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6 Detection

6.1

Probability is a foundation for principled decision making from partial, noisy observations.
The basic detection problem is to decide amongst a few mutually exclusive choices.

Motivating Example: A radar system trying to decide whether an airplane is present or
absent. There are four possibilities:

o Airplane is absent, detector says it is absent.
o Airplane is absent, detector says it is present. (This is a false alarm.)
o Airplane is present, detector says it is absent. (This is a missed detection.)

o Airplane is present, detector says it is present.

Binary Hypothesis Testing

Two hypotheses Hy and Hi, which are events that form a partition of the sample space 2.

We obtain a measurement or observation, which is a random variable Y whose values are
distributed according to

o Discrete: If Hy occurs, Y has PMF Py g, (y). If Hy occurs, X has PMF Py g, (y).
o Continuous: If Hy occurs, Y has PDF fy g, (y). If Hy occurs, Y has PDF fyq, (y).
o These conditional PMFs/PDFs are known as likelihoods.

There is a detector or decision rule, which is a function D(y) that takes as input the
observation Y = y, and outputs 0 if it decides that Hy occurred and 1 if it decides H;.

This decision partitions the range of the observation Ry into two regions:

Ay={y € Ry : D(y) =0} Ai={ye€e Ry :D(y) =1}

Decide Hy Decide Hq

Errors occur when we choose the wrong hypothesis:

o False Alarm: Choose Hi when Hj is true. The probability of false alarm is
Ppa =P[{Y € A1|Ho})

o Missed Detection: Choose Hy when H; is true. The probability of missed detection is
Pup =P[{Y € Ag|H1}]

o An error occurs if we decide the wrong hypothesis:

{error} = {A1 N Ho}U{AoN H1}

o

Goal is to minimize the probability of error F.:

P, = ]P)[GI'I‘OI'} = Ppa P[H()] + Pup P[Hl]

o

Our goal is to find the optimal decision rule and the resulting probability of error.
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e It is sometimes easier to express decision rules in terms of the likelihood ratio:

Py, (y)
B PY|H0 (y)

A

Discrete: L(y) N m

Continuous: L(y)

e It is sometimes even easier to to use the log-likelihood ratio:

w>

Discrete: In (L(y)) =In (PYHO ()

Continuous: In (L(y)) = In <leHl(y)>

fY|Ho(y)
e For vector observations Y, we simply replace all occurrences of Y with Y. For example,

Py |a, ()

Pym, (y) becomes Py\u, (), Pym, (y) becomes Py, (y), and L(y) becomes L(y) = Py

6.2 Maximum Likelihood (ML) Decision Rule
e Intuition: Choose the hypothesis that best explains the observation.

e The maximum likelihood (ML) decision rule is

Discrete: DM (y) = 1 Py, (y) = Py, () Continuous: DML (y) {1 Fyim (y) = fyimy(y)
0 Pyim, (y) < Pyir, (y) 0 fyim () < fyim,(¥)

which can be expressed in terms of the likelihood and log-likelihood ratios as follows:

DML(y)Z{l Ly =1 _ {1 In(L(y)) = 0
0 Liy) <1 0 In(L(y)) <0

e This is only the optimal decision if P[Hy| = P[H;] = 5. However, it does not require knowledge
of P[Hy| and P[H;] to implement the decision rule, only the conditional probability models
for the observation Y.

6.3 Maximum a Posteriori (MAP) Rule
e Intuition: Choose the most likely hypothesis given the observation.

e The maximum a posteriori (MAP) decision rule is
Discrete: DMAP () = {

Continuous: DMAP (y) = {1 fyim () PLHA] > fy g, (y) P
(y) PLH1] < fym, (y) P[

which can be expressed in terms of the likelihood and log-likelihood ratios as follows:

Hy
Ho

P[Ho| P[Ho
1 L(y) > 1 In >0
sy P[H:] B (P[Hlo
0 L(y) < Egﬂ 0 In (EZ?D <0

e This is the optimal decision rule in terms of minimizing the probability of error. However,
it requires knowledge of P[Hyp| and P[H;] to implement the decision rule.
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