
EK381 Probability: 7. Estimation 1

7 Estimation

• Probability is also an excellent foundation for making inferences from noisy observations.

• Key Idea: Estimate the values of a set of unobserved random variables using the values of a
set of observed random variables.

7.1 Scalar Estimation

• There is an unobserved random variable X, generated by a prior distribution:

Discrete: PX(x) Continuous: fX(x)

• There is an observed random variable Y , generated by an observation model:

Discrete: PY |X(y|x) Continuous: fY |X(y|x)

• We need to select an estimation rule (or estimator) x̂(y), which takes the value of the
observed random variable Y = y as an input and outputs an estimate of the unobserved
random variable X.

• Since it is unlikely the estimate x̂(Y ) will be exactly equal to X, it does not make sense to
analyze the performance of our estimators with the probability of error. Instead, we need a
criterion for measuring the error between the true X and our estimate x̂(Y ). There are many
ways to do this.

• Here, we focus on the mean-squared error (MSE), MSE = E
[
(X − x̂(Y ))2

]
,

Discrete: MSE =
∑

x∈RX

∑
y∈RY

(
x−x̂(y)

)2
PX,Y (x, y) Continuous: MSE =

∫ ∞
−∞

∫ ∞
−∞

(
x−x̂(y)

)2
fX,Y (x, y) dx dy

7.2 Minimum Mean-Squared Error (MMSE) Estimator

• The minimum mean-squared error (MMSE) estimator x̂MMSE(y) is the estimator that
attains the smallest mean-squared error across all possible estimators.

• It turns out that that the MMSE estimator is equivalent to the conditional expected value of
X given Y = y,

x̂MMSE(y) = E[X|Y = y].

• The MMSE estimator satisfies the following properties:

◦ Unbiased: Its expected value is the same as that of the desired random variable,

E
[
x̂MMSE(Y )

]
= E[X].

◦ Orthogonality Principle: Its error is orthogonal to any function of the observed
random variable,

E
[(
X − x̂MMSE(Y )

)
g(Y )

]
= 0 for any function g(y).

An important special case is that the MMSE estimator is orthogonal to its own error,

E
[(
X − x̂MMSE(Y )

)
x̂MMSE(Y )

]
= 0.
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7.3 Linear Least-Squares Error (LLSE) Estimator

• In some scenarios, it can be tricky to calculate the MMSE estimator. In these cases, we
sometimes turn to the linear least-squares error (LLSE) estimator, which attains the
smallest mean-squared error across all possible linear estimators. Here are two equivalent
formulas for the LLSE estimator:

x̂LLSE(y) = E[X] +
Cov[X,Y ]

Var[Y ]

(
y − E[Y ]

)
= E[X] + ρX,Y

σX
σY

(
y − E[Y ]

)
• The mean-squared error of the LLSE estimator is

MSELLSE = E
[(
X − x̂LLSE(Y )

)2]
= Var[X]−

(
Cov[X,Y ]

)2
Var[Y ]

= Var[X]
(
1− ρ2X,Y

)
• The LLSE estimator satisfies the following properties:

◦ Unbiased: Its expected value is the same as that of the desired random variable,

E
[
x̂LLSE(Y )

]
= E[X].

◦ Orthogonality Principle: Its error is orthogonal to any linear function of the observed
random variable,

E
[(
X − x̂LLSE(Y )

)
(aY + b)

]
= 0 for any a, b.

An important special case is that the LLSE estimator is orthogonal to its own error,

E
[(
X − x̂LLSE(Y )

)
x̂LLSE(Y )

]
= 0.

◦ For the special case of jointly Gaussian X and Y , the LLSE estimator is also the MMSE
estimator.

7.4 Vector Estimation

• There is an unobserved random vector X =

X1
...
Xn

, generated by a prior distribution:

Discrete: PX(x) Continuous: fX(x)

• There is an observed random vector Y =

Y1...
Ym

, generated by an observation model:

Discrete: PY |X(y|x) Continuous: fY |X(y|x)

• We need to select an estimation rule (or estimator) x̂(y) =

x̂1(y)
...

x̂n(y)

.

• We measure the performance of our estimator by its mean-squared error (MSE),

MSE =
n∑

i=1

E
[(
Xi − x̂i(Y )

)2]
= E

[(
X − x̂(Y )

)T(
X − x̂(Y )

)]
.
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7.5 Vector Minimum Mean-Squared Error (MMSE) Estimator

• The (vector) minimum mean-squared error (MMSE) estimator x̂MMSE(y) is the
estimator that attains the smallest mean-squared error across all possible estimators,

x̂MMSE(y) = E
[
X|Y = y

]
=

E
[
X1|Y = y

]
...

E
[
Xn|Y = y

]


E
[
Xi|Y = y

]
=


∑

xi∈RXi

xi PXi|Y1,...,Ym
(xi|y1, . . . , ym) Xi discrete∫ ∞

−∞
xi fXi|Y1,...,Ym

(xi|y1, . . . , ym) dxi Xi continuous

• However, this formula can be difficult to evaluate, both analytically and empirically.

7.6 Vector Linear Least-Squares Error (LLSE) Estimator

• The (vector) linear least-squares error (LLSE) estimator is the estimator that attains
the smallest mean-squared error across all possible linear estimators,

x̂LLSE(y) = E[X] + ΣX,Y Σ−1Y

(
y − E[Y ]

)
,

which involves the

◦ Covariance Matrix of Y : ΣY = E
[
(Y−E[Y ])(Y−E[Y ])T

]
=

Cov[Y1, Y1] · · · Cov[Y1, Ym]
...

. . .
...

Cov[Ym, Y1] · · · Cov[Ym, Ym]


◦ Cross-Covariance Matrix: ΣX,Y = E

[
(X−E[X])(Y−E[Y ])T

]
=

Cov[X1, Y1] · · · Cov[X1, Ym]
...

. . .
...

Cov[Xn, Y1] · · · Cov[Xn, Ym]


• The mean-squared error of the LLSE estimator is

MSELLSE = Tr
(
ΣX −ΣX,Y Σ−1Y ΣT

X,Y

)
where ΣX is the covariance matrix of X and Tr is the trace operator, which sums up the
diagonal elements of a matrix.

• The LLSE estimator satisfies the following properties:

◦ Unbiased: Its expected value is the same as that of the desired random variable,

E
[
x̂LLSE(Y )

]
= E[X]

◦ Orthogonality Principle: Its error is orthogonal to any linear function of the observed
random variable,

E
[(
X − x̂LLSE(Y )

)
(AY + b)T

]
= 0

for any linear function Ay+ b. An important special case is that the LLSE estimator is
orthogonal to its own error,

E
[(
X − x̂LLSE(Y )

)
x̂LLSE(Y )

]
= 0.

• For the special case where

[
X
Y

]
is a Gaussian vector, the vector LLSE estimator is also the

vector MMSE estimator.
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