Chapter 2

Discrete Random Variables

2.1 Random Variables

A random variable is similar to a function; indeed, the most common definition of a random variable is a
function which assigns a value in the space of real numbers R to each outcome in €. Recall that functions
can assign only one value to each outcome.

Definition 2.1
A random variable X in a probability space (Q,&,P) is a function X : Q@ — R, such that, for any interval (a,b), the set
{w € Q:a < X(w) < b} belongs to the event space £.

By constraining random variables to functions where the inverse image of an interval (a,b) is an event
in £, we can compute P[{w € ©: a < X(w) < b}]. As we discussed ecarlier in 1.8, the smallest o-field in
that contains the open intervals (a,b) is known as the Borel o-field B. Using limits and the continuity of
probability measures, we can then compute for any Borel set A € B, the probability P[{w € Q : X(w) € A}].
That is, the inverse image using the function X (w) of any Borel set A will be an event in £. In a more
formal mathematical definition, we such functions measurable functions from (92, &) into (R, B). Figure
2.1 illustrates the concept of a random variable.

Random variables provide a useful abstraction in probability. First, by assigning numbers to outcomes,
they allow us to map outcomes onto a quantitative scale, which will allow us to compute interesting statistics.
More important, they allow us to recognize that many different experiments give rise to the same type of
random variables, and thus can be analyzed by a common methodology without worrying about the individual
details of the experiments. For instance, we discussed in the previous chapter the concept of Bernoulli trials
as an experiment with two outcomes. That experiment can be a coin flip, a race between two people, a bet,
a roll of a pair of dice to get a total of 7, a shot at a target, etc. By mapping one outcome to the number
1, and the other outcome to 0 we get a Bernoulli random variable. Thus, the analysis of Bernoulli random
variables provides the tools for analysis in all the diverse experiments that give rise to such random variables.
Similar abstractions will allow us to use a common set of random variables to analyze measurement errors
that arise in acoustic, aerospace, electronic and biomedical measurements.

Sample
space

X1 X X R

k outcomes

Discrete Random Variable X:
Range of X is discrete

Figure 2.1: Discrete random variables map §2 into a discrete set of values in the real line.
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We introduce some notation that we will use throughout the book: We use capital letters (e.g. X,Y, Z)
to denote random variables, and we use lower case letters *(e.g. x,y, 2) to denote the values that a random
variable takes.

We denote by Rx the image of the sample space  (the range) as mapped by the random variable X (-).
That is, Rx C R is the set of possible values of X (w),w € Q.

Definition 2.2
A discrete random variable in a probability space (2, £, P) is a random variable X such that the range of X, denoted
by Rx = X(2), has at most a countable number of elements.

We sometimes make a distinction to refer to a random variable as finite if Ry has a finite number of
elements. Random variables that are not discrete can be either continuous or hybrid as described in the next
chapter.

Example 2.1

Turn on a light source, and use a CCD detector to count the number of photons that hit the detector in an interval of
one second. In this experiment, = {0,1,2,...}. We define the random variable X (w) = w, as the outcomes are already
numeric. The range Rx of this random variable is Rx = {0,1,2,...}. X is a discrete random variable, as its range is
discrete.

Example 2.2

Turn on a light source, and have a CCD detector that measures the time between the arrival of the first photon and the
arrival of the second photon. In this experiment, Q = [0, c0). We define the random variable X (w) = w, as the outcomes
are already numeric. The range Rx of this random variable is Rx = [0, c0), which is not countable. This random variable
X is not a discrete random variable.

Suppose we define a different random variable Y (w) as follows:

Y () 0 w < 2ns,
w) =
1 elsewhere.

In this case, the range Ry = {0, 1}, which is finite, so Y is a discrete random variable.

Most card experiments, dice experiments and coin flip experiments give rise to discrete random variables.
We list some examples of discrete random variables below.

e The number of X-Ray photons detected in a pixel by an X-ray radiograph.
e The number of defective parts in a manufacturing process in 10 minutes.

e . The presence of a disease in a patient.

e The correctness of a software implementation of an algorithm.

e The number of parts that fail in an automobile in the course of a year.

Typical examples of random variables that are not discrete are the time until a part fails in an assembly
plant, the error in location given by a GPS system, the error in measuring the distance to an obstacle using
a LIDAR sensor and the time of arrival of customer at a service station.

A random variable X induces a probability measure Px on (R, B) using the function mapping. For any
intervals (a,b) € R, this probability is given by

Px((b,a)) =P{w e Q:b< X(w) < a}]
and, more generally, for any set B € B, we have

Px(B) =P[{w € 2: X(w) € B}].
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Indeed, with this induced probability, we can show that (R, B,Px) is also a probability space. We call
this space the sample space. The abstractions that random variables provide will allow us to use the same
induced probability space for many different random experiments.

Example 2.3
Consider the experiment of tossing two unbiased coins. In the original space €2, there are four outcomes: HH, HT, TH and
TT, where H denotes a heads outcome and T denotes a tails outcome. We define a random variable X as follows:

X (w) —1 ifs#HH TT.
w) =
1 otherwise.

In this experiment, R, = {—1,1}. The induced probability Px can be defined on its atoms, so that Px[{1}] = P[{w €
Q: X(w) =1} =P{HH, TT}] = 0.5. Similarly, Px[{—1}] = 0.5.

Now, consider a second experiment, consisting of tossing a single unbiased coin, with sample space Q; = {H,T'}, and

define variable Y as
-1 fw=H
Y(w) = { if w

1 {textotherrwise.

The sample space and induced probability of this random experiment and random variable Y are the same as those of
the first experiment and random variable X. Rather than treating these random variables a different, by using the sample
space, we can treat them as identical random variables.

2.2 Discrete Random Variables

Consider a probability space (§2,&,P), with a discrete random variable X defined on it, with values in
{1, x2,23,...}. Since every set {x;} containing a singleton value is a Borel set, we can compute the prob-
ability P{w € © : X(w) = x;}]. We can use this to define the induced probability measure Px on Rx. We
define this formally next.

2.2.1 Probability Mass Function

Definition 2.3
The probability mass function of a discrete random variable X defined on a probability space (22, &, P), taking values
in {z1,x2,s,...} is the function Px(z;) = P[{w € Q: X (w) = x;}].

To keep the notation simple, we refer to the set {X = z1} = {w € Q : X(w) = x;}. Thus, we will write
equivalently the following forms for the probability mass function of a discrete random variable:
Px(z) =P{w € Q: X(w) =z} =P{X =z}| =P[X =z].

In each case, it should be clear that this is computing the probability of an event A € £ defined all possible
solutions of the equation X (w) = x. Figure 2.2 illustrates a probability mass function for a discrete random
variable.

The probability mass function (PMF) of a random variable X satisfies the following basic properties:

1. Non-negativity: Px(z) > 0 for all .

2. Normalization: Z Px(z) =1.
rERXx
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1[" Probability Mass Function PX(x)
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Figure 2.2: Illustration of a Probability Mass Function.

