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8 Sums of Random Variables

e Consider n random variables X1, Xo,..., X,.

e We are often interested in the behavior of their sum S,, = Z X;.
i=1

e For example, the sample mean M, = — E X is used to estimate the mean from data.
n
i=1

e Unfortunately, computing the distribution of the sum 5, or sample mean M,, directly can be
quite challenging. As a starting point, we can compute the expected value and variance.

e Expected Value of the Sum: E[S [ZX} = ZE[XZ
e Variance of the Sum: Var[S Var[ZX] ZZCOV[Xi,Xj]
i=1 j=1

8.1 Independent and Identically Distributed Random Variables

e Random variables X1,..., X, are said to be independent and identically distributed
(i.i.d.) if they are independent and all X; have the same marginal distribution, which is a
PMF Px(z) in the discrete case and a PDF fx(x) in the continuous case. The joint PMF or
joint PDF can be factored as follows:

o Discrete: Px, . x,(z1,...,2n) = Px(z1)--- Px(xy) HPX ()

o Continuous: fx,, . x,(z1,...,2n) = fx(z1) - fx(zn) fo (x;)
e Foriid. Xq,...,X,, there are simple formulas for the mean and variance of sums:
E[S,] = E[Zn: X;| = nE[X] Var[S,] = Var[zn:XZ} — nVar[X]
i=1 i=1
E[M,] = E[% En:X} — E[X] Var[ M, Var[ ZX} —Var X]
i=1

8.2 Laws of Large Numbers

e Formally, an infinite sequence of random variables X1, Xs, ... is specified by a collection
of joint CDFs FXk1v~~~7an (Tkys - - - 2k, ) for any finite set of distinct indices ki, ..., &k, and any
finite n. In the discrete case, each joint CDF corresponds to a joint PMF Pxy. . Xy, (Thys -y Thy, ),
and, in the continuous case, to a joint PDF kaN,_,an (Tkys - - -2k, ). If the sequence is i.i.d.,
then the joint distributions factor

o Discrete: Px, . ..xy, (Tkis- - Th,) = Px(@k,) - Px(2y,) with marginal PMF Py ()

o Continuous: fx, . ..x, (Tkis- -+ Th,) = [x(Tk,) -+ fx(2k,) With marginal PDF fx(z)



2 EK381 Probability: 8. Sums of Random Variables

e Intuition: For an i.i.d. sequence of random variables, the sample mean converges to the true
mean as n — oo. Since the variance of the sample mean decreases with n, we expect our
estimate of the mean to become increasingly accurate as n increases. The laws of large
numbers make this intuition precise.

e Weak Law of Large Numbers: Let M, = %Z?:l X; be the sample mean of an i.i.d. se-
quence of random variables X7, X», ... with finite mean E[X;] = u < co. For any € > 0,

nli_>nololP’[|Mn—u| >el=0.

Equivalently,
lim P[u—eﬁMn§u+e] =1.

n—oo
o Intuition: For any tolerance € > 0, the sample mean M,, eventually lands in the interval
[t — €, 1+ €] where p is the true mean.
o We can characterize how quickly the sample mean converges by imposing additional
assumptions.
% Chebyshev’s Inequality: If Var[X;] = o2 is finite, then

P[|M, — p| > €] < VagX] .

x Hoeffding’s Inequality: If the random variables are bounded a < X; < b, then

2ne?

* Gaussian Tail Bound: If the X; are Gaussian(u,0?), then

ne
P[| M, — p| > €] < 2exp ~ 5,7 )

e Strong Law of Large Numbers: Let M, = %2?21 X; be the sample mean of an i.i.d. se-

quence of random variables X7, X»,... with finite mean E[X;] = u < co. Then,
P[nlggoM" :u] =1.

o Intuition: The sample mean M,, eventually converges exactly to the true mean pu.

8.3 Central Limit Theorem

e Central Limit Theorem: Let M, = %Z?:l X, be the sample mean of an i.i.d. sequence
of random variables X1, X, ... with finite mean 1 < co and finite variance o2 < oo. Then,
V(M — )

g

for any value y, the CDF of Y,, =
lim Fy, (y) = ®(y).
n—oo

converges to the standard normal CDF,

e Intuition: ﬁ Yo, X; looks like a Gaussian random variable for large n. That is, the sum
of many small, independent effects looks Gaussian. The normalization by ﬁ is important
to obtain convergence to a Gaussian distribution: if we instead normalize by %, then we get
back to % > iy Xi, which converges to the mean f.

e We often use the Central Limit Theorem as justification for approximating distributions by a
Gaussian. Specifically, if n > 30, then Fy, (y) =~ ®(y) is a good approximation. Equivalently,

Far, (m) = P[M,, < m] %(I)< m;/”) and P[|M, — | > ¢ m2Q<60n>.
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