{X,Y} = 0$).
 - \circ If X and Y are uncorrelated, we have that
 - * $\operatorname{Var}[X+Y] = \operatorname{Var}[X] + \operatorname{Var}[Y]$
 - * $\operatorname{Var}[aX + bY + c] = a^2 \operatorname{Var}[X] + b^2 \operatorname{Var}[Y]$
 - * $\operatorname{Cov}[aX + bY + c, dX + eY + f] = ad \operatorname{Var}[X] + be \operatorname{Var}[Y]$
 - * $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y].$
 - Independence implies uncorrelatedness but uncorrelatedness does not imply independence.

5.2 Jointly Gaussian Random Variables

• U and V are called **independent**, standard Gaussian random variables if they are independent Gaussian(0, 1) random variables. In this case, the joint PDF is

$$f_{U,V}(u,v) = \frac{1}{2\pi} \exp\left(-\frac{1}{2}(u^2+v^2)\right).$$

• X and Y are jointly Gaussian random variables if they can be expressed as linear functions of independent, standard Gaussian random variables

$$X = aU + bV + c \qquad Y = dU + eV + f .$$

However, this representation is usually left implicit, and the joint Gaussian distribution of X and Y is specified by 5 parameters:

- Means: $\mu_X = \mathbb{E}[X], \ \mu_Y = \mathbb{E}[Y]$
- Variances: $\sigma_X^2 = \operatorname{Var}[X], \, \sigma_Y^2 = \operatorname{Var}[Y]$
- Covariance: Cov[X, Y] or Correlation Coefficient: $\rho_{X,Y}$.
- The joint PDF is

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho_{X,Y}^2}} \exp\left(-\frac{1}{2(1-\rho_{X,Y}^2)}\left(\frac{(x-\mu_X)^2}{\sigma_X^2} - 2\rho_{X,Y}\frac{(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} + \frac{(y-\mu_Y)^2}{\sigma_Y^2}\right)\right)$$

- Jointly Gaussian random variables X and Y satisfy the following properties:
 - Linear functions are Gaussian: If W = aX + bY + c and Z = dX + eY + f, then W and Z are jointly Gaussian with parameters that be determined via the linearity of expectation and the variance and covariance of linear functions.
 - Marginal PDFs are Gaussian: X is Gaussian(μ_X, σ_X) and Y is Gaussian(μ_Y, σ_Y).
 - Uncorrelated implies Independence: X and Y are uncorrelated ($\rho_{X,Y} = 0$) if and only if X and Y are independent.
 - Conditional Expected Value: $\mathbb{E}[X|Y = y] = \mu_X + \rho_{X,Y} \frac{\sigma_X}{\sigma_Y} (y \mu_Y)$ = $\mu_X + \frac{\mathsf{Cov}[X,Y]}{\mathsf{Var}[Y]} (y - \mu_Y)$
 - Conditional Variance: $\sigma_{X|Y}^2 = \text{Var}[X|Y=y] = (1 \rho_{X,Y}^2)\sigma_X^2$.
 - Conditional PDF is Gaussian: The conditional PDF $f_{X|Y}(x|y)$ of X given Y is Gaussian($\mathbb{E}[X|Y=y], \sigma_{X|Y}^2$).

5.3 More than Two Random Variables

- All of the concepts from pairs of random variables generalize to n random variables X_1, \ldots, X_n .
- The joint cumulative distribution function (CDF) is

$$F_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = \mathbb{P}[X_1 \le x_1,\ldots,X_n \le x_n] .$$

• For discrete random variables, the joint probability mass function (PMF) is

$$P_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = \mathbb{P}[X_1 = x_1,\ldots,X_n = x_n]$$

and the **range** is $R_{X_1,...,X_n} = \{(x_1,...,x_n) : P_{X_1,...,X_n}(x_1,...,x_n) > 0\}.$

• For continuous random variables, the joint probability density function (PDF) is

$$f_{X_1,\dots,X_n}(x_1,\dots,x_n) = \frac{\partial^n F_{X_1,\dots,X_n}(x_1,\dots,x_n)}{\partial x_1\cdots \partial x_n}$$

and the **range** is $R_{X_1,...,X_n} = \{(x_1,...,x_n) : f_{X_1,...,X_n}(x_1,...,x_n) > 0\}.$

