9.1 Sample Statistics

- Let X_1, \ldots, X_n be i.i.d. random variables with mean $\mathbb{E}[X_i] = \mu$ and variance $\mathsf{Var}[X_i] = \sigma^2$.
- The sample mean $\hat{\mu} = M_n = \frac{1}{n} \sum_{i=1}^n X_i$ is often used to estimate the mean μ . It is an unbiased estimator with mean $\mathbb{E}[M_n] = \mu$ and variance $\operatorname{Var}[M_n] = \frac{\sigma^2}{n}$.
- The sample variance $\hat{\sigma}^2 = V_n = \frac{1}{n-1} \sum_{i=1}^n (X_i M_n)^2$ is often used to estimate the variance σ^2 . It is an unbiased estimator with mean $\mathbb{E}[V_n] = \sigma^2$.

9.2 New Families of Random Variables

- If Z_1, \ldots, Z_n are i.i.d. Gaussian(0, 1) random variables, then $Y = \sum_{i=1}^n Z_i^2$ is a chi-squared random variable with n degrees-of-freedom.
 - Mean: $\mathbb{E}[Y] = n$
 - Variance: Var[Y] = 2n
 - Shorthand Notation: $Y \sim \chi_n^2$
 - CDF: $\mathbb{P}[Y \leq y] = F_{\chi^2_n}(y)$ evaluated via lookup table or software. (MATLAB: chi2cdf(y,n))

• If Z is a Gaussian(0, 1) random variable, Y is a chi-squared random variable with n degreesof-freedom, and Y and Z are independent, then $W = Z \sqrt{\frac{n}{Y}}$ has a **Student's t-distribution** with n degrees-of-freedom.

- Mean: $\mathbb{E}[W] = 0$ (for n > 1)
- Variance: Var[W] = n/(n-2) (for n > 2)
- Shorthand Notation: $W \sim T_n$
- CDF: $\mathbb{P}[W \le w] = F_{T_n}(w)$ evaluated via lookup table or software. (MATLAB: tcdf(t,n))
- PDF: Symmetric about 0. PDF onverges to a Gaussian(0,1) PDF as n increases. $F_{T_n}(t) \approx \Phi(t)$ is a good approximation for $n \geq 30$.

9.3 Confidence Intervals

- Basic Idea: How can we estimate the mean from data and quantify the uncertainty in our estimate?
- Let X_1, \ldots, X_n be i.i.d. random variables generated with a distribution with parameter θ (e.g., mean, variance). A confidence interval [A, B] for the parameter θ with confidence level 1α satisfies $\mathbb{P}[A \le \theta \le B] = 1 \alpha$ where A and B are functions of X_1, \ldots, X_n .
- In practice, we usually see values such as $1 \alpha = 0.99$, 0.95, 0.9.
- Below, we develop confidence intervals for the mean that are often used in practice. The probability calculations are exact if we assume that X_1, \ldots, X_n are i.i.d. Gaussian (μ, σ^2) . For n > 30 samples, these are very good approximations if X_1, \ldots, X_n are i.i.d. but not necessarily Gaussian.

9.3.1 Confidence Interval for the Mean: Known Variance

- When to use: Variance is known or n > 30 samples.
- Let X_1, \ldots, X_n be i.i.d. random variables with unknown mean μ and known variance σ^2 . Then, $[M_n - \epsilon, M_n + \epsilon]$ with $\epsilon = \frac{\sigma}{\sqrt{n}}Q^{-1}\left(\frac{\alpha}{2}\right)$ is a confidence interval for the mean μ with confidence level $1 - \alpha$.
- Recall that Q(z) is the standard normal complementary CDF, $Q(z) = \Phi(-z) = 1 \Phi(z)$.
- Intuition: The random interval $[M_n \epsilon, M_n + \epsilon]$ captures the true mean with probability 1α . We use our prior knowledge of the variance to calculate this interval.
- If the variance σ^2 is unknown and we have n > 30 samples, we just substitute σ^2 with the sample variance V_n .
- Useful values: $Q^{-1}(0.05) = 1.64, Q^{-1}(0.025) = 1.96, Q^{-1}(0.005) = 2.57$
- MATLAB: $Q^{-1}(z) = \operatorname{qfuncinv}(z)$