Pl{@: X@€BH = ) Pe(x)
B {xeB}

Figure 2.3: Computing the probability of events using the PMF.

3. Additivity: For any subset B C Ry, the probability that X falls in B is

Px[B] =P{w e Q: X(w) € B} = > Px(x)

Note that Px[B] implicitly refers to the event Px[B] = P[{X € B}].

The Additivity property follows because the event {w € Q : X(w) € B} can be decomposed into disjoint
events {w € Q : X(w) = z;} for each z; € B. These events are disjoint because X (w) is a function and
thus can only assign a single value to each w € 2. Then, the countable additivity property of the probability
measure shows

Plwe: X(w) € BY] = ) P{we: X(w) =Y PlueQ: X(w =Y Px(x)

rEB rzeB zeB

Figure 2.3 illustrates the approach at computing probabilities of events using the additivity property of
the probability mass function. Any event in Rx will contain discrete elements x; on which the probability
mass function is defined. The induced probability of the event is the sum of the probability mass function
on the elements that are in B.

Example 2.4

In this experiment, we roll two four-sided dice, with all outcomes on each dice being equally likely. Note that these dice
are tetrahedral, so the number that a die rolls is the number at the bottom. We define the random variable X to be the
sum of the numbers at the bottom of the dice.

The sample space is Q = {(¢,7) : 4,5 = 1,2,3,4}. The image Rx = {2,3,4,5,6,7,8}. Since this is a discrete set, we
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compute the PMF as:
1
Px(2) = PI{(1,1)}] = ¢

Px(3) = P[{(1,2), (2, )}] =

"8
Px(4) = P[{(1,3),(2,2), (3, )}] = 1%
Px(5) = P[{(1,4),(2,3),(3,2), 4, 1)}] = i
3
16

PX(G) = P[{(274)7 (37 3)7 (47 2)}} =3z
Px(7) = PI{(3,9), (4,3)}] = §

Px(®) = PI{(1, )] =

Using this, define the event B = {X is even }. Then,

Px[B] = Px(2) + Px(4) + Px(6) + Px(8) = 1% - %

Define the event C' = {X is a multiple of 3 }. Then,

Px[C} = Px(?)) +Px(6) = %
Example 2.5
In an experiment, we have a biased coin with two outcomes, H and T, with probability of H = p > 0. We are going to
toss that coin an infinite number of times, so that an outcome of the experiment is an infinite sequence of Hs and Ts;
e.g. HHHTHTTHTHHHTTTTTH. ... The outcomes of each coin toss are independent, so this defines the outcomes in
the original probability space as well as the underlying probabilities, e.g. we have (©2,&,P). On this probability space, we
define a random variable X (w) for an outcome w € § as the position of the first H in w. That is, X(TTHTHT...) =
3, X(THTTH...) = 2, etc. Note the possible values of X are discrete and countable. Find the probability mass function
Px (z), and compute the induced probability of the event B = {X (w) € [2, 3]}.

We note that all outcomes for X (k) = 3 have to start with TTH, and the rest of the outcomes after the first toss
result in the same X (k). Using this reasoning, we can derive

Px(z)=p(1—p)" 'z=1,2,....
The induced probability Px [B] = P(2) + P(3) = p(1 — p) + p(1 — p)? = p(1 — p)(2 — p).

Random variables of this type are called geometric random variables, because of the geometric decay of the PMF as x
increases.

Example 2.6

This example shows we don't need to know anything about the underlying experiment if we know the probability mass
function to compute probabilities for events defined in terms of the random variable. Assume Rx = {1,2,3,4}, and let
the probability mass function be P(x) = £ for some ¢ > 0. Find the value of ¢, and find the probabilities of the events
A={X >2}and B={X < 3}.

We use the normalization property to compute ¢, since
PL)+P2)+PB)+PA)=c+-+-+-==—"c=1.

Hence, ¢ = 12. Next, we compute Px [A] = P(2) + P(3) + P(4) = 32, and Px[B] = P(1) + P(2) = .

25

2.2.2 Cumulative Distribution Function

The cumulative distribution function (CDF) of a random variable X in a probability space returns the
probability that a random variable X is less than or equal to a value z:



48 CHAPTER 2. DISCRETE RANDOM VARIABLES

Cumulative Distribution Function FX(X)

i+ Probability Mass Function Py(x) 1+ m)
Pylx3)
Px(x2)
P x\X2
Px{x1) ) Px(x3) 1
Pxlx) Py(x1)
0 X1 X X 0 X1 X Xk

Figure 2.4: Relationship between the PMF and CDF of a random variable.

Definition 2.4 (Cumulative Distribution Function)
The Cumulative Distribution Function of the random variable X is defined as the function Fx : ® — [0, 1] which
satisfies:

Fx(a) =Px({X € (—o0,a}]) =P{w € Q: X(w) < a}].

We will sometimes use the notation F(a) instead of Fx (a) when it is clear which random variable we are
referring to. In particular, for a generic argument, this is often written as Fix(z) or just F(z).

Figure 2.4 shows the relationship of the PMF and the CDF. In essence, the CDF is the sum of the PMF
starting from the left at the smallest value of x € Rx.

The CDF is a non-negative real-valued function Fx(z) € [0,1], defined for all real values of its ar-
gument z € R. The CDF of any discrete random variable is a staircase function. If X takes on val-
ues x1,xs, ..., with probabilities P(x1), P(x2), ..., P(zk), then the CDF has jumps at x1,xs, ...z, with
heights P(z1), P(z2), ..., P(xzx) and is flat in between the jumps.

Cumulative distribution functions have the following properties:

1. Fx(00) =lim, 00 Fix () =1, Fx(—00) = limgz—, oo = 0.

2. a < b implies that Fx(a) < Fx(b), so F(z) is non-decreasing in z.

3. Fx(z) is piecewise constant and jumps at values of € Rx C R such that P(z) > 0.
4. For all b > a,Px[{a < X <b}] = Fx(b) — Fx(a).

5. lim, o+ Fix(a+¢€) = Fx(a) (continuity from the right)

Proof: The first properties follow from the continuity of probabilities. Define the events as A, = {w € 2 :
X (w) < n}. These form a non-decreasing sequence, so by Lemma 1.1

lim P[A4,] = lim F(n) =PU2,4,]=P[Q] =1
n—oo n—r oo
Similarly, the sequence B, = {w € Q : X(z) < —n} forms a non-increasing sequence with an empty
intersection, so
lim P[B,] = lim F(-n)=0

n—oo n—oo

The second property follows from the fact that {w € Q@ : X(w) < a} C {w € Q: X(w) < b}. The final
property can be shown as follows: Define the sets A, = {w € Q|X(w) < a+ 1/n}. Again, these sets are
non-increasing, so

lim P[A,] = lim F(a+1/n) =PN5L,A,] = F(a)

n—oQ n—oo
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Example 2.7
Consider the example 2.4 with two quadrilateral dice. The CDF of X is given by:

0 T < 2
1 .
6 2<1<3;
3 .
16 3§l‘<4,
3
2 4<zx <5
Fx(x)=4q% ._ ’
13 .
15 .
1 8<u.

Thus, the CDF is piecewise constant, and jumps at each integer value in Rx by the amount P(z).

