
Chapter 3

Continuous Random Variables

3.1 Introduction

In the previous chapter, we described a random variable X as a measurable function from a probability
space (⌦, E ,P) to the real line <. We then focused on studying discrete random variables where the range of
X, denoted by RX = X(⌦), has a discrete, possibly countably infinite number of elements. However, what
about random variables where the range of X, denoted by RX has an uncountable number of elements? This
is illustrated in Figure 3.1 where the range of X maps ⌦ into an interval [a, b]. Suppose we wanted to define
a uniform probability on that interval [a, b]. In this case, it is impossible to assign a probability mass to
any point x 2 [a, b], other than 0, because we could not satisfy both the additivity property (the probability
of the union of disjoint sets is the sum of the probabilities of the individual sets) and the normalization
property (the probability of that X(!) 2 RX equals 1).

In cases where the range RX is uncountable, it is common that one cannot associate a nonzero probability
with any individual outcome. Since there are uncountably many values of the random variable X(!), ! 2 S,
we focus on defining probabilities of events, and not individual outcomes. In terms of events, our focus will
be on events generated by the random variable X taking values in Borel sets: sets generated by countable
unions, complements and intersections of intervals. By restricting the random variable X to be measurable,
we guarantee that the inverse image of such a Borel set B, {! 2 ⌦ : X(!) 2 B} is an event in the event
space E , and thus has a probability assigned to it by the measure P.
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Figure 3.1: A continuous random variable has an uncountable range.

3.2 Continuous Random Variables

In Chapter ??, section ??, we defined the cumulative distribution function of a random variable X as:

FX(a) ⌘ PX({X 2 (�1, a}]) = P[{! 2 ⌦ : X(!)  a}].

This definition is valid for all random variables, independent of whether the range RX is discrete or not.
The function FX(a) is defined for all a 2 <.

This cumulative distribution function had the following properties:

1. (Non-negativity) FX(x) � 0.
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2. (Normalization) FX(1) = 1, FX(�1) = 0

3. (Monotonicity) a  b implies that FX(a)  FX(b)

4. (Right-continuity) lim✏!0+ FX(a + ✏) = FX(a) (continuity from the right)

3.2.1 Cumulative Distribution Function

We will use the cumulative distribution of X to define a continuous random variable, although we will wait
for a more precise definition later. Unlike discrete random variables, a continuous random variable must
have a continuous cumulative distribution function (CDF) FX(x), as illustrated in Figure 3.2. Discontinuities
in CDFs occur at values x which occur with positive probability, so that P[{! 2 ⌦ : X(!) = x}] > 0. For
continuous random variables, we want the probability P[{! 2 ⌦ : X(!) = x}] = 0 for all x 2 <. Hence, the
CDF must be continuous.

x1 xk
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a b
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Figure 3.2: CDFs of discrete and continuous random variables.

The CDF of continuous random variables has the following additional properties:

1. Continuity FX(x) is a continuous function of x, i.e., FX(x) = lim✏!0 FX(x + ✏).

2. P[{! 2 ⌦ : X(!) = x}] = 0 for all x 2 <. Every atom in RX has zero probability.

3. P[{! 2 ⌦ : X(!)  x}] = P[{s : X(!) < x}].

4. For a < b,P[{! 2 ⌦ : a < X(!)  b}] = FX(b) � FX(a).

5. If y is any number in the range 0 < y < 1, then there must be at least one number x such that
FX(x) = y. This is a consequence of the intermediate value theorem for continuous functions. Note
that there could be multiple such numbers, as illustrated in Figure 3.3

Example 3.1
Suppose we want to choose a random number in the interval (0, 1), with every number equally likely to be chosen. That
is, RX = (0, 1). Intuitively, the meaning of random in this instance is that we do not favor any one number over others
in the interval (0,1). One way of expressing the innate randomness of the choice is as follows: Given any subinterval of
(0, 1), the probability that the chosen number lies in that subinterval is equal to the length of that interval. One way of
capturing this is with the following CDF FX(x):

FX(x) =

8
><

>:

0 x  0

x x 2 (0, 1)

1 x � 1.

This cumulative distribution is illustrated in Figure 3.4. Note that the function is continuous; however, it is not di↵erentiable
at either x = 0 or x = 1, as the slopes from the left and right at those two points do not match.
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Figure 3.3: CDF where only one x satisfies FX(x) = y, and where an interval of x satisfies FX(x) = y.
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Figure 3.4: CDF and PDF for a continuous random variable.

For a random variable X to be continuous, it is not su�cient to have a continuous CDF. We want the
CDF to be di↵erentiable almost everywhere.1 Formally, we define a continuous random variable below:

Definition 3.1
A random variable X is a continuous random variable if its cumulative distribution function FX(x) is continuous
and di↵erentiable almost everywhere. That is, its CDF can be written as an integral FX(x) =

R x

�1 fX(x0)d x0 for some

non-negative function fX(x0). We refer to the function fX(x) as the probability density function (PDF).

