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9.1 Sample Statistics

• Let X1, . . . , Xn be i.i.d. random variables with mean E[Xi] = µ and variance Var[Xi] = σ2.

• The sample mean µ̂ = Mn =
1

n

n∑
i=1

Xi is often used to estimate the mean µ. It is an

unbiased estimator with mean E[Mn] = µ and variance Var[Mn] =
σ2

n
.

• The sample variance σ̂2 = Vn =
1

n− 1

n∑
i=1

(
Xi−Mn

)2
is often used to estimate the variance

σ2. It is an unbiased estimator with mean E[Vn] = σ2.

9.2 New Families of Random Variables

• If Z1, . . . , Zn are i.i.d. Gaussian(0, 1) random variables, then Y =

n∑
i=1

Z2
i is a

chi-squared random variable with n degrees-of-freedom.

◦ Mean: E[Y ] = n

◦ Variance: Var[Y ] = 2n

◦ Shorthand Notation: Y ∼ χ2
n

◦ CDF: P[Y ≤ y] = Fχ2
n
(y) evaluated via lookup table or software. (MATLAB: chi2cdf(y,n))

• If Z is a Gaussian(0, 1) random variable, Y is a chi-squared random variable with n degrees-

of-freedom, and Y and Z are independent, then W = Z

√
n

Y
has a Student’s t-distribution

with n degrees-of-freedom.

◦ Mean: E[W ] = 0 (for n > 1)

◦ Variance: Var[W ] = n/(n− 2) (for n > 2)

◦ Shorthand Notation: W ∼ Tn
◦ CDF: P[W ≤ w] = FTn(w) evaluated via lookup table or software. (MATLAB: tcdf(t,n))

◦ PDF: Symmetric about 0. PDF onverges to a Gaussian(0, 1) PDF as n increases.
FTn(t) ≈ Φ(t) is a good approximation for n ≥ 30.

9.3 Confidence Intervals

• Basic Idea: How can we estimate the mean from data and quantify the uncertainty in our
estimate?

• Let X1, . . . , Xn be i.i.d. random variables generated with a distribution with parameter θ
(e.g., mean, variance). A confidence interval [A,B] for the parameter θ with confidence
level 1− α satisfies P[A ≤ θ ≤ B] = 1− α where A and B are functions of X1, . . . , Xn.

• In practice, we usually see values such as 1− α = 0.99, 0.95, 0.9.

• Below, we develop confidence intervals for the mean that are often used in practice. The
probability calculations are exact if we assume that X1, . . . , Xn are i.i.d. Gaussian(µ, σ2). For
n > 30 samples, these are very good approximations if X1, . . . , Xn are i.i.d. but not necessarily
Gaussian.
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9.3.1 Confidence Interval for the Mean: Known Variance

• When to use: Variance is known or n > 30 samples.

• Let X1, . . . , Xn be i.i.d. random variables with unknown mean µ and known variance σ2.

Then,
[
Mn − ε,Mn + ε

]
with ε =

σ√
n
Q−1

(
α

2

)
is a confidence interval for the mean µ with

confidence level 1− α.

• Recall that Q(z) is the standard normal complementary CDF, Q(z) = Φ(−z) = 1− Φ(z).

• Intuition: The random interval
[
Mn − ε,Mn + ε

]
captures the true mean with probability

1− α. We use our prior knowledge of the variance to calculate this interval.

• If the variance σ2 is unknown and we have n > 30 samples, we just substitute σ2 with the
sample variance Vn.

• Useful values: Q−1(0.05) = 1.64, Q−1(0.025) = 1.96, Q−1(0.005) = 2.57

• MATLAB: Q−1(z) = qfuncinv(z)

9.3.2 Confidence Interval for the Mean: Unknown Variance

• When to use: Variance is unknown and n ≤ 30 samples.

• Let X1, . . . , Xn be i.i.d. random variables with unknown mean µ and unknown variance σ2.

Then,
[
Mn − ε,Mn + ε

]
with ε = −

√
Vn√
n
F−1
Tn−1

(
α

2

)
is a confidence interval for the mean µ

with confidence level 1− α.

• Recall that FTn−1(t) is the CDF for a Student’s t-distribution with n− 1 degrees-of-freedom.

• Intuition: The random interval
[
Mn − ε,Mn + ε

]
captures the true mean with probability

1− α. We use the sample variance to calculate this interval.

• When n > 30, we should just use the known variance case, setting σ2 = Vn, since the
t-distribution is well-approximated by a Gaussian distribution in this regime.

• MATLAB: F−1
Tn−1

(t) = tinv(t,n-1)

9.3.3 Confidence Interval for the Variance

• Let X1, . . . , Xn be i.i.d. random variables with unknown mean µ and unknown variance σ2.

Then,
[
β1Vn, β2Vn

]
with β1 =

n− 1

F−1
χ2
n−1

(
1− α

2

) and β2 =
n− 1

F−1
χ2
n−1

(
α

2

) is a confidence interval

for the variance σ2 with confidence level 1− α.

• Intuition: The random interval
[
β1Vn, β2Vn

]
captures the true variance with probability

1− α.

• MATLAB: F−1
χ2
n−1

(y) = chi2inv(y,n-1)
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9.4 Significance Testing

• We only have a probability model for our observations under the null hypothesis H0.

• The significance level 0 ≤ α ≤ 1 is used to determine when to reject the null hypothesis.
Typical values: α = 0.01, 0.05, 0.1.

• Given a statistic calculated from the dataset, the p-value is the probability of observing a
value at least this extreme under the null hypothesis.

◦ If p− value < α, then reject the null hypothesis.

◦ If p− value ≥ α, then fail to reject the null hypothesis.