In general, cumulative distributions of a random variable are not very useful for computing statistics.
Almost every computation uses the probability mass function instead. So why do we bother with defining
CDF's and their properties? Recall that, in chapter 1, we constructed many cases where the probability of
every atom is zero. For those cases, such as those involving continuous random variables, it is impossible to
define a PMF. However, the concept of CDF applies to all random variables, continuous or discrete, and has
nearly the same properties in all cases.

2.3 Statistics of Discrete Random Variables

We are used to seeing sample statistics in many different fields. In data science, samples are collected by
repeating the same experiment independently many times, and generating the random variables associated
with each of these experiments. Social statisticians work hard to select samples that correspond to the true
population at large. Given a set of sample values for a random variable generated this way, a sample statistic
maps these values into a single real number.

For instance, suppose the experiment is a student in EK 381 taking a midterm exam. The random
variable maps the student answers into a number grade. If 80 students take the same exam, this can be
viewed as repeating the experiment of selecting a student randomly 80 times and getting a value for the
random variable. We assume the grading is done in whole numbers from 0 to 100, so the possible values for
the random variables are discrete.

The first class after every exam, the professor is asked the same question: “What was the class average?”
The class average is an example of a sample statistic. If x;,7 = 1,..., N are the values of the random variable
X in N repetitions of the same experiment, the sample average or sample mean is defined as:

1 N
mx = Nzlxl
i=

Similarly, the sample variance is defined by Var[X] = % Zil(xl — mx)?, and the sample standard

deviation is computed as ox = y/Var[X]. However, note that those statistics will change as N changes.
In essence, they are random also, in a manner that will be made more precise later in the course. What
we hope is that, as N grows, the statistics approach a limit and become constant, and thus represent an
intrinsic property of a random variable.

There is another way to write the sample statistics, in terms of a sample probability mass function P(z).
In essence, compute a sample probability mass function as:

_ 1 &
Px(z) = NZI[@ = x]
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where I[x; = z] is the indicator function that is 1 if it is true, and 0 otherwise. This computes the relative
frequency that the value x appears in the sample of size N. Then, using the sample probability mass function,
the sample statistics can be written as:

mx = Z PX(az)x

xERXx

Var[X] = Z Px(x)(x — mx)*
T€ERX

and ox = +/Var[X].

This new form suggests that each random variable has a true statistic that can be defined in terms of its
probability mass function. The sample statistics are random approximations of these true statistics.

Definition 2.5
A statistic of a discrete random variable is a map from its probability mass function to a real-valued quantity.

Below we define some of the most common statistics associated with discrete random variables.

2.3.1 Expected Value

The expected value of a discrete random variable X is defined as

EX]= > xPx(x).

rzERXx

This is also known as the mean or average. In these notes, we also sometimes use px = E[X].

The expected value has many interpretations: It is the weighted average of all possible values, using the
PMF weights. It can be viewed as the center of “mass” of the PMF. Ideally, it would also be the sample
average after one performs a large number repetitions of the experiment (to be substantiated later in this
course): the sample mean should approach the true mean as number of samples increases!

Example 2.8
Consider the two quadrilateral dice example 2.4. Then,
1 1 3 1
E[X] = sumgzeryx Px(x) =2 - E+3~§+4- 16 —1—5-Z
3 1 1 80

Note that, for some random variables where the range Rx is infinite, the expected value cannot be defined
because the sum may not be finite! This is illustrated in the examples below:

Example 2.9
Assume we have a discrete random variable X with range Rx = {1,2,...} and PMF given by Px (k) = 25,k =1,2,....

k272

2

. . - . . . . — 1 .
It is easy to verify that this is a valid PMF, as it is non-negative, and normalized properly because Z =i % This
k=1

formula was derived by Leonard Euler in the early part of the 18th century. For this random variable, note that

oo

6 k 6 =1
EX|=) S = m2p =
k=1 k=1

Thus, for statistics defined using expected values, it is possible that the statistics won’t be defined if the
required sums do not converge.
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Example 2.10

We consider a signaling example where we want to transmit a single bit using a DC voltage. If the bit is 1, we transmit a
voltage +1 volts. For the bit being 0, we transmit the voltage -1 volts. Assume that the bit is equally likely to be a 0 or a
1.

We construct the sample space for the experiment as Q@ = {0, 1}, the value of the bit. We define the random
variable as the voltage X(0) = —1,X(1) = 1, so Rx = {—1,1}. The probability measure in the original space is
P[{0}] = P[{1}] = 0.5. The resulting PMF is given as

Px(~1)=05; Px(1)=05.
Using this, we compute E[X] =0.5-(—1) 4+ 0.5 (1) = 0.

Assume that we wanted to transmit two bits at a time. In this case, the sample space © = {00, 01, 10,11}, with each
outcome having probability 0.25. Now, we define a new random variable Y corresponding to the voltage used for signaling,
so that Y(00) = —3,Y(01) = —1,Y(10) = 1,Y(11) = 3.

The range space Ry = {—3,—1,1,3}. The induced PMF is Py (—3) = Py (—1) = Py (1) = Py(3) = 0.25. Then,

E[Y]=0.25- (—3) + 0.25- (—1) + 0.25 - (1) + 0.25 - (3) = 0.

Thus, the two signaling schemes X,Y have the same expected value 0. However, they will differ in other statistics,
such as average energy, where you can expect that the energy is proportional to X2 or Y. To do this, we need to be able
to compute averages of functions of random variables such as X?2.

2.4 Functions of a Random Variable

Consider a random variable X defined on a probability space (2, &,P). X is a function mapping outcomes in
Q into real numbers in . Suppose we now define another function g(-) mapping a real number into another
real number (e.g. g : R — R.) Then, the composition of the two functions, g(X(w)) also maps outcomes
in Q into real numbers in R, so that each outcome is only mapped into a single real number. That is, the
composition of the two functions is also a function. As long as the function g(-) is well behaved (measurable in
the context discussed earlier), this composite function also defines a random variable in (2, £, P)! We denote
this random variable as Y = g(X) to indicate that the variable Y is derived by a function transformation of
the random variable X, and the underlying random variable map Y (w) = g(X (w)).

Note that this raises an interesting observation: we can define multiple random variables on the same
probability space. We will explore this fully in later chapters. For the moment, let’s focus on the case where
Y(w) = g(X(w)). This case is often referred to as a derived random variable.