For a function to be di↵erentiable almost everywhere, it must be di↵erentiable everywhere except for a
countable number of points x1, x2, . . ., and there can only be a finite number of non-di↵erentiable points in
any finite-length interval. This means the CDF will have a probability density function:

fX(x) =

(
d

dx
FX(x) if FX(x) is di↵erentiable at x,

any non-negative number otherwise.

Figure 3.4 illustrates a cumulative distribution function for a continuous random variable and its corre-
sponding probability density function (PDF). Note that this cumulative distribution function is di↵erentiable
everywhere, so the PDF is uniquely defined everywhere.

3.2.2 Probability Density Function

The PDF of a continuous random variable is not a probability and may take values greater than one, but
it must be non-negative: It is a probability density. It is measured in units of probability per unit length.
However, the integral of a PDF over a region of x is a probability, and must be a number in [0,1]. At
this point, let’s compare the concept of a PDF to the concept of a mass density for physical objects. Table
3.1 shows this comparison.

The probability density function for continuous random variables plays a similar role to the probability
mass function for discrete random variables. The sum of the PMF of a discrete random variable over all the

1If you are curious, there are random variables with continuous CDF that are not di↵erentiable almost everywhere. Look
up references to Cantor distributions or the Devil’s staircase function.
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Physical mass in a system probability in an experiment
Is non-negative is non-negative

Density a function of space ⇢(x) probability density a function over the reals ⇢(x)
Mass of region= Probability of events =

Integral of density over region Integral of density over outcomes in event

Table 3.1: Comparison of physical density and probability density

values in its domain RX is equal to 1. Similarly, for a continuous random variable, the integral of its PDF
over the entire real line is equal to 1. Although it is not a probability, if fX(a) is finite, then, for small ✏,
the probability that a sample value occurs in the interval [a, a + ✏] is approximately pX(a)✏. Note that, as ✏
decreases, the probability that X = a becomes zero.

The PDF satisfies the following basic properties:

1. Non-negativity: fX(x) � 0.

This follows from the monotonicity property of the cumulative distribution function, which is non-
decreasing. Hence, its derivative, whenever it exists, is defined as

fX(x) = lim
✏!0

FX(x + ✏) � FX(x)

✏
.

For ✏ > 0, the numerator inside the limit is always non-negative, and hence the limit, if it exists, must
also be non-negative.

2. Normalization:

Z 1

�1
fX(x) dx = 1.

By definition, we know FX(x) =
R

x

�1 fX(u)d u. We also know, by the normalization property of CDFs,
that limx!1 FX(x) = 1. Thus,

lim
x!1

FX(x) = lim
x!1

Z
x

�1
fX(u)d u =

Z
x

�1
1fX(u)d u = 1 .

3. Probability of an interval: PX [{a < X  b}] =

Z
b

a

fX(x) dx.

Since PX [{X = x}] = 0 for any x 2 <, we have

PX [{a < X  b}] = PX [{a  X  b}] = PX [{a < X < b}]

From the CDF properties, we know

PX [{a  X  b}] = FX(b) � FX(a) =

Z
b

�1
fX(x)d x �

Z
a

�1
fX(x)d x =

Z
b

a

fX(x)d x .

4. limx!1 fX(x) = 0; limx!�1 fX(x) = 0.

As the magnitude of x gets large, the PDF curve must decay to zero. Otherwise, the integral of the
PDF would keep growing unbounded as |x| increased. Furthermore, the slope of the pdf must also
decay to zero as |x| grows unbounded.

5. PDF ! CDF:

Z
x

�1
fX(u) du = FX(x).

This is the definition of the PDF.

Example 3.2
Consider a continuous random variable X, with PDF specified as

fX(x) =

(
3x2 x 2 [0, 1],

0 elsewhere..
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We note this satisfies the properties that we want in a PDF: It is non-negative, and it integrates to 1:

Z 1

�1
fX(x)d x =

Z 1

0

3x2d x = 1 .

Note that fX(1) = 3 > 1 as it does not have to satisfy the bound for a probability. What this PDF indicates is that it is
four times denser around x = 1 than around x = 0.5. If you generated independent samples of this random variable, the
number of samples around 1 would be 4 times the number of samples around 0.5.

For discrete random variables X, the PMF provided the complete characterization of the probability
properties of X. A similar property exists for continuous random variables X: The PDF provides the
complete characterization its probability properties that we need for computing probabilities on the outcomes
in <.

Example 3.3
A continuous random variable X has PDF

fX(x) =

(
0.75(1–x2) �1  x  1,

0 otherwise..

This density is illustrated in Figure 3.2.2. Compute PX [{0.25  X  1.25}].
Using the basic properties of the PDF, we know PX [{0.25  X  1.25}] =Z 1.25

0.25

fX(x)dx. However, note that the region of integration involves two dif-

ferent pieces of the definition of fX . Hence,

PX [{0.25  X  1.25}] =
Z 1.25

0.25

fX(x)dx =

Z 1

0.25

0.75(1�x2)dx+

Z 1.25

1

0dx =
81
256

–1 1

0.75

0.25 1.25

Figure 3.5: Figure for example 3.3.