- The basic PMF/PDF properties apply:
 - Non-negativity: P_{X1,...,Xn}(x₁,...,x_n) ≥ 0 f_{X1,...,Xn}(x₁,...,x_n) ≥ 0
 Normalization: $\sum_{x_1 \in R_{X_1}} \cdots \sum_{x_n \in R_{X_n}} P_{X_1,...,X_n}(x_1,...,x_n) = 1$

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{X_1,\dots,X_n}(x_1,\dots,x_n) \, dx_1 \cdots dx_n = 1$$

• Probability of an event:

$$\mathbb{P}[(X_1,\ldots,X_n)\in B] = \begin{cases} \sum_{\substack{(x_1,\ldots,x_n)\in B\\ \int \cdots \int_B f_{X_1,\ldots,X_n}(x_1,\ldots,x_n) dx_1\ldots dx_n} & \text{Discrete} \end{cases}$$

• X_1, \ldots, X_n are **independent** if and only if the joint PMF/PDF factors into the product of the marginal PMFs/PDFs: $P_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = P_{X_1}(x_1)\cdots P_{X_n}(x_n)$

$$f_{X_1,...,X_n}(x_1,...,x_n) = f_{X_1}(x_1)\cdots f_{X_n}(x_n)$$

• To obtain a marginal PMF/PDF of a subset X_1, \ldots, X_m of the random variables, we sum/integrate over the undesired variables X_{m+1}, \ldots, X_n :

$$P_{X_1,\dots,X_m}(x_1,\dots,x_m) = \sum_{x_{m+1}\in R_{X_{m+1}}} \cdots \sum_{x_n\in R_{X_n}} P_{X_1,\dots,X_n}(x_1,\dots,x_n)$$
$$f_{X_1,\dots,X_m}(x_1,\dots,x_m) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{X_1,\dots,X_n}(x_1,\dots,x_n) \, dx_{m+1} \cdots dx_n$$

• The expected value of a function is

Discrete:
$$\mathbb{E}[g(X_1,\ldots,X_n)] = \sum_{x_1 \in R_{X_1}} \cdots \sum_{x_n \in R_{X_n}} g(x_1,\ldots,x_n) P_{X_1,\ldots,X_n}(x_1,\ldots,x_n)$$

Continuous:
$$\mathbb{E}[g(X_1,\ldots,X_n)] = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(x_1,\ldots,x_n) f_{X_1,\ldots,X_n}(x_1,\ldots,x_n) dx_1 \cdots dx_n$$

• Linearity of Expectation: For any functions $g_1(x_1, \ldots, x_n), \ldots, g_m(x_1, \ldots, x_n)$ and constants a_1, \ldots, a_m ,

$$\mathbb{E}[a_1g_1(X_1,\ldots,X_n) + \cdots + a_mg_m(X_1,\ldots,X_n)]$$

= $a_1\mathbb{E}[g_1(X_1,\ldots,X_n)] + \cdots + a_m\mathbb{E}[g_m(X_1,\ldots,X_n)]$

• The conditional PMF of X_1, \ldots, X_m given X_{m+1}, \ldots, X_n is

$$P_{X_1,\dots,X_m}(x_1,\dots,x_m) = \begin{cases} \frac{P_{X_1,\dots,X_n}(x_1,\dots,x_n)}{P_{X_{m+1},\dots,X_n}(x_{m+1},\dots,x_n)} & (x_1,\dots,x_n) \in R_{X_1,\dots,X_n} \\ 0 & \text{otherwise.} \end{cases}$$

• The conditional PDF of X_1, \ldots, X_m given X_{m+1}, \ldots, X_n is

$$f_{X_1,\dots,X_m}(x_1,\dots,x_m) = \begin{cases} \frac{f_{X_1,\dots,X_n}(x_1,\dots,x_n)}{f_{X_{m+1},\dots,X_n}(x_{m+1},\dots,x_n)} & (x_1,\dots,x_n) \in R_{X_1,\dots,X_n} \\ 0 & \text{otherwise.} \end{cases}$$

• The conditional expected value is

$$\mathbb{E} \Big[g(X_1, \dots, X_n) \, \big| \, X_{m+1} = x_{m+1}, \dots, X_n = x_n \Big] \\ = \begin{cases} \sum_{x_1 \in R_{X_1}} \cdots \sum_{x_m \in R_{X_m}} g(x_1, \dots, x_n) \, P_{X_1, \dots, X_m | X_{m+1}, \dots, X_n}(x_1, \dots, x_m | x_{m+1}, \dots, x_n) & \text{Discrete} \\ \\ \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(x_1, \dots, x_n) \, f_{X_1, \dots, X_m | X_{m+1}, \dots, X_n}(x_1, \dots, x_m | x_{m+1}, \dots, x_n) \, dx_1 \cdots dx_m & \text{Continuous} \end{cases}$$