What is the range of Y as a random variable? It is derived from the range of X: Ry = {g(z) : € Rx }.
If X is a discrete random variable, then Ry is a countable, discrete range, and therefore Ry will also be at
most countable and discrete. Note that Rx is countably infinite does not imply Ry will be, as the function
¢(+) may map many numbers in Ry into a single number in Ry. For example, consider the function g(-)
defined below that maps {1,2,3,...,} into {0,1}:

1 if x is an odd positive integer
g(x) =
0 elsewhere

If we know the function g(-) and the probability mass function of X, Px(z), we can compute the proba-

bility mass function for Y directly as Py (y) = Z Px (x), where the notation )
z:g(x)=y

each value of x € Rx such that g(x) = y is satisfied. This is exactly the same approach we took to computing

the probability mass function Px(x): The event {Y = y} has an inverse image through the function g which

is composed of a subset of Rx, which is {z € Rx : g(z) = y}. Since Rx is discrete, this is a discrete set,

z:g(x)=y means sum over
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and
Py(y) =Px({r € Rx :g(z) =y}) = > Px(x).

z:g(x)=y

As long as we have the properties of X, as summarized by its probability mass function Py, we can
compute all the properties of Y without having to refer to the original probability space (2,&,P). We
illustrate this with examples.

Example 2.11
Consider a discrete random variable X with values in Rx = {1,2,3,4} and probability mass function

Px(z) = 1/3 =<2
TNV 16 2> 2

Let g(z) = x> be a function, and define Y = ¢(X) as a derived random variable. In this case, the range of Y is
Ry = g(Rx) = {1,8,27,64}. The probability mass function of Y is now

P = 3 PX(x)_{l/S y <38

wia(@my 1/6 y>38

Now, let's repeat the exercise for a different function: let h(z) = 0 for z < 3, and h(z) = 1,z > 3. Define Z = h(X)
be the resulting derived random variable. Then, Rz = h(Rx) = {0, 1}, and the resulting probability mass function is

. . Px(1)+Px(2)+PX(3):5/6 z2=0
Pr(z)= Y Px(x){PX(4)_1/6 .

z:h(z)=z2

Example 2.12
Consider now the signaling example 2.10. Let U = X2. Then, U(—1) = 1,U(1) = 1, so Ry = {1}. Hence, Py(1) =
Px(—1) + Px(1) = 1. Hence, E[U] = 1.

Define V =Y?2. Then, V(-3) =V (3) =9,V(-1) = V(1) = 1. Thus, Ry = {1,9}, and Py (1) = Py (—1)+ Py (1) =
0.5; Pv(9) = Py(—3) + Py (3) = 0.5. The average is:

]E[V] = IP\/(I) =+ 9P\/(9) = 5.

So, on average, signaling with two bits at a time in this scheme takes much more energy than signaling each bit
separately.

For a derived random variable Y, we can compute all of its statistics using its probability mass function
Py (y). However, there is a simpler approach that avoids the need for computation of Py (y). Consider
computation of the expected value of Y (its mean). Using the approach in subsection 2.3, we compute E[Y]

= Y yPr(y)

YyERy
However, note that, using the definition of Py (y)
Y] =X v =2 v > Pxle
YERy yeRy wig(z)=y
=y Z (since y = g(z) )
YERy z:g(z)=

= Z g(x)PX(x) (since g is a function, and every @ € Rx is mapped into some y € Ry)
TE€ERX

Thus, we can compute E[Y] directly using the definition of the function g(-) and the probability mass
function Px without having to compute Py .
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Example 2.13
Back to the signaling example 2.10, we compute directly:

E[Y?] = (=3)*Px(=3) 4+ (=1)*Px (1) + (1)*Px (1) + (3)*Px(3) = 5.

Let’s focus now on a special class of functions: affine functions g(z) = ax +b. Let Y = g(X) = aX + b.
Then,

E[Y] = Z g(x)Px(z) = Z (az + b)Px (x)

TERX TERX
=a Z xPx(z)+b Z Px(x)
TERX TE€ERX

=aE[X]+b (using the definition of E[X] and the normalization property of Px.)

Thus, when a random variable Y is defined by an affine transformation of a random variable X, its
expected value is computed by the same affine transformation of the expected value of X, avoiding having
to do any summations over Px.

An important statistic that we use to characterize the randomness in random variables is the variance.
The variance measures how spread out a random variable is around its mean, and is defined by

Var[X] = E[(X - E[X])Q} = Y (& ux)’Px(@).

Note that E[X] is a number, not a random variable. Hence, Z = (X — E[X])? is transformation of the
variable X. The variance of X is often referred to as 0% = Var[X], where ox is the positive square root of
the variance of X, and is known as the standard deviation.

Example 2.14
Let X be a random variable, with Rx = {1,3,5} and PMF Px (1) = Px(3) = Px(5) = 5. Then,

E[X] = (1)Px (1) + (3)Px(3) + (5)Px (5) = 3.
Var[X] = (1 —3)°Px(1) + 3—3)°Px(3) + (5 — 3)°Px (5) = ;

The standard deviation is ox = /3.

There is an alternative formula for computing the variance of a random variable which is Var[X] =
E[X?] — (]E[X])2 We can show this as follows:

Var[X] = Y (¢ — ux)*Px ()

rERx

= > (2° = 2wpx + px) Px ()
r€ERXx

= Y 2®Px(z) -2 Y apxPx(x)+ Y px)Px(z)
TERX rE€Rx TERX

= Z 22 Px(z) — 2px Z xPx (x) + p% sumgepy, Px (z)
r€ERx rxERXx

= Y @®Px(z) =2k +pk = Y *Px(x) - pk
zERX TERX
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where the last line follows from the definition px =
probability mass function sumgeg, Px(x) = 1.

vcry TPx(z) and the normalization property of the

Assume again we have an affine transformation ¥ = aX +b. We know that E[Y] = aE[X] + b. Can we
compute a relationship for the variance of Y in terms of the variance of X? Reasoning as above, we obtain

Var[Y] =E[(Y —E[Y])?] = > (y—E[Y])?Py(y)

yeRy
= XR: (ax + b —E[Y])?Px (z)

— mGZR:X(ax +b— aR[X] — b)*Px ()
= GZX a*(z — E[X])*Px (z)
vy

Note that the constant b in the transformation Y = aX + b affects the mean E[Y], but does not affect the
variance, because the variance is a measure of the variation of Y about its mean. Notice also that the scaling
factor a is squared in the variance, as the variance is a quadratic statistic. In terms of standard deviations,
we have oy = |a|ox.

To illustrate that the constant b does not affect the variance, consider the special transformation ¥V =
X — E[X], where a = 1 and b = —E[X]. In this special case,

E[Y] = E[X] — E[X] = 0; Var[Y] = E[Y?] = E[(X — E[X])?] = Var[X]
which highlights that the variance of a random variable does not change when it is shifted by a constant.