Example 3.4
A continuous random variable X has PDF

fX(x) =

(
�2X �1  x  0,

0 otherwise..

This density is illustrated in Figure 3.2.2. Compute FX(�0.6) and FX(�0.3).

FX(�0.6) =

Z �0.6

�1
fX(x)d x =

Z �0.6

�1

(�2x)d x = 1� 0.36 = 0.64 .

FX(�0.3) =

Z �0.3

�1
fX(x)d x =

Z �0.3

�1

(�2x)d x = 1� 0.09 = 0.91 .

2

1.2

–0.6

0.6

–0.3

2

Figure 3.6: Figure for example
3.4.

Example 3.5
Assume a continuous random variable has a PDF given by

fX(x) =

(
0.75(1� x2) �1  x  1,

0 otherwise..

This density is illustrated in Figure 3.7. Compute FX(0) and FX(0.5).

FX(0) =

Z 0

�1
fX(x)d x =

1
2
by symmetry!

FX(0.5) =

Z 0.5

�1
0.75(1� x2)d x =

Z 0.5

�1

0.75(1� x2)d x

= 0.75(1.5)� 0.25x3|0.5�1 =
9
8
� 1

4
(1 +

1
8
) =

27
32

.

fX(x)

x
–1 1

0.75

Find FX(0): 

Figure 3.7: Figure for example 3.5.
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3.3 Statistics of Continuous Random Variables

3.3.1 Expected Value

We have left the PDF undefined at points x where the CDF is not di↵erentiable. At such points, the
CDF has a di↵erent derivative when approached from the right as from the left. We are allowed to set the
value of fX(x) arbitrarily to any nonnegative number at those few isolated points where the CDF is not
di↵erentiable. Note that this arbitrarily chosen value assigned to the pdf at these isolated points makes
no di↵erence whatsoever in any probability calculations, because the probability that this number occurs is
zero. The probability that this number occurs is 0! In practice, we often choose either the derivative from
the right or the derivative from the left as the value of the PDF at non-di↵erentiable points of the CDF.

Example 3.6
Assume a continuous random variable has a CDF given by

FX(x) =

8
><

>:

0 x < �3,
1
6 (x� 3) �3  x  3,

0 x > 3 .

This density is illustrated in Figure 3.7. Compute fX(x), and define it for all
x 2 <.
Note that FX(x) is di↵erentiable everywhere except at x = ±3. Then,

fX(x) =
d
dx

FX(x) =

8
><

>:

0 x < �3,
1
6 �3 < x < 3,

0 x > 3 .

This is also shown in Fig. 3.8. To complete the definition, we select fX(3) =
0 = fX(�3), which matches the slope of one of the two line segments that
meet at 3 and -3.

x

1

FX(x)

–3 3

1/6

fX(x)

Figure 3.8: CDF and PDF for exam-
ple 3.6.

As was the case for discrete random variables, we define the expected value of a continuous random
variable X as

E[X] =

Z 1

�1
x fX(x) dx.

This is also known as the mean or average.. Similar to discrete random variables, this expected value
can be viewed as the center of probability mass. If we repeat an experiment N times, add up all observed
values of X, and divide by N to compute a sample average, the result should be pretty close to E[X]. We
sometimes use the notation µX = E[X].

Note that, for the expectation to be defined, both of the integrals below must be finite.

E[X] =

Z 1

�1
x fX(x) dx =

Z 0

�1
x fX(x) dx +

Z 1

0
x fX(x) dx .

This is not always the case, as shown in the next example.

Example 3.7
Let X be a continuous random variable with PDF given by: fX(x) =

(
2

⇡(1+x2)
x � 0

0 otherwise.
.

Note that this is a valid PDF, as it is nonnegative and properly normalized. It does decay to 0 slowly, in an inverse
square law. For this random variable, its expected value does not exist:

E[X] =

Z 1

�1
xfX(x)dx =

Z 1

0

2x
⇡(1 + x2)

d x = ln(1 + x2)|10 = 1 .

This illustrates that some statistics of RVs may not be defined because the required expected values may not exist.
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3.3.2 Variance

The variance measures how spread out a random variable is around its mean. For a continuous random
variable X, it is defined using expectations in the same way as it was for discrete random variables:

Var[X] = E
h�

X � E[X]
�2

i
= E[X2] �

�
E[X]

�2

=

Z 1

�1
(x � µX)2 fX(x) dx.

We often refer to the variance of X as �2
X

= Var[X], where �X � 0 is the standard deviation.

3.3.3 Expected Value of a Function of a Random Variable

Let g(·) be a function mapping the range of a random variable X, RX , into the real numbers <. Then,
the variable Y = g(X) is a random variable. We can compute the expected value of Y = g(X) using the
definition of the function and the PDF of X, as

E[Y ] = E[g(X)] =

Z 1

�1
g(x)fX(x) dx .