5.4 Random Vectors

• A random vector
$$\underline{X} = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix}$$
 is a vector whose entries X_1, \ldots, X_n are random variables

- If the entries are discrete random variables, the random vector has a joint PMF $P_{\underline{X}}(\underline{x}) = P_{X_1,\dots,X_n}(x_1,\dots,x_n).$
- If the entries are continuous random variables, the random vector has a joint PDF $f_{\underline{X}}(\underline{x}) = f_{X_1,\dots,X_n}(x_1,\dots,x_n).$
- The mean vector $\underline{\mu}_{\underline{X}}$ is a column vector whose entries are the expected values of the corresponding entries of \underline{X} :

$$\underline{\mu}_{\underline{X}} = \mathbb{E}[\underline{X}] = \begin{bmatrix} \mathbb{E}[X_1] \\ \vdots \\ \mathbb{E}[X_n] \end{bmatrix}$$

- Linearity of Expectation: $\mathbb{E}[\mathbf{A}\underline{X} + \underline{b}] = \mathbf{A}\mathbb{E}[\underline{X}] + \underline{b}$
- The covariance matrix $\Sigma_{\underline{X}}$ is a matrix whose $(i, j)^{\text{th}}$ entry is the covariance between the i^{th} and j^{th} entry of the vector,

$$\boldsymbol{\Sigma}_{\underline{X}} = \mathbb{E}\left[(\underline{X} - \mathbb{E}[\underline{X}])(\underline{X} - \mathbb{E}[\underline{X}])^{\mathsf{T}}\right] = \begin{bmatrix} \mathsf{Cov}[X_1, X_1] & \cdots & \mathsf{Cov}[X_1, X_n] \\ \vdots & \vdots \\ \mathsf{Cov}[X_n, X_1] & \cdots & \mathsf{Cov}[X_n, X_n] \end{bmatrix}$$

- Another useful formula is $\Sigma_{\underline{X}} = \mathbb{E}[\underline{X}\underline{X}^{\mathsf{T}}] \mathbb{E}[\underline{X}](\mathbb{E}[\underline{X}])^{\mathsf{T}}$
- Covariance of a Linear Transform: If $\underline{Y} = \mathbf{A}\underline{X} + \underline{b}$, then $\mathbf{\Sigma}_{\underline{Y}} = \mathbf{A}\mathbf{\Sigma}_{\underline{X}}\mathbf{A}^{\mathsf{T}}$.

- The covariance matrix $\Sigma_{\underline{X}}$ satisfies the following properties:
 - Symmetry: $\Sigma_X = \Sigma_X^{\mathsf{T}}$
 - Positive Semi-Definite: $\underline{a}^{\mathsf{T}} \Sigma_X \underline{a} \ge 0$
 - *n* real, non-negative eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n \geq 0$ and *n* real eigenvectors $\underline{v}_1, \ldots, \underline{v}_n \in \mathbb{R}^n$ that are orthonormal, $\underline{v}_i^\mathsf{T} \underline{v}_j = 0$ for $i \neq j$ and $\underline{v}_i^\mathsf{T} \underline{v}_i = 1$ for $i = 1, \ldots, n$.
 - Collecting the eigenvalues and the eigenvectors into matrices

$$\mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \qquad \mathbf{V} = \begin{bmatrix} \begin{vmatrix} & & & \\ u_1 & \cdots & u_n \\ & & & \end{vmatrix} ,$$

we have that $\mathbf{\Lambda} \in \mathbb{R}^{n \times n}$ is a diagonal matrix with real, non-negative entries and $\mathbf{V} \in \mathbb{R}^{n \times n}$ is a real, orthogonal matrix, $\mathbf{V}\mathbf{V}^{\mathsf{T}} = \mathbf{V}^{\mathsf{T}}\mathbf{V} = \mathbf{I}$. The eigendecomposition of the covariance matrix is $\mathbf{\Sigma}_X = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^{\mathsf{T}}$.