These results provide a shortcut for computing statistics of derived random variables when the transfor-
mation Y = aX + b is an affine transformation:

E[Y] = aE[X] +b; Var[Y] = a*Var[X]

The above results also highlight an important property of expectations. Suppose the function g(z)
g1(x) 4+ g2(z), and we define Y = g(X) = ¢1(X) + g2(X). In the above linear case, ¢ (z) = ax, g2(x) =
Then,

b.

E[Y] = Z (91(z) + g2(2)) Px (x) = E[g1(X)] + E[g2(X)]

TERX

because the sum is a linear operation, and can be separated into two sums. Also, if Y = ag1(X) + bga(X),
then

E[Y] = Elagi(X) + bgz(2)] = aE[g1 (X)] + bE[ga()].
Thus, the expectation operator is a linear operator. We will exploit this property throughout the rest of this

course.

There are other useful statistics that can be computed for a random variable X. We list a few below:

e n'" Moment: E[X"] = Z " Px ().

r€RXx
e n'" Central Moment: IE[(X —]E[X])n} = Z (x — px)"Px(z).
rxERXx

e Median: The median is a number Z,,.q € R such that Px[{X < Zmed}] = Px[{X > Zmed}]. Note
that such a number may not exist and, if it existed it may not be unique. For instance, consider a
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random variable with two possible values, 0 or 1, and Px(0) = 0.1, Px(1) = 0.9. There is no median
for this random variable. Similarly, consider another random variable with four possible values 0, 1, 2,
3, with Px(0) = Px (1) = Px(2) = Px(3) = 0.25. In this case, any number strictly between 1 and 2
serves as a median.

e Mode: The mode of a random variable X is any number x,,,q such that Px (Zm04) > Px () for all z €
Rx. Unlike the median, the mode of a discrete random variable must exist, but it may not be unique.
The last example in the previous bullet has four possible values for the mode.

2.5 Important Families of Discrete Random Variables

Many experiments in engineering problems have the same underlying probability structure and give rise to
the same type of random variable. In this section, we discuss several classes of discrete random variables that
arise in many engineering applications. These classes of random variables have probability mass functions
that can be described by a few parameters. Hence, they provide useful models for physical processes, as
those parameters can be readily estimated from available sample data. Learning the properties of these
random variables helps us avoid repetitive calculations.

The classes of random variables we discuss are:

Bernoulli

Uniform

Binomial

Geometric

e Poisson

For each family, we compute its statistics, so that we can avoid tedious summations when we can recognize
the type of random variable involved.

2.5.1 Bernoulli(p) Random Variables

Let A be an event related to the outcome of some random experiment, such as a toss of a biased coin. Define
the random variable X as the indicator function of A as:

0 ifwisnotin A
1 ifwisin A.

Thus, X is one if the event A occurs, and zero otherwise. X is a random variable, with discrete values in
range {0, 1}, and with probability mass function given by:

1-— z=0,
PX(‘T):{ P B
p z=1.

where p = P[A] in the original probability space. Such a random variable is called a Bernoulli random
variable, since it identifies the outcome of a Bernoulli trial, which is 1 if the event A occurs.

The range of a Bernoulli random variable is Ry = {0,1}. Its CDF is computed as:

0 xz <0,
Fx(z)=<(1—p) z€[0,1) .
1 x> 1.
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Note that Fx(x) is defined for all real values of x.

The expected value and other statistics of Bernoulli random variables are easily computed, since Rx only
has two entries:

E[X] =) xPx(z) =0(1-p)+1p=p.
=0

1
E[X? =Y 2’Px(x) =0*(1—p)+1’p=p.
x=0
Its variance is computed as

Var[X] = E[X?] — (E[X])2 = p—p® = p(1 — p).

Bernoulli random variables are characterized by a single parameter p, which is easy to estimate from
sample outcomes of the experiment. A summary of their properties is given below.

e X is a Bernoulli(p) random variable if it has PMF

1-— z =0,
Px(w):{ b
p r=1.

Range: Rx = {0,1}.

Expected Value: £[X] = p.

Variance: Var[X] = p(1 — p).

Interpretation: single trial with success probability p.

2.5.2 Discrete Uniform(a,b) Random Variables

Suppose we have a discrete random variable X, with range in Rx = {a,a+ 1,a+2,...,b}, where a < b are
integers, so it can take b — a + 1 values. We assume that the probability mass function Px(z) is the same
for each value x € Rx, so that each of the values is equally likely. In this case, Px(z) = x € Rx, as
there are b — a + 1 possible values, and the normalization property requires

1
b—a+1"
PX (3;‘) =1.

rERXx

Discrete Uniform(a,b) random variables are used commonly in models of games of chance, such as coin
tosses, roulette wheels, dice rolls, where there is no assumption of bias towards any of the outcomes. The
outcomes in Rx are ordered in increasing order, and are separated by one unit.

We compute the statistics of a Discrete Uniform(a, b) random variable X as follows: Its CDF is given by

lz] —a+1

Fx(z) = b—a+1

where the notation |x]| refers to the largest integer less than or equal to z. The expected value of X is

computed as:
b

EX]= ) «Px(x) :Zjﬁ

zERx j=a

To do this sum, it helps to remember some summation equalities:

n

. n(n+1)
3=t

Jj=1
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Let’s define the derived random variable Y = X — a. Note that Ry = {0,1,2,...,b — a}, and Py(y) =
ﬁﬁ-l’ ES Ry NOW,

b—a
B B 1 B 1 (b—a)b—a+1) b—a
Em*ZyPY(y)*kZ:Okb—aH*b—aJrl 2 =

YERy

For the original variable X, we know E[Y] = E[X] — a, so E[z] = a + %52 = 212,

We can compute the variance of Y as follows: First, we compute E[Y?] as

b—a
1
B = D Wy
k=0

To sum this, we use another summation formula:

- n(n+1)(2n+1)
k* =
2 G

Since the k = 0 term does not contribute to the sum (k% = 0) , we get:

s L, b—a)b—a+1)(2b—a)+1) (b—a)2(b—a)+1)
E[Y]:;Okb—a—klz 6(b—a+1) - 6 '

We compute the variance Var[Y] as

Var[Y] = E[Y?] — E[Y]? = (b— a)(2(2 —a)+1) (b —4a) _ 4(b—a)* + 2(b1; a)—3(b—a) _ - a)?2— a+2

Since Y = X — k, we know Var[Y] = Var[X].

Uniform random variables are characterized by two parameters, k and n. Their properties are summarized
below:

X is a Discrete Uniform(a,b) random variable if it has PMF

1

Px(z)=<b—a+1
0 otherwise.

r=a,a+1,...,b

Range: Rx = {a,a+1,...,b}.

e Expected Value: £[X] = a _2|_ b_
_ — 2
e Variance: Var[X] = (b a)(11)2 a+ )

Interpretation: equally likely to take any integer value between a and b.