Note that this expression is valid no matter whether the random variable Y is discrete, continuous or of
other types. It avoids the need for computing the detailed PDF or PMF of Y , by performing the averaging
in terms of the PDF of the random variable X.

Example 3.8
Let X be a continuous random variable with PDF fX(x) =

(
0.5 �1  x  1

0 otherwise
.

We compute µX as

µX = E[X] =

Z 1

�1
xfX(x)d x =

Z 1

�1

0.5xd x = 0 .

The variance �2
X is given by:

Var[X] = E[X2]� (E[X])2 =

Z 1

�1

0.5x2d x =
1
3
.

Let g(x) = |x|, the absolute value function, and let Y = g(X). Then,

E[Y ] = E[g(X)] =

Z 1

�1

0.5|x|d x =

Z 0

�1

0.5(�x)d x+

Z 1

0

0.5(x)d x = 0.5 .

An important class of functions are the a�ne functions g(x) = ax + b. For these classes of functions, we
establish the same relations that were established in 2.4. Let Y = g(X) = aX +b. Then, E[Y ] = E[aX +b] =
aE[X] + b. In addition, we can compute the variance as:

Var[Y ] = E[(aX + b � aE[x] � b)2] = E[(a(X � E[X]))2] = a2Var[X] .

Thus, the variance of Y does not depend on the constant b, and is related to the variance of X as Var[Y ] =
a2Var[X], as variance is a square statistic. Note that, in terms of standard deviation, �Y =

p
Var[Y ] = |a|�X ,

so that the standard deviation scales linearly with a.

Let g(x) = ag1(x) + bg2(x), and let Y = g(X). Then,

E[Y ] = E[ag1(X)] + E[bg2(X)] = a

Z 1

�1
g1(x)d x + b

Z 1

�1
g2(x)d x = aE[X] + bE[Y ]

emphasizing the fact that E[·] is a linear operator.
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3.3.4 Moments

Using the expectation operator, we define the following moments for continuous random variables, in exactly
the same way they were defined for discrete random variables:

Definitions (same as for discrete random variables):

Mean of X E[X] =

Z 1

�1
x fX(x) dx.

Variance of X E[(X � E[X])2] =

Z 1

�1
(x � E[X])2 fX(x) dx.

nth moment of X E[Xn] =

Z 1

�1
xn fX(x) dx.

nth central moment of X E[(X � E[X])n] =

Z 1

�1
(x � E[X])n fX(x) dx.

Example 3.9
Assume a continuous random variable X which has a PDF given by

fX(x) =

(
3
2x

2 �1  x  1,

0 elsewhere.

This density is illustrated in Figure 3.9. Compute the mean, second mo-
ment, third moment and fourth central moment.
First, note the symmetry of fX(x) about zero. This means that, for any
odd function where f(x) = �f(�x), we have E[f(X)] = 0. In particular,
the first and third moments are expectations of odd functions f(x) = x
and f(x) = x3, so we have E[X] = 0,E[X3] = 0.
The second moment is

E[X2] =

Z 1

�1
x2fX(x)d x =

Z 1

�1

x2 3
2
x2d x =

3
10

x5|1�1 =
3
5
.

Since the mean is zero, the fourth central moment is equal to the fourth
moment:

E[X4] =

Z 1

�1
x4fX(x)d x =

Z 1

�1

x4 3
2
x2d x =

3
14

x7|1�1 =
3
7
.

x = linspace(-2,2,1000);
mask = find((x >= -1)&(x <= 1));
y = 3*x.*x/2;
y(mask) = 0;
plot(x,y)

x = linspace(-2,2,1000);
mask = find((x >= -1)&(x <= 1));
y = zeros(size(x));
y(mask) = 3*x(mask).*x(mask)/2;
plot(x,y)

import numpy as np
import matplotlib.pyplot as plt;
t1 = np.arange(-1.2, 1.2, 0.01)
m1 = (t1 < -1.0) | (t1 > 1.0)
y = 3*t1*t1/2
y[m1]= 0
plt.plot(t1, y)
plt.show()

Figure 3.9: Figure for example 3.9.

3.4 Important Families of Continuous Random Variables

Although most experimental measurements are of limited precision, it is often easier to model their outcomes
in terms of continuous-valued random variables because it facilitates the resulting analysis. Furthermore,
the limiting form of many discrete-valued random variables result in continuous-valued random variables.
Below, we describe some of the most useful continuous-valued random variables. Specifically, we overview
the properties of the following families of continuous random variables:

• Uniform

• Exponential

• Gaussian (Normal)

These families of continuous RVs are used to model the outcomes of common experiments. Members
of a given family di↵er only by the values of the few parameters of the family, which are easy to estimate
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from sample data. We also discuss a few other families of continuous random variables that are used less
frequently in engineering applications.

