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8 Sums of Random Variables

• Consider n random variables X1, X2, . . . , Xn.

• We are often interested in the behavior of their sum Sn =
n∑

i=1

Xi.

• For example, the sample mean Mn =
1

n

n∑
i=1

Xi is used to estimate the mean from data.

• Unfortunately, computing the distribution of the sum Sn or sample mean Mn directly can be
quite challenging. As a starting point, we can compute the expected value and variance.

• Expected Value of the Sum: E
[
Sn
]

= E
[ n∑

i=1

Xi

]
=

n∑
i=1

E[Xi]

• Variance of the Sum: Var
[
Sn
]

= Var
[ n∑

i=1

Xi

]
=

n∑
i=1

n∑
j=1

Cov[Xi, Xj ]

8.1 Independent and Identically Distributed Random Variables

• Random variables X1, . . . , Xn are said to be independent and identically distributed
(i.i.d.) if they are independent and all Xi have the same marginal distribution, which is a
PMF PX(x) in the discrete case and a PDF fX(x) in the continuous case. The joint PMF or
joint PDF can be factored as follows:

◦ Discrete: PX1,...,Xn(x1, . . . , xn) = PX(x1) · · ·PX(xn) =
n∏

i=1

PX(xi)

◦ Continuous: fX1,...,Xn(x1, . . . , xn) = fX(x1) · · · fX(xn) =
n∏

i=1

fX(xi)

• For i.i.d. X1, . . . , Xn, there are simple formulas for the mean and variance of sums:

E
[
Sn
]

= E
[ n∑

i=1

Xi

]
= nE[X] Var

[
Sn
]

= Var
[ n∑

i=1

Xi

]
= nVar[X]

E
[
Mn

]
= E

[ 1

n

n∑
i=1

Xi

]
= E[X] Var

[
Mn

]
= Var

[ 1

n

n∑
i=1

Xi

]
=

1

n
Var[X]

8.2 Laws of Large Numbers

• Formally, an infinite sequence of random variables X1, X2, . . . is specified by a collection
of joint CDFs FXk1

,...,Xkn
(xk1 , . . . , xkn) for any finite set of distinct indices k1, . . . , kn and any

finite n. In the discrete case, each joint CDF corresponds to a joint PMF PXk1
,...,Xkn

(xk1 , . . . , xkn),
and, in the continuous case, to a joint PDF fXk1

,...,Xkn
(xk1 , . . . , xkn). If the sequence is i.i.d.,

then the joint distributions factor

◦ Discrete: PXk1
,...,Xkn

(xk1 , . . . , xkn) = PX(xk1) · · ·PX(xkn) with marginal PMF PX(x)

◦ Continuous: fXk1
,...,Xkn

(xk1 , . . . , xkn) = fX(xk1) · · · fX(xkn) with marginal PDF fX(x)
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• Intuition: For an i.i.d. sequence of random variables, the sample mean converges to the true
mean as n → ∞. Since the variance of the sample mean decreases with n, we expect our
estimate of the mean to become increasingly accurate as n increases. The laws of large
numbers make this intuition precise.

• Weak Law of Large Numbers: Let Mn = 1
n

∑n
i=1Xi be the sample mean of an i.i.d. se-

quence of random variables X1, X2, . . . with finite mean E[Xi] = µ <∞. For any ε > 0,

lim
n→∞

P
[
|Mn − µ| > ε

]
= 0 .

Equivalently,
lim
n→∞

P
[
µ− ε ≤Mn ≤ µ+ ε

]
= 1 .

◦ Intuition: For any tolerance ε > 0, the sample mean Mn eventually lands in the interval
[µ− ε, µ+ ε] where µ is the true mean.

◦ We can characterize how quickly the sample mean converges by imposing additional
assumptions.

∗ Chebyshev’s Inequality: If Var[Xi] = σ2 is finite, then

P
[
|Mn − µ| > ε

]
≤ Var[X]

n
.

∗ Hoeffding’s Inequality: If the random variables are bounded a ≤ Xi ≤ b, then

P
[
|Mn − µ| > ε

]
≤ 2 exp

(
− 2nε2

(b− a)2

)
.

∗ Gaussian Tail Bound: If the Xi are Gaussian(µ, σ2), then

P
[
|Mn − µ| > ε

]
≤ 2 exp

(
− nε2

2σ2

)
.

• Strong Law of Large Numbers: Let Mn = 1
n

∑n
i=1Xi be the sample mean of an i.i.d. se-

quence of random variables X1, X2, . . . with finite mean E[Xi] = µ <∞. Then,

P
[

lim
n→∞

Mn = µ
]

= 1 .

◦ Intuition: The sample mean Mn eventually converges exactly to the true mean µ.

8.3 Central Limit Theorem

• Central Limit Theorem: Let Mn = 1
n

∑n
i=1Xi be the sample mean of an i.i.d. sequence

of random variables X1, X2, . . . with finite mean µ < ∞ and finite variance σ2 < ∞. Then,

for any value y, the CDF of Yn =

√
n(Mn − µ)

σ
converges to the standard normal CDF,

lim
n→∞

FYn(y) = Φ(y).

• Intuition: 1√
n

∑n
i=1Xi looks like a Gaussian random variable for large n. That is, the sum

of many small, independent effects looks Gaussian. The normalization by 1√
n

is important

to obtain convergence to a Gaussian distribution: if we instead normalize by 1
n , then we get

back to 1
n

∑n
i=1Xi, which converges to the mean µ.

• We often use the Central Limit Theorem as justification for approximating distributions by a
Gaussian. Specifically, if n > 30, then FYn(y) ≈ Φ(y) is a good approximation. Equivalently,

FMn(m) = P[Mn ≤ m] ≈ Φ

(
m− µ√
σ2/n

)
and P

[
|Mn − µ| > ε

]
≈ 2Q

(
ε
√
n

σ

)
.
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