2.5.3 Binomial(n,p) Random Variables

Suppose that a random experiment with a binary outcome of success or failure is repeated n times. Let z
denote the number of times that such an experiment was a success. In terms of the notation used above in
the context of Bernoulli random variables, let A denote an event, and let = denote the number of times that
such an event occurs out of n independent trials of the same experiment. Then, X is a random variable with
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discrete range {0,1,...,n}. Define the parameter p to be the probability of success in a single trial of the
experiment, as in Bernoulli random variables.

A simple representation of X is given by
X=L+DL+...+1,, (2.1)

where I}, is the indicator that event A occurs at the independent trial k.

We have seen this problem worked out in Section 1.4.4. The probability of any outcome with k successes
out of n is p¥(1 — p)"~*. There are (Z) outcomes with k successes. Thus, the probability mass function of
X is given by

Px(i) = Fl{w € 2 X(0) = k)] = (1 )ph( ="+ = e b -

Thus, the CDF of X is given by

where |z is the largest integer that is less than or equal to .

Binomial(n, p) random variables arise in various applications where there are two types of outcomes, and
we are interested in the number of outcomes of one type. Such applications include repeated coin tosses,
correct/erroneous bits, good/defective items, active/silent stations, etc. The important statistics of binomial
random variables are derived below:

_ k n—k
=2 - k),kp (1-p)
2 n!
=> pHL—p)"t
— (k—1)l(n —k)!
-1)
_ nPZ n—k)'pk—l(l — p)"~F (factor np from sum)

(n—1)! k—1 n—1—k' .
=np Z ) —1— &) 07 (1—-p) (substitute k' = k — 1)

because the terms in the sum are the PMF for a Binomial(n — 1,p) RV, which add to 1 by normalization.
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Similarly, to compute the variance of X, compute first the following expectation:

k=2
- n! -
:k-zzz(k*2)!(n,k)|pk(l—p) k

=n(n—1)p? Z Mpk_z(l —p)"~* (factor n(n — 1)p? from sum)

_ | _ |
Pt 2)!(n — k)!
n—2
- 2)! ,
= nin =D (ld)!((Z—z)—Mka(l —p)" 77" substitute k' =k — 2
k'=0
=n(n— 1)p2

because the last sum is again the sum of the PMF of a Binomial(n — 2, p) random variable, which is 1 by
normalization.

Note now that E[X (X — 1)] = E[X?] — E[X], so E[X?] = E[X(X — 1)] + E[X] = n(n — 1)p* + np. Now
we use the identity

Var[X] = E[X?] - (E[X])? = n’p* — np® + np — n*p® = n(p — p*) = np(1 — p).

In the above derivations, we have used extensive knowledge of binomial distributions to recognize iden-
tities, and to figure out how to factor terms so we can compute the sums. There is an alternative way of
deriving these formulas, as discussed below.

Note that we can write X = I; + Is + ... + I, where I} is the Bernoulli random variable indicating
success in the k-th attempt. Then, using the linearity property of expectations, we have

EX]|=EL+L+...+1,)=E[L]|+E[L]+...+E[l,]=np.

Note that we have avoided computing a difficult sum by using the fact that expectation is a linear operation,
and the fact that, for Bernoulli random variables, E[I;] = p. To compute the variance, we use a property
that we will derive in Chapter 5, that shows that the variance of a sum of independent random variables
is the sum of the variances:

Var[X] = Var[l; + Iy + ...+ I,] = Var[[1] + ... + Var[,,] = np(1 — p).

Binomial random variables are characterized by the two parameters n and p. Their statistics are sum-
marized below:

e X is a Binomial(n, p) random variable if it has PMF

x

n
*1—p)"™ % x=0,1,...,n,
Py (a) = ()p( p)
0

otherwise.

Range: Rx = {0,1,...,n}.

Expected Value: £[X] = np.

e Variance: Var[X] = np(1 — p).

Interpretation: # of successes in n independent Bernoulli(p) trials.
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2.5.4 Geometric(p) Random Variables

The binomial random variable is obtained by fixing the number of Bernoulli trials and counting the number
of successes. A different random variable is obtained by counting the number of trials until the first success
occurs. Denote this random variable as X; this is a geometric random variable, and it takes values in the
discrete infinite set {1,2,...}.

Note that X = 1 if and only if the first Bernoulli trial is successful. Hence, Px (1) = p, where p is the
single trial probability of success For X = 2, the first Bernoulli trial must fail, but the second one must
succeed. Since the trials are independent, Px(2) = (1 — p)p. Reasoning along the same lines, X = k if and
only if the first £k — 1 Bernoulli trials failed, but the k-th Bernoulli trial succeeded. Using the independence
properties, we get

Px(k)=(1-p)*pk=12...
The corresponding CDF is
Fx(z)=1-(1-pl.

Geometric(p) random variables arise in applications where one is interested in the time between occurrence
of events in a sequence of independent experiments. Such random variables have broad applications in
different aspects of queuing theory. The important statistics of geometric random variables are summarized
below:

= kPx(k) =) kp(1—p)*—1
k=1 k=1

To sum the above expression, we use the following summation for geometric series for 0 < g < 1:

Zq

Differentiating both sides with respect to ¢ (whlch is justified by the summability of the series for p < 1)

yields:
k=1 (1-¢)?

1fq

q)

Using this formula, we get:

> 1 1
:ka(l_p)k_lzpﬁ:*~
k=1

p

To compute the variance, we take another derivative of the summation equality, to get

L
k=1 k=1

= k(k—=1)¢" = k(k—1)¢*?
k=1 k=1
a1
dg(1—q)* (1-gq)?
Substituting 1 — p = ¢ yields Y ;= k(k — 1)(1 —p)*~2 = p%

Using these formulas allows us to compute E[X?] as

sz (1-p Zk ~1p p)k‘1+ikp(1—p)’“‘1
k=1

_2(1*) 1:(2*17)
T2 T p p?
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Hence,

Var[X] = E[X?] — (E[X])* = - ==

The geometric distribution is specified by a single parameter, p. Its properties are summarized below:

X is a Geometric(p) random variable if it has PMF

p(1—p)*~t 2=1,2,...,
Px(x) =
x(@) {O otherwise.

Range: Rx = {1,2,...}.

1
Expected Value: £[X] = »
—-p
2

Interpretation: # of independent Bernoulli(p) trials until first success.

Variance: Var[X] =

2.5.5 Poisson(\) Random Variables

In many applications, we are interested in counting the number of occurrences of an event in a certain time
period or in a certain region of space. The Poisson random variable arises in situations where the events
occur “completely at random” in time or space; that is, where the likelihood of an event occurring at a
particular time is equal to and independent of the event occurring at a different time. For example, Poisson
random variables arise in counts of emissions from radioactive substances, in the number of photons emitted
as a function of light intensity, in counts of demands for telephone connections, and in counts of defects in
a chip.