3.4.1 Uniform(a, b) Random Variables

The simplest continuous random variable is the Uniform(a, b) ran-
dom variable X, where X is equally likely to achieve any value in
an interval of the real line, [a, b]. The probability density function
of X is given by:

fX(x) =

(
1

b�a
if x 2 [a, b]

0 otherwise

The corresponding cumulative distribution function is given by

FX(x) =

8
><

>:

0 x < a,
x�a

b�a
a  x  b

1 x > b .

The PDF and CDF of uniform random variables are shown in
Figure 3.10.

x
a

1/L

fX(x)

b

L = b - a

x

1

FX(x)

a b

Figure 3.10: CDF and PDF for uniform
RVs.

We use the notation X ⇠ Uniform([a, b]) to denote a random variable with continuous uniform distribu-
tion on the interval a, b. Using the PDF, we compute the statistics of X ⇠ Uniform([a, b]) as:

E[X] =

Z 1

�1
xfX(x)d x =

Z
b

a

x

b � a
d x =

b2 � a2

2(b � a)
=

a + b

2
Mean

E[X2] =

Z 1

�1
x2fX(x)d x =

Z
b

a

x2

b � a
d x =

b3 � a3

3(b � a)
=

a2 + ab + b2

3

Var[X] = E[X2] � (E[X])2 =
a2 + ab + b2

3
� a2 + 2ab + b2

4
=

(b � a)2

12
Variance

Example 3.10
Consider a random wave of known amplitude A is oscillating at frequency !0 radians per second, but with unknown phase.
We model the unknown phase as a random variable ⇥, uniformly distributed on the interval [�⇡,⇡], so that the time
history of the wave is represented as

x(t) = Acos(!0t+⇥).

From the properties of uniform random variables, we know the average phase E[⇥] = 0, and the variance of the phase

is Var[⇥] = (⇡�(�⇡))2

12 = ⇡2

3 .

The important statistics of uniform random variables are summarized below:

• PDF: fX(x) =

8
<

:

1

b � a
a lex  b,

0 otherwise.

• CDF: FX(x) =

8
>><

>>:

0 x < a
x � a

b � a
a  x < b

1 b  x .

• Expected Value: E[X] =
a + b

2
.
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• Variance: Var[X] =
(b � a)2

12
.

• Interpretation: Equally likely to take any value between a and b.

3.4.2 Exponential(�) Random Variables

Exponential(�) random variables arise in the modeling of the time
between occurrence of events, such as the time between customer
requests in service systems, the durations for call connections
in phone systems, and the modeling of lifetimes of devices and
systems. The exponential random variable X with parameter �
has a probability density function

fX(x) =

(
�e��x if x � 0

0 elsewhere.
x

1
FX(x)

x

fX(x)
l

1/l

Figure 3.11: CDF and PDF for exponen-
tial RVs.

The parameter � is denoted as the rate of the exponential random variable, and it is typically measured
as units per time. An exponential random variable only takes values in the non-negative real line. The
corresponding CDF is

FX(x) =

(
1 � e��x if x � 0,

0 if x < 0.

The PDF and CDF of exponential random variables are shown in Figure 3.11.

The exponential random variable is similar to the discrete geometric random variable, in that it is the
limit of the geometric random variable, as the di↵erence between values of a geometric random variable gets
small. For example, assume that an interval of length T seconds was subdivided into subintervals of length
T/n, and assume that, for each subinterval, there is a Bernoulli trial with probability of success p = �T

n
,

where � is the average number of events per second, so �T is the average number of events per T seconds.
Then, the number of subintervals until the occurrence of the next event is a geometric random variable M .
Let X denote the time until the next successful event. Then, for any t which is a multiple of T/n,

P[{X > t})] = P[{M >
nt

T
}] = (1 � p)nt/T =

✓
(1 � �T

n
)n

◆t/T

In the limit, we get

lim
n!1

P[{X > t}] = e��t

which is 1 � FX(t) for an exponential random variable X with rate �.

We use the notation X ⇠ exponential(�) to denote a random variable X with exponential distribution,
parameter �. The important expectations of an exponential random variable X ⇠ exponential(�) are
computed as:
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E[X] =

Z 1

�1
xfX(x)d x =

Z 1

0
x�e��xd x (integrate by parts)

= �xe��x|10 +

Z 1

0
�e��xd x

= 0 � 1

�
e��x|10 =

1

�

E[X2] =

Z 1

�1
xfX(x)d x =

Z 1

0
x2�e��xd x = �

Z 1

0
x2d e��x (integrate by parts twice)

= x2e��x|10 � 2

Z 1

0
xe��xd x =

2

�

Z 1

0
xd e��x

=
2

�
xe��x|10 � 2

�

Z 1

0
e��xd x =

2

�2

Var[X] = E[X2] � (E[X])2 =
2

�2
� 1

�2
=

1

�2

Example 3.11
The duration of a service repair request for a broken appliance is modeled as an exponential random variable X with
parameter � = 0.1 repairs/minute. The repair person charges a fixed rate of $5.00 for the first five minutes, then $0.50
for each additional minute. Compute the expected time to repair the appliance, the variance of the repair time, and the
expected cost of the repair.