9.3.2 Confidence Interval for the Mean: Unknown Variance

- When to use: Variance is unknown and $n \leq 30$ samples.
- Let X_1, \ldots, X_n be i.i.d. random variables with unknown mean μ and unknown variance σ^2 . Then, $[M_n - \epsilon, M_n + \epsilon]$ with $\epsilon = -\frac{\sqrt{V_n}}{\sqrt{n}} F_{T_{n-1}}^{-1} \left(\frac{\alpha}{2}\right)$ is a confidence interval for the mean μ with confidence level $1 - \alpha$.
- Recall that $F_{T_{n-1}}(t)$ is the CDF for a Student's t-distribution with n-1 degrees-of-freedom.
- Intuition: The random interval $[M_n \epsilon, M_n + \epsilon]$ captures the true mean with probability 1α . We use the sample variance to calculate this interval.
- When n > 30, we should just use the known variance case, setting $\sigma^2 = V_n$, since the t-distribution is well-approximated by a Gaussian distribution in this regime.
- MATLAB: $F_{T_{n-1}}^{-1}(t) = \texttt{tinv(t,n-1)}$

9.3.3 Confidence Interval for the Variance

- Let X_1, \ldots, X_n be i.i.d. random variables with unknown mean μ and unknown variance σ^2 . Then, $\left[\beta_1 V_n, \ \beta_2 V_n\right]$ with $\beta_1 = \frac{n-1}{F_{\chi^2_{n-1}}^{-1}\left(1-\frac{\alpha}{2}\right)}$ and $\beta_2 = \frac{n-1}{F_{\chi^2_{n-1}}^{-1}\left(\frac{\alpha}{2}\right)}$ is a confidence interval for the variance σ^2 with confidence level $1 - \alpha$.
- Intuition: The random interval $[\beta_1 V_n, \beta_2 V_n]$ captures the true variance with probability 1α .
- MATLAB: $F_{\chi^2_{n-1}}^{-1}(y) = \texttt{chi2inv}(y,n-1)$

9.4 Significance Testing

- We only have a probability model for our observations under the **null hypothesis** H_0 .
- The significance level $0 \le \alpha \le 1$ is used to determine when to reject the null hypothesis. Typical values: $\alpha = 0.01, 0.05, 0.1$.
- Given a **statistic** calculated from the dataset, the **p-value** is the probability of observing a value at least this extreme under the null hypothesis.
 - If $p value < \alpha$, then reject the null hypothesis.
 - If $p value \ge \alpha$, then fail to reject the null hypothesis.
- We will focus on significance tests for the mean:
 - A one-sample test compares the sample mean of a dataset to a baseline mean μ .
 - A two-sample test compares the sample means of two datasets to each other.
 - The probability calculations below are exact if we assume that the data is i.i.d. Gaussian under the null hypothesis. For n > 30 samples, the calculations are very good approximations if the data is are i.i.d. but not necessarily Gaussian under the null hypothesis.

9.4.1 One-Sample Z-Test

- Dataset: X_1, \ldots, X_n
- Null Hypothesis: Data is i.i.d. Gaussian(μ, σ^2) with known mean μ and known variance σ^2 .
- Informally, does the mean of the data differ significantly from the baseline μ ?

• Procedure:

- 1. Calculate the sample mean $M_n = \frac{1}{n} \sum_{i=1}^n X_i$.
- 2. Calculate the Z-statistic $Z = \frac{\sqrt{n}(M_n \mu)}{\sigma}$.
- 3. Calculate the p value = $2\Phi(-|Z|)$ where $\Phi(z)$ is the standard normal CDF. MATLAB: $\Phi(z) = \texttt{normcdf}(z)$
- 4. If p value $< \alpha$, then reject the null hypothesis. If p - value $\ge \alpha$, then fail to reject the null hypothesis.
- Useful values: $2\Phi(-1.64) = 0.1$, $2\Phi(-1.96) = 0.05$, $2\Phi(-2.57) = 0.01$
- In practice, it is reasonable to use this test when n > 30, even if the variance is estimated from data by the sample variance. In this regime, the Central Limit Theorem offers a good approximation.

9.4.2 One-Sample T-Test

- Dataset: X_1, \ldots, X_n
- Null Hypothesis: Data is i.i.d. $Gaussian(\mu, \sigma^2)$ with known mean μ and unknown variance σ^2 .