One of the applications of the Poisson random variable is as an approximation to the binomial probabilities
when the number of trials is large. If the number of trials n is large, and if p is small, then, letting A\ = np,
Simedén Poisson established this limit:

P
="M

ny—k
) R

: n| k
1 — (1 —
n—>o<1>1,2p=/\ k'(n — k)'p ( P

We briefly overview his proof below. Let K,, be the binomial random variable for n trials, each of which
has probability A\/n of succeeding. The probability mass function of K, is
Ak A —1)-(n—k+1) A\ A
Pk, (k) = nchoosek(ﬁ)k(l — Dynk = nn=1)--n + >ﬂ(1 — Dyn-k

n nk

Note the following limits:
lim nn—1)--(n—k+1)

n—00 nk

= 1(same highest order power in numerator, denominator) .

lim (1 — é)" = ¢~ (Definition of exponential).
n—00 n
Ak
lim (1—=)F=1.

n—0o0 n
Thus,
k —_— . e —
lim Py (k) = 2 i M=) (kD)

n
n
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Poisson(\) random variables have an infinite, countable sample space Rx = {0, 1,2, ...} with the prob-
ability mass function

)\k
= —ei)\

k!
where )\ is the average number of event occurrences in the specified time interval or region of space. The
corresponding CDF of X is

Px (k)

=) i —x
Nee
Fx(x) =) x
k=0 ’

To compute the mean and variance of a Poisson(\) random variable, we use a well-known summation

formula
> =
k=0
Then,
_ _ [N W
E[X] = ZkPX(k‘) = Zkk! et=e Z =1
k=0 k=0 k=1
> )\k—l
=Xe A Z W =\ since the last sum is equal to e*.
k=1 ’

To compute the variance, we compute the second moment first:

EX?] =) k*Px(k)=> k2ﬁe”\
k=0 k=0 ’

In order to get an expression for this sum, we differentiate the exponential summation twice with respect
to A, to obtain

e =€ =

2 . 42 )k o0 k—2
a N d® A _Z(kQ_k)A

dx? T L dN2 kT k!
k=0 k=2
Therefore,
2 e AP SR - s PR N L 2
IEX = —e = — e N =
(X2 ;k O ;(k k:)(k)!e +;k<k)!e A2+

We now compute the variance of X as

Var[X] = E[X?] — (E[X])2 = A2+ A= \2 = ).
Poisson(\) random variables are specified by a single parameter A. Its properties are summarized below:

e X is a Poisson(\) random variable if it has PMF

)\‘T —\
Py(z) = Ee z=0,1,...
0 otherwise.

e Range: Rx ={0,1,...}.
e Expected Value: £[X] = A.
e Variance: Var[X] = A.
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e Interpretation: # of arrivals in a fixed time window.

Example 2.15

Suppose we are at a service facility, with a total number of five servers. Assume there are seven potential customers in the
facility, and the probability that any of them will require service is p, where each customer will require service independent
of any other customers’ requirements. Let X be the random variable denoting the number of service requests. What
type of random variable is X7 What is the expected number of requests? What is the probability that there will be more
requests than available servers?

First, we recognize that the random variable X is a binomial random variable, as the sum of independent Bernoulli
random variables (0-1 requests), with parameters n = 7 and p. The expected number of requests is thus 7p. The probability
that there will be more requests than available servers is

Px[{X > 5}] = Px(6) + Px(7) = <Z>p6(1 -p)+ (;)zf =m°1—[p)+p .

Example 2.16

You are waiting for a taxi at the corner of St. Mary's street and Commonwealth Avenue. When a taxi goes by the corner,
there is a 0.9 probability that the taxi is occupied, and will not stop to pick you up. Assume that whether a taxi is occupied
or not is independent of whether other taxis are occupied. Let X denote the number of taxis that come by the corner until
one of them picks you up. What type of random variable is X7 What is the expected number of taxis that you will see
until you are picked up?

We recognize that whether each taxi is occupied or not is a Bernoulli trial, and the probability of success is p = 0.1.
The random variable X is thus a geometric random variable. The expected number of taxis that you should expect to see
until being picked up is thus E[X] = 10.

Example 2.17

Assume you have an X-ray source generating an X-ray beam with intensity equal to 10° photons/second towards a
detector. Let X denote the number of photons collected by the detector photons over a period of a millisecond. If X is a
Poisson random variable, what are its mean and standard deviation?

We compute the parameter A = 10°-10™% = 100 for the Poisson distribution of X . In this case, E[X] = 100, Var[X] =
100. Thus, the standard deviation is cx = 4/ Var[X] = 10.

Example 2.18

Suppose each episode of Game of Thrones includes a death of a major character with probability 3/4, independent of
whether deaths happen in any other episode. Assume there are an infinite number of episods to watch (it felt that way
sometimes...) Define X to be the number of episodes you watch until you see the death of a major character. What type
of random variable is X7?

X is a Geometric(%) random variable, where we explicitly provide the value for the parameter. Then, we know its
statistics:

1 4 1—p
E[X] === =:Var[X] = =
[ ] P 3’ ar[ ] p2

5\@‘»%‘
©

What is the probability that X > 3? Sometimes it is easier to compute the probability of the complement: the
probability that X < 2. We know

15

I
4 4 16"

> w

Px[{X <2}] = Px(1)+ Px(2) =p+p(l—p) =

Hence, Px[{X >3}] =1 - Px[{X <2}] = .

Let Y denote the number of episodes out of the first six you watch that contain a major character death. What type
of random variable is Y? Y is a Binomial(6, %) random variable. Hence, its key statistics are:

E[Y]:np:6~%:%; Var[Y] =np(l —p) =6-

=
=~ =
oo

171

What is E[Y?]? We know that E[Y?] = E[Y]? 4 Var[Y] = & + R

[e ] o]
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What is the probability that less than half of the six episodes include a death? This is Py [{Y" < 3}], which we compute
as

Py[{Y <3} = Pr(0) + Pr(1) + Pr(2) = (3)° +6(;)° ) + (6) (D'CY

_1418+135 77
o 46 72048

Given that less than half the episodes contain a death, what is the probability that exactly two of the six episodes
contain a death? This is a conditional probability question: Let's define this in terms of events in the original probability
space. Define event A ={Y =2}, B ={Y < 2}. Then,

o
el

P[ANB] Py =2} ¥ 135
P[B] ~  PB] 1 154

P[A|B] =

-

We specialize the techniques of computing conditional probabilities to handle events defined in terms of
random variables in the next section.