Since X is an exponential random variable, the expected repair time and variance are computed as:

E[X] =
1
�

= 10minutes. Var[X] =
1
�2

= 100minutes2 .

The cost can be viewed as a function g(X) defined by

g(x) =

8
><

>:

0 x < 0,

5 0  x  5,

5 + 0.5(x� 5) x � 5 .

Then,

E[g(X)] =

Z 1

0

g(x)fX(x)dx =

Z 1

0

5fX(x)d x+

Z 1

5

0.5(x� 5)fX(x)d x

= 5 +

Z 1

5

0.5(x� 5)0.1e�0.1xd x = 5

Z 1

0

0.5(y)0.1e�0.1(y+5)d y substitute y = x� 5

= 5 + 0.5e�0.5
Z 1

0

0.1ye�0.1yd y = 5 + 0.5e�0.5E[X] = 5 + 5e�0.5 ⇡ $8.03 .

Note that the expected cost E[g(X)] is not equal to g(E[X]) = $7.50. This is because g(·) is not an a�ne function.

The properties of exponential(�) random variables are summarized below:

• PDF: fX(x) =

(
�e��x x � 0,

0 x < 0.

• CDF: FX(x) =

(
1 � e��x x � 0

0 x < 0 .

• Expected Value: E[X] =
1

�
.

• Variance: Var[X] =
1

�2
.
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• Interpretation: Continuous waiting time. “Continuous version” of geometric random variables.

• Applications: Packet interarrival times, call durations, hard drive lifetimes.

3.4.3 Gaussian(µ, �2) Random Variables

Gaussian(µ, �2) random variables model many situations where
the random event consists of the sum of a large number of small
random variables. They are named after Karl Friedrich Gauss,
who used this class of random variables to model errors in mea-
surements for the least squares estimation of orbital parameters
from telescope observations. Gaussian random variables are de-
termined by two parameters: their mean µ and their variance
�2.
The probability density function of a Gaussian random variable
is given by

fX(x) =
1p

2⇡�2
e� (x�µ)2

2�2 .

. Its corresponding CDF is given by

FX(x) =

Z
x

�1

1p
2⇡�2

e� (u�µ)2

2�2 d u =

Z (x�µ)/�

�1

1p
2⇡

e� y
2

2 d y .

CDF

PDF

Figure 3.12: PDF and CDF for Gaussian
RVs.

where the last equality follows by substituting y = u�µ

�
. Note that the last integral corresponds to a Gaussian

CDF win mean zero and variance 1. The PDF and CDF of Gaussian random variables are shown in Figure
3.12.

We refer to a Gaussian(0,1) random variable as a standard Gaussian random variable. Note that the
CDF of any Gaussian(µ, �2) random variable can be computed in terms of the CDF of a standard Gaussian
random variable. We formally define the CDF of a standard Gaussian as the function

�(x) ⌘
Z

x

�1

1p
2⇡

e� y
2

2 d yn ,

and the standard normal complementary CDF as Q(x) ⌘ 1��(x). Unfortunately, �(x) cannot be computed
in closed form, but its values are tabulated in Appendix C.

Gaussian random variables are also known as Normal random variables because many sets of data gath-
ered from a variety of physical phenomena seem to fit the Gaussian (or normal) distribution. In these sets
of data, errors arise as the combination of many small e↵ects; to develop the exact distribution of the sum
of many random variables is unwieldy. Fortunately, the central limit theorem, which we study in Chapter
8, asserts that if many “small” random causes produce a net e↵ect, then that e↵ect can be approximately
modeled as a normal or Gaussian random variable.

We often write X ⇠ N (µ, �2), or use the phrase “X is N (µ, �2)”, to denote that X is a Gaussian(µ, �2)
random variable with mean µ and variance �2. The statistics of a Gaussian random variable X are specified
in its parameters:

E[X] = µ Var[X] = �2 .

We note that this notation varies across texts. Some texts will refer to a Gassian random variable as
N (µ, �), using the standard deviation instead of the variance. We chose our notation because it generalizes
to vectors in a natural way.

Normal distributions are used in many situations. In many classes, professors believe that the distribution
of grades must be normally distributed with a given mean and variance. Thus, you see the phenomena that
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exams are graded “on the curve,” where the actual grades are mapped nonlinearly into the Normal bell-
shaped PDF, and letter grades are assigned based on the percentile of the grade using the standard Normal
CDF �(x). Similarly, SAT and GRE actual scores are nonlinearly mapped so that the final scores correspond
to a N (500, 10000) distribution.

Gaussian random variables have an interesting property: an a�ne transformation of a Gaussian random
variable is also a Gaussian random variable. That is, if X N (µ, �2) is Gaussian, then Y = aX + b is
also Gaussian for any real scalars a, b. We will show this later in this chapter. Furthermore, we know
E[Y ] = aE[X] + b,Var[Y ] = a2Var[X], so

X N(µ, �2) ! Y = aX + b N (aµ + b, a2�2)

This important property is another reason why Gaussian variables are often used in engineering models.