5.5 Gaussian Vectors

- A standard Gaussian vector is a random vector \underline{Z} whose entries Z_1, \ldots, Z_n are independent Gaussian(0, 1) random variables.
- A (jointly) Gaussian vector is a random vector \underline{X} that can be written as a linear transform $\underline{X} = \mathbf{A}\underline{Z} + \underline{b}$ of a standard Gaussian vector \underline{Z} . However, this representation is usually left implicit, and the distribution of a Gaussian vector \underline{X} is specified by its mean vector $\underline{\mu}_{\underline{X}}$ and covariance matrix $\mathbf{\Sigma}_{X}$.
- Shorthand notation: We often write $\underline{X} \sim \mathcal{N}(\underline{\mu}_{\underline{X}}, \mathbf{\Sigma}_{\underline{X}})$ to mean that \underline{X} is a Gaussian vector with mean vector $\underline{\mu}_{\underline{X}}$ and covariance matrix $\mathbf{\Sigma}_{\underline{X}}$.
- A Gaussian vector $\underline{X} \sim \mathcal{N}(\underline{\mu}_{X}, \underline{\Sigma}_{\underline{X}})$ satisfies the following properties:
 - The entries of \underline{X} are independent if and only if Σ_X is a diagonal matrix.
 - For any choice of vector $\underline{a} \in \mathbb{R}^n$, $\underline{a}^\mathsf{T} \underline{X}$ is a scalar Gaussian random variable.
 - If $\Sigma_{\underline{X}}$ is invertible, the joint PDF of $\underline{X} \sim \mathcal{N}(\underline{\mu}_{\underline{X}}, \Sigma_{\underline{X}})$ is

$$f_{\underline{X}}(\underline{x}) = \frac{1}{\sqrt{(2\pi)^n \det(\mathbf{\Sigma}_{\underline{X}})}} \exp\left(-\frac{1}{2} \left(\underline{x} - \underline{\mu}_{\underline{X}}\right)^\mathsf{T} \mathbf{\Sigma}_{\underline{X}}^{-1} \left(\underline{x} - \underline{\mu}_{\underline{X}}\right)\right)$$

- Linear transformations of Gaussian vectors are themselves Gaussian vectors: If $\underline{Y} = \mathbf{B}\underline{X} + \underline{c}$, then $\underline{Y} \sim \mathcal{N}(\mathbf{B}\underline{\mu}_X + \underline{c}, \mathbf{B}\boldsymbol{\Sigma}_{\underline{X}}\mathbf{B}^{\mathsf{T}})$.
- Let \underline{Y} be a Gaussian vector with mean vector $\underline{\mu}_{\underline{Y}}$ and covariance matrix $\Sigma_{\underline{Y}}$, and assume

that
$$\begin{bmatrix} \underline{X} \\ \underline{Y} \end{bmatrix}$$
 concatenated together is also a Gaussian vector with mean vector $\begin{bmatrix} \underline{\mu}_{\underline{X}} \\ \underline{\mu}_{\underline{Y}} \end{bmatrix}$ and

covariance matrix $\begin{bmatrix} \Sigma_{\underline{X}} & \Sigma_{\underline{X},\underline{Y}} \\ \Sigma_{\underline{X},\underline{Y}}^{\mathsf{T}} & \Sigma_{\underline{Y}} \end{bmatrix}$ where $\Sigma_{\underline{X},\underline{Y}} = \mathbb{E}[(\underline{X} - \underline{\mu}_{\underline{X}})(\underline{Y} - \underline{\mu}_{\underline{Y}})^{\mathsf{T}}]$ is sometimes called the cross-covariance matrix. Then, the conditional PDF of \underline{X} given \underline{Y} is Gaussian with mean vector $\mathbb{E}[\underline{X}|\underline{Y} = y]$ and covariance matrix $\Sigma_{X|Y}$ where

$$\begin{split} \mathbb{E}[\underline{X}|\underline{Y} = \underline{y}] &= \underline{\mu}_{\underline{X}} + \mathbf{\Sigma}_{\underline{X},\underline{Y}} \mathbf{\Sigma}_{\underline{X}}^{-1} \left(\underline{y} - \underline{\mu}_{\underline{Y}} \right) \\ \mathbf{\Sigma}_{\underline{X}|\underline{Y}} &= \mathbf{\Sigma}_{\underline{X}} - \mathbf{\Sigma}_{\underline{X},\underline{Y}} \mathbf{\Sigma}_{\underline{Y}}^{-1} \mathbf{\Sigma}_{\underline{X},\underline{Y}}^{\mathsf{T}} \end{split}$$