• We will focus on significance tests for the mean:

◦ A one-sample test compares the sample mean of a dataset to a baseline mean µ.

◦ A two-sample test compares the sample means of two datasets to each other.

◦ The probability calculations below are exact if we assume that the data is i.i.d. Gaussian
under the null hypothesis. For n > 30 samples, the calculations are very good approxi-
mations if the data is are i.i.d. but not necessarily Gaussian under the null hypothesis.

9.4.1 One-Sample Z-Test

• Dataset: X1, . . . , Xn

• Null Hypothesis: Data is i.i.d. Gaussian(µ, σ2) with known mean µ and known variance σ2.

• Informally, does the mean of the data differ significantly from the baseline µ?

• Procedure:

1. Calculate the sample mean Mn =
1

n

n∑
i=1

Xi.

2. Calculate the Z-statistic Z =

√
n(Mn − µ)

σ
.

3. Calculate the p− value = 2Φ(−|Z|) where Φ(z) is the standard normal CDF.
MATLAB: Φ(z) = normcdf(z)

4. If p− value < α, then reject the null hypothesis.
If p− value ≥ α, then fail to reject the null hypothesis.

• Useful values: 2Φ(−1.64) = 0.1, 2Φ(−1.96) = 0.05, 2Φ(−2.57) = 0.01

• In practice, it is reasonable to use this test when n > 30, even if the variance is estimated
from data by the sample variance. In this regime, the Central Limit Theorem offers a good
approximation.

9.4.2 One-Sample T-Test

• Dataset: X1, . . . , Xn

• Null Hypothesis: Data is i.i.d. Gaussian(µ, σ2) with known mean µ and unknown variance
σ2.
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• Informally, does the mean of the data differ significantly from the baseline µ?

• Procedure:

1. Calculate the sample mean and sample variance

Mn =
1

n

n∑
i=1

Xi Vn =
1

n− 1

n∑
i=1

(Xi −Mn)2

2. Calculate the Z-statistic T =

√
n(Mn − µ)√

Vn
.

3. Calculate the p− value = 2FTn−1(−|T |) where FTn−1(t) is the CDF for a Student’s t-
distribution with n− 1 degrees-of-freedom.
MATLAB: FTn−1(t) = tcdf(t,n-1)

4. If p− value < α, then reject the null hypothesis.
If p− value ≥ α, then fail to reject the null hypothesis.

• In practice, it is reasonable to use this test when n ≤ 30, and the data is well-approximated
by a Gaussian distribution.

9.4.3 Two-Sample Z-Test

• Dataset: X1, . . . , Xn1 and Y1, . . . , Yn2

• Null Hypothesis: X1, . . . , Xn1 is i.i.d. Gaussian(µ, σ21) and Y1, . . . , Yn2 is i.i.d. Gaussian(µ, σ22)
with known variances σ21 and σ22. The mean µ is unknown.

• Informally, do the datasets have the same mean?

• Procedure:

1. Calculate the sample means M
(1)
n1 =

1

n1

n1∑
i=1

Xi and M
(2)
n2 =

1

n2

n2∑
i=1

Yi.

2. Calculate the Z-statistic Z =
M

(1)
n1 −M

(2)
n2√

σ2
1
n1

+
σ2
2
n2

.

3. Calculate the p− value = 2Φ(−|Z|) where Φ(z) is the standard normal CDF.
MATLAB: Φ(z) = normcdf(z)

4. If p− value < α, then reject the null hypothesis.
If p− value ≥ α, then fail to reject the null hypothesis.

• Useful values: 2Φ(−1.64) = 0.1, 2Φ(−1.96) = 0.05, 2Φ(−2.57) = 0.01

• In practice, it is reasonable to use this test when n1 > 30 and n2 > 30, even if the variances
are estimated from data by the sample variances. In this regime, the Central Limit Theorem
offers a good approximation.
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9.4.4 Two-Sample T-Test

• Dataset: X1, . . . , Xn1 and Y1, . . . , Yn2

• Null Hypothesis: X1, . . . , Xn1 is i.i.d. Gaussian(µ, σ2) and Y1, . . . , Yn2 is i.i.d. Gaussian(µ, σ2)
with unknown, equal variance σ2. The mean µ is unknown.

• Informally, do the datasets have the same mean?

• Procedure:

1. Calculate the sample means and sample variances,

M (1)
n1

=
1

n1

n1∑
i=1

Xi M (2)
n2

=
1

n2

n2∑
i=1

Yi

V (1)
n1

=
1

n1 − 1

n1∑
i=1

(
Xi −M (1)

n1

)2
V (2)
n2

=
1

n2 − 1

n2∑
i=1

(
Yi −M (2)

n2

)2
,

and the pooled sample variance σ̂2 =
(n1 − 1)V

(1)
n1 + (n2 − 1)V

(2)
n2

n1 + n2 − 2
.

2. Calculate the T-statistic T =
M

(1)
n1 −M

(2)
n2√

σ̂2
(

1
n1

+ 1
n2

) .

3. Calculate the p− value = 2FTn1+n2−2(−|T |) where FTn1+n2−2(t) is the CDF for a Stu-
dent’s t-distribution with n1 + n2 − 1 degrees-of-freedom.
MATLAB: FTn1+n2−1(t) = tcdf(t,n1+n2-1)

4. If p− value < α, then reject the null hypothesis.
If p− value ≥ α, then fail to reject the null hypothesis.

• In practice, it is reasonable to use this test when n1 ≤ 30 or n2 ≤ 30, and the data is
well-approximated by a Gaussian distribution.

• For unknown, unequal variances, use Welch’s T-test.
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