The Gaussian PDF is symmetric about its mean. This implies that all odd central moments are zero.
Using integration by parts, we can compute all even central moments as a multiple of the variance �2, as

E[(X � E[X])2n] = (2n � 1)(2n � 3) · · · (1)�2

. Thus, E[(X � E[X])4] = 3�2,E[(X � E[X])6] = 15�2.

To perform computations about probabilities of Gaussians, we use the standard normal CDF function
�(·). Appendix C includes the detailed tabulated standard normal CDF. We note the following properties
which are useful for computation:

�(�x) = 1 � �(x) .�(x) � �(�x) = 2�(x) � 1

Q(x) = �(�x) = 1 � �(x)

The way we use the standard tables for computation is for computing probabilities for a Gaussian random
variable X ⇠ N (µ, �2). Recall that

FX(x) = �(
x � µ

�
) .

Note that the argument of the standard Gaussian function �(·) is expressed as the di↵erence between the
value x and the mean of the random variable, expressed in units of standard deviations. That is, the statistic
zx = x�µ

�
used as the argument for � is the number of standard deviations away from the average. We

illustrate this with the following example:

Example 3.12
Consider a Gaussian random variable X ⇠ N (1, 4). Determine the probability that X lies between -1 and 3.

From its definition, P[{�1 < X  3}] = FX(3)� FX(1). The standard deviation of X is �X =
p
4 = 2. Then,

P[{�1 < X  3}] = FX(3)� FX(�1)

z3 =
3� 1
2

= 1; z�1 =
�1� 1

2
= �1;

P[{�1 < X  3}] = FX(3)� FX(�1) = �(z3)� �(z�1) = �(1)� �(�1)

= �(1)� (1� �(1)) = 2�(1)� 1 = 2(0.8413)–1 = 0.6826

where the number for �(1) was obtained from the table in Appendix C.

Example 3.13
An underwater microphone is measuring the average acoustic pressure X to detect whether there is a submarine generating
sounds in its neighborhood. If no submarine is present, the background acoustic pressure is modeled as a Gaussian, with
X ⇠ N (2, 4). If the submarine is present, the measured acoustic pressure is modeled as X ⇠ N (3, 4).

The microphone uses a simple threshold T 2 (2, 3), and if the measured X > T , it declares that a submarine is present.
A false alarm happens when there is no submarine present (so X ⇠ N (2, 4)), yet X > T . What is the probability of a
false alarm? Express the answer in terms of T and the standard complementary CDF Q(·).
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When no submarine is present, X ⇠ N (2, 4), so µ = � = 2. PF = P[{X > T}] = 1 � FX(T ). Computing the
z-statistic, zT = T�2

2 . Thus,

PF = 1� �(zT ) = Q(zT ) = Q(
T � 2
2

).

If the submarine is present, but X < T , the microphone will not declare a detection, and thus the detection will be
missed. Express the probability of missed detection in terms of T using the complementary CDF Q(·).

When the submarine is present, X ⇠ N (3, 4), so µ = 3,� = 2. Then, PMD = P[{X < T} = FX(T ). The z-statistic
is zT = T�3

2 , so

PMD = FX(T ) = �(zT ) = �(
T � 3
2

) = Q(
3� T
2

)

A summary of the properties of a Gaussian random variable X ⇠ N (µ, �2) is:

• PDF: fX(x) =
1p

2⇡�2
e� (x�µ)2

2�2 .

• CDF: FX(x) = �

✓
x � µ

�

◆
where �(z) =

Z
z

�1

1p
2⇡

e�w
2

2 d w.

• �(z) is the standard normal CDF. Q(z) = 1 � �(z) is the standard normal complementary CDF.

• Expected Value: E[X] = µ.

• Variance: Var[X] = �2.

• Interpretation: Sum (or average) of many small random e↵ects.

• Applications: Noise modeling, linear systems, high-dimensional data.

3.4.4 Other families of continuous random variables

Below we quickly overview other classes of continuous random variables that are used less frequently in
engineering. This section is primarily for reference, and won’t be used much in the rest of this course.

Gamma and Erlang random variables Gamma random variable appear in may applications. For
example, it is often used to model the time to service customers in queuing systems, the lifetime of devices
in reliability studies, and the defect clustering behavior in VLSI chips. The probability density function of
a gamma random variable X has two parameters ⇢ > 0, � > 0, and is given by

fX =
↵(↵x)⇢�1e��x

�(⇢)

where �(z) =

Z 1

0
xz�1e�xd x. Note that, for z a positive integer, �(z) = (z � 1)!. Other notable values are

�(0.5) =
p

⇡.

The versatility of the gamma distribution is that, by properly choosing the two parameters, it can take
a variety of shapes, which can be used to fit specific distributions. For instance, when ⇢ = 1, we obtain
the exponential random variable. By letting ⇢ = m, where m is a positive integer, we obtain the m-stage
Erlang distribution, which is the distribution of the sum of m independent and identical exponential random
variables, each with rate �.



