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7 Estimation

e Probability is also an excellent foundation for making inferences from noisy observations.

e Key Idea: Estimate the values of a set of unobserved random variables using the values of a
set of observed random variables.

7.1 Scalar Estimation

e There is an unobserved random variable X, generated by a prior distribution:

Discrete: Px(z) Continuous: fx(z)

e There is an observed random variable Y, generated by an observation model:

Discrete: Py |x(y|r) Continuous: fy|x (y|x)

e We need to select an estimation rule (or estimator) #(y), which takes the value of the
observed random variable Y = y as an input and outputs an estimate of the unobserved
random variable X.

e Since it is unlikely the estimate Z(Y") will be exactly equal to X, it does not make sense to
analyze the performance of our estimators with the probability of error. Instead, we need a
criterion for measuring the error between the true X and our estimate #(Y'). There are many
ways to do this.

e Here, we focus on the mean-squared error (MSE), MSE = E[(X — &(Y))?],

Discrete: MSE = Z Z PXy(x Y) Continuous: MSE—/ / ny(:c y) dx dy

r€Rx yERy

7.2 Minimum Mean-Squared Error (MMSE) Estimator

e The minimum mean-squared error (MMSE) estimator @\\sg(y) is the estimator that
attains the smallest mean-squared error across all possible estimators.

e [t turns out that that the MMSE estimator is equivalent to the conditional expected value of
X given Y =y,
Inmmse(y) = E[X]Y =y].

e The MMSE estimator satisfies the following properties:

o Unbiased: Its expected value is the same as that of the desired random variable,
E[QMMSE(Y)] = E[X].

o Orthogonality Principle: Its error is orthogonal to any function of the observed
random variable,

E[(X — 2muse(Y))g(Y)] =0 for any function g(y).
An important special case is that the MMSE estimator is orthogonal to its own error,

E[(X — Zmuse(Y))Evmse(Y)] = 0.
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7.3 Linear Least-Squares Error (LLSE) Estimator

e In some scenarios, it can be tricky to calculate the MMSE estimator. In these cases, we
sometimes turn to the linear least-squares error (LLSE) estimator, which attains the
smallest mean-squared error across all possible linear estimators. Here are two equivalent
formulas for the LLSE estimator:

Cov]X,Y]

Zrise(y) = E[X] + Var[Y]

(v~ EIY]) = ELX] + pxy (v~ EIY])

e The mean-squared error of the LLSE estimator is

(Cov[X, Y])2

MSE; sk = E[(X . iLLSE(Y))Q} = Var[X] — ol = Var[X](1 - p%y)

e The LLSE estimator satisfies the following properties:
o Unbiased: Its expected value is the same as that of the desired random variable,
E[2Lise(Y)] = E[X].

o Orthogonality Principle: Its error is orthogonal to any linear function of the observed
random variable,

E[(X — #LLse(Y))(aY +b)] =0  for any a,b.
An important special case is that the LLSE estimator is orthogonal to its own error,
E[(X — Zrise(Y))2uise(Y)] = 0.

o For the special case of jointly Gaussian X and Y, the LLSE estimator is also the MMSE
estimator.

7.4 Vector Estimation

X1
e There is an unobserved random vector X = | : |, generated by a prior distribution:
Xn
Discrete: Px(z) Continuous: fx(z)
Y1
e There is an observed random vector Y = | : |, generated by an observation model:
Yo
Discrete: Py |x (y|z) Continuous: fy|x (y|z)
1(y)
e We need to select an estimation rule (or estimator) Z(y) = :
n(y)

e We measure the performance of our estimator by its mean-squared error (MSE),

MSE = 3 E[(X, — 2(0))7] = B[(X - 20) (x - 301))]
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7.5 Vector Minimum Mean-Squared Error (MMSE) Estimator

e The (vector) minimum mean-squared error (MMSE) estimator Zynsg(y) is the

estimator that attains the smallest mean-squared error across all possible estimators,
E[X1|Y = y]
Ivmse(y) =E[X|Y =y] = :
E[X,|Y = y]
> @i Py, v @ilys, - ym)  X; discrete
E[Xi|Y =y] = { "5e%
/ T fx, Vi, Y (ZTilY15 - -+, Ym) dz; - X; continuous

—0o0

e However, this formula can be difficult to evaluate, both analytically and empirically.

7.6 Vector Linear Least-Squares Error (LLSE) Estimator

e The (vector) linear least-squares error (LLSE) estimator is the estimator that attains
the smallest mean-squared error across all possible linear estimators,

Zrise(y) = EX] + ELXZE (y —E[Y]) ,

which involves the

Cov[Y1,Y1] - Cov[Y1,Y,]
o Covariance Matrixof Y: By = E[(Y-E[Y])(Y-E[Y])T] = : :
Cov[Yy, Y] -+ Cov[Yy,, Yy,]
Cov[Xy,Y1] -+ Cov[Xy,Yn]
o Cross-Covariance Matrix: Xy y = E[(X-E[X])(Y-E[Y])T] = : :
Cov[X,,Y1] -+ Cov[X,,Yn]

e The mean-squared error of the LLSE estimator is
MSErrse = Tr(Zx — Sxy 3y T y)

where ¥ x is the covariance matrix of X and Tr is the trace operator, which sums up the
diagonal elements of a matrix.

e The LLSE estimator satisfies the following properties:
o Unbiased: Its expected value is the same as that of the desired random variable,
]E[iLLSE(X)] =E[X]

o Orthogonality Principle: Its error is orthogonal to any linear function of the observed
random variable,

E[(X - 2115e(Y))(AY +b)"] =0

for any linear function Ay +b. An important special case is that the LLSE estimator is
orthogonal to its own error,

E [(K - @LLSE(X))@LLSE(X)] =0.

: X . . . .
e For the special case where [Y} is a Gaussian vector, the vector LLSE estimator is also the

vector MMSE estimator.
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