- Informally, does the mean of the data differ significantly from the baseline μ ?
- Procedure:
 - 1. Calculate the sample mean and sample variance

$$M_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 $V_n = \frac{1}{n-1} \sum_{i=1}^n (X_i - M_n)^2$

- 2. Calculate the Z-statistic $T = \frac{\sqrt{n}(M_n \mu)}{\sqrt{V_n}}$.
- 3. Calculate the p value = $2F_{T_{n-1}}(-|T|)$ where $F_{T_{n-1}}(t)$ is the CDF for a Student's tdistribution with n-1 degrees-of-freedom. MATLAB: $F_{T_{n-1}}(t) = \texttt{tcdf}(\texttt{t,n-1})$
- 4. If p value $< \alpha$, then reject the null hypothesis. If p - value $\ge \alpha$, then fail to reject the null hypothesis.
- In practice, it is reasonable to use this test when $n \leq 30$, and the data is well-approximated by a Gaussian distribution.

9.4.3 Two-Sample Z-Test

- Dataset: X_1, \ldots, X_{n_1} and Y_1, \ldots, Y_{n_2}
- Null Hypothesis: X_1, \ldots, X_{n_1} is i.i.d. Gaussian (μ, σ_1^2) and Y_1, \ldots, Y_{n_2} is i.i.d. Gaussian (μ, σ_2^2) with known variances σ_1^2 and σ_2^2 . The mean μ is unknown.
- Informally, do the datasets have the same mean?
- Procedure:

1. Calculate the sample means
$$M_{n_1}^{(1)} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i$$
 and $M_{n_2}^{(2)} = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_i$.

2. Calculate the Z-statistic
$$Z = \frac{M_{n_1}^{(1)} - M_{n_2}^{(2)}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

- 3. Calculate the p value = $2\Phi(-|Z|)$ where $\Phi(z)$ is the standard normal CDF. MATLAB: $\Phi(z) = \texttt{normcdf}(z)$
- 4. If $p value < \alpha$, then reject the null hypothesis. If $p - value \ge \alpha$, then fail to reject the null hypothesis.
- Useful values: $2\Phi(-1.64) = 0.1$, $2\Phi(-1.96) = 0.05$, $2\Phi(-2.57) = 0.01$
- In practice, it is reasonable to use this test when $n_1 > 30$ and $n_2 > 30$, even if the variances are estimated from data by the sample variances. In this regime, the Central Limit Theorem offers a good approximation.

9.4.4 Two-Sample T-Test

- Dataset: $X_1, ..., X_{n_1}$ and $Y_1, ..., Y_{n_2}$
- Null Hypothesis: X_1, \ldots, X_{n_1} is i.i.d. Gaussian (μ, σ^2) and Y_1, \ldots, Y_{n_2} is i.i.d. Gaussian (μ, σ^2) with unknown, equal variance σ^2 . The mean μ is unknown.
- Informally, do the datasets have the same mean?

• Procedure:

1. Calculate the sample means and sample variances,

$$M_{n_1}^{(1)} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i \qquad \qquad M_{n_2}^{(2)} = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_i V_{n_1}^{(1)} = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} \left(X_i - M_{n_1}^{(1)} \right)^2 \qquad V_{n_2}^{(2)} = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} \left(Y_i - M_{n_2}^{(2)} \right)^2 ,$$

and the pooled sample variance $\hat{\sigma}^2 = \frac{(n_1 - 1)V_{n_1}^{(1)} + (n_2 - 1)V_{n_2}^{(2)}}{n_1 + n_2 - 2}.$

- 2. Calculate the T-statistic $T = \frac{M_{n_1}^{(1)} M_{n_2}^{(2)}}{\sqrt{\hat{\sigma}^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}.$
- 3. Calculate the p-value = $2F_{T_{n_1+n_2-2}}(-|T|)$ where $F_{T_{n_1+n_2-2}}(t)$ is the CDF for a Student's t-distribution with $n_1 + n_2 1$ degrees-of-freedom. MATLAB: $F_{T_{n_1+n_2-1}}(t) = \texttt{tcdf(t,n1+n2-1)}$
- 4. If p value $< \alpha$, then reject the null hypothesis. If p - value $\ge \alpha$, then fail to reject the null hypothesis.
- In practice, it is reasonable to use this test when $n_1 \leq 30$ or $n_2 \leq 30$, and the data is well-approximated by a Gaussian distribution.
- For unknown, unequal variances, use Welch's T-test.