2.6 Conditional Probability Models

In Chapter 1, given a probability space (2, £,P) and an event B € £, we defined the conditional probability
of any other event A € E, conditioned on observing B, as

P[AN B]

provided P[B] > 0. Otherwise, we left the conditional probability as undefined. A discrete random variable
X in (Q,&,P) with range in Rx = {x;,4 € 1,2,...,} defines events A; = {w € Q: X(w) = a;} € £. Those
events were used to define the probability mass function Px (z;) = P(4;).

Assume we observe an event B € E. We can define the conditional probability mass function of X given
B as

P{weQ:X (w)=2,}NB] .
Py p(z;) = P[A;|B] = PB] if P[B] > 0
undefined otherwise.

This conditional probability mass function will have all the properties of a probability mass function on
Ry, satisfying the basic properties of non-negativity, normalization and additivity:

Px|p(x) > Ofor all z € R,

Z Pyp(z) =1
Z Px|p(x) = mx|p[C] for all C C Rx
zeC

There is a special case of interest, where we observe the event that X takes it values in a set B C Ry,
and the conditioning event is By = {w € @ : X(w) € By}. We are guaranteed that B; € £ is an event
because X is a random variable, and P[B;] = Px[B]. In this special case, the conditional probability mass
function simplifies: Specifically, note that

{weN: X(w)=2} ifze B}

{weQ:X(w)Zm}ﬂBlz{q) ifr¢ B
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We write, with a small abuse of notation, the conditional PMF Px g(z) as

weN: X (w)=z z i
P[{ %X)fé]) 3o ﬂfi((B% if 2 € B and Px[B] >0

Px‘B(.’E): 0 1f$¢B&HdPX[B]>O
undefined if Px[B] = 0.

Thus, the conditional PMF P g(z) is proportional to the unconditional PMF Px (x), restricted to x = B,
and rescaled to satisfy the normalization property. It is zero for any values x ¢ B.

The conditional probability mass function has a range Rx|p C B, and satisfies all the properties of
probability mass functions.

¢ (Non-negativity) Px g(z) > 0.

e (Normalization) ) 5 Px|g(z) = 1.

e (Additivity) For any set C' € Rx, the conditional probability that X € C given B is

Pl{w e Q: X(w) € CY{X(w) € B} =By 5[C] = 3 Px;p(a).
zeC

Note that Px[B] = >, p Px(xx). Thus, we can write the conditional probability mass function of X
given B entirely in terms of the random variable X and its probability mass function, as

—Summfj;agx(xk) if x € B and sumg,cpPx(z) >0
Pxip(r) =140 if x ¢ B and sumy, cpPx(zr) >0
undefined if sumg, epPx(x) = 0.

Now that we have a conditional probability mass function, we can define conditional statistics for the
random variable X. For instance, the conditional expected value of X given an event B is given as

E[X|B] = ) xPx|p(z)
r€Rx

and the conditional variance as

Var[X|B] = E[(X — E[X|B1))*|B] = E[X?|B1] - (E[X|B])*

For any function g(X) that defines a derived random variable Y = g(X), we can define the conditional
expectation as

E[Q(X)\B] = Z g(x)PX\B(l‘) .

rERXx

Example 2.19

Assume X is a Binomial(5, 1) random variable. Define B = {X < 2}. Compute Px|z(z), E[X|B] and Var[X|B].

Px (x)

€B
Pyip(z) = 4 BxB] 7
x15(2) {O otherwise.

1

Px[B] = Px(0) + Px(1) + Px(2) = (%)5 + 5(2)4(%) + 10(§)B(§)2 - W _ %
Py5(0) = gj[(g)] = %22 = %;me(l) = Pxp(2) = %02 - %
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Thus,
é z =0,
PX‘B(I): % 1’:1,2,
0  otherwise.
5 15 5
2 2 2 2 25
R 2z 2525 _ 25
Var[X|B] = E[X°|B] — (E[X"|B])" = 2 16 - 13
Example 2.20

Consider a manufacturing station, where the random arrival time X of a part to be processed is uniformly distributed in
Rx ={1,2,3,...,20}. Thus, the probability mass function of X is Px(x) = %,m € Rx. Assume that you wait for
the first 6 slots and the part X has not arrived yet. Equivalently, you observe the event B = {X > 6}. Compute the
conditional probability mass function of X given B and its conditional expected value and variance.

Since B is defined in terms of Rx, we can use the simpler formula, restricting and rescaling the original Px(z). Note
that Px[B] =Y. .5 Px(x) = 35. Then,

0 z <6,
P frd 1 .
x15(2) ==L z>6

Note that this is now a uniform distribution from 7 to 20, so we can use formulas for uniform distribution to compute
mean and variance. The conditional expected value is

7420
E[X|B] =Y xPx|p(z) = 5 =135

zEB

The conditional variance is
(20—-7)(20 — 7+ 2) (13)(15) 65

Var[X|B] = = =% 1695
ar[X| 5] 12 12 g~ 1625

Example 2.21

One of the interesting properties of a geometric random variable X is that it is “memoryless”. Let X be a geometric
random variable with parameter p. Assume we observe the event B = {X > k} for some value k. What is the conditional
mass distribution of X given B? Recall that Rx = {1,2,...,},and B={k+ 1,k +2,..., }.

We compute

Px[B]=> Px(k)=> pl-p*'=0-p°> pl-p)* " =1-p°

because we know, from normalization, that >.3°, p(1 — p)* ™! = 1. Hence,
Px (z) z—7
r>7 1-— >7
Pyp(a) = { BxtEl 22T _qplmpth e T
0 otherwise 0 otherwise

Define the additional wait time random variable T' = X — 6. Then, note that

p(l—p)' t>1
P, t) =
r15(t) {0 otherwise

Thus, conditioned on B, T is a geometric random variable with the same parameter p as the original random variable X.

In words, the above expression states that, if a success has not occurred in the first j trials, the probability of having
to perform at least £ more trials until a success is the same as the probability of initially having to perform at least & trials.
Thus, the system “forgets” the past failures and begins anew as if it were performing the first trial.

Hence, if you are waiting for a bus that should arrive in 10 minutes, and you have already waited two hours, the
expected arrival time of the bus is still 10 minutes from now...as long as the arrival time was a geometric random variable.
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Note that conditional probability mass functions obey the usual laws that probability mass functions
obey. For instance, for a random variable X defined in the probability space (£2, &, P), we have:
e Multiplication Rule: For a random variable X and event B € &,
IP[{X =z}N B} = Px|p(z)P[B] .
If B C Rx, then

Px(z) z€B

IP’[{X =z}n{X € B}] = Px|p(z)Px[B] = {0 otherwise.

e Law of Total Probability: For a partition of Rx as Bi,...,B,, we can write the probability mass
function as a weighted sum of conditional probability mass functions, as:

Px(z) = ZPX‘BZ, (z)Px|Bi] .

e Bayes’ Rule: We can “flip” the conditioning, as in Bayes’ Rule, with some care. Let B C Rx. Then,

Py p(2)Px|[B] '

Px [B{X =z}] = o)