3.4. IMPORTANT FAMILIES OF CONTINUOUS RANDOM VARIABLES 83

The CDF of general Gamma distributions can only be expressed in terms of special functions and is
seldom used for computations. The important expectations of a gamma random variable X with parameters
⇢, � are given by:

E[X] =
⇢

�

Var[X] =
⇢

�2

Rayleigh random variables Rayleigh random variables are often used to model the random magnitude
of a vector. As such the variables must be positive. The PDF of a Rayleigh random variable X with

parameter ↵ is given by: fX(x) =
x

↵2
e�x

2
/2↵

2

.

The CDF of a Rayleigh random variable X with parameter ↵ is FX(x) = 1�e� x
2

2↵2 . Some of its important
statistics are

E[X] = ↵

r
⇡

2

Var[X] =
4 � ⇡

2
↵2

Laplacian random variable: The Laplacian random variable models a two-sided exponential distribution
with parameter �. The probability density function of a Laplacian random variable X is given by

fX(x) =
�

2
e��|x| .

Its CDF is given by

FX(x) =

(
1
2e�x x < 0,

1 � 1
2e��x x � 0 .

with expectations:

E[X] = 0

Var[X] =
2

�2

Cauchy random variable: The Cauchy random variable is often used as an example to illustrate distri-
butions which do not decay fast enough as x ! 1, so that no moments exist. We call those heavy-tailed
distributions. The probability density function of a Cauchy random variable with parameter � is given by

fX =
�/⇡

�2 + x2
.

The CDF of a Cauchy random variable X with parameter � is FX(x) =
1

2
+

1

⇡
tan�1(

x

�
).

Due to its symmetry, the mean is often taken to be zero, though the formal expected value of the density
does not have a unique value. It is easy to verify that the variance of this distribution does not exist either.

In Table 3.2 we summarize the characteristics of important random variables, where the more general
(shifted) forms of the Laplacian and Cauchy distributions are given.

Example 3.14
Consider the following quick questions regarding continuous random variables:
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1. if X ⇠ Uniform([0, 1]), and Y = �2X + 1, compute E[Y ] and Var[Y ].

Answer: E[X] = 0+1
2 = 0.5;E[Y ] = �2E[X] + 1 = 0;Var[X] = 1

12 ;Var[Y ] = (�2)2Var[X] = 1
3 .

2. If X ⇠ Uniform([a, b]), and E[X] = 2,Var[X] = 4, what are a, b?

Answer: E[X] = 2 = a+b
2 ;Var[X] = 4 = (b�a)2

12 so b� a = 4
p
3. Thus, b = 2 + 2

p
3, a = 2� 2

p
3.

3. If X ⇠ N (0, 0.5) and Y = �2X + 1, what is the probability that Y > 5, in terms of the standard Gaussian CDF
�(x)?

Answer: E[Y ] = 1,Var[Y ] = (�2)2(0.5) = 2. Thus, P[{Y > 5}] = 1 � FY (5). Since Y has mean 1, standard
deviation

p
2, the z statistic z5 = 5�1p

2
= 2

p
2. Hence, P[{Y > 5}] = 1� �(2

p
2) = Q(2

p
2).

4. If X is Gaussian with E[X] = 1,E[X2] = 5, what is the variance of X?

Answer: Var[X] = E[X2]� (E[X])2 = 4.

3.5 Conditional Probability for Continuous Random Variables

Consider a probability space (⌦, E ,P). For any events A, B 2 E such that P[B] > 0, we define the conditional
probability of A given B as:

P[A|B] =
P[A \ B]

P[B]
=

P[A \ B]

P[B � A] + P[B \ A]
.

Let X be a random variable defined on (⌦, E ,P). Then, {! 2 ⌦ : X(!)  a} ⌘ {X  a} defines an event
in E . Using this event, we can define the conditional cumulative distribution function FX|B(a) as follows:

FX|B(a) =
P[{! 2 ⌦ : X(!)  a} \ B]

P[B]
=

P[{X  a} \ B]

P[B]
.

Note that this definition is valid for all random variables, not just discrete or continuous ones. For discrete
random variables, we defined the conditional probability mass function in ??, as PX|B(a) by exploiting the
fact that RX was discrete:

PX|B(a) =
P[{X = a} \ B]

P[B]
.

For the special case that B ⇢ X, so that the event is {! 2 ⌦ : X(!) 2 B}, this simplified to

PX|B(a) =

(
P (a)
PX [B] a 2 B1,

0 otherwise.

We referred to this operation as restrict/rescale: restrict the probability mass functions to a 2 B, and rescale
so that

P
x2B

PX|B(x) = 1.

Suppose X is a continuous random variable, so it has a probability density function fX(x) defined
almost everywhere. We can compute the conditional CDF FX|B(a) as indicated above. Then, we define the
conditional probability density function fX|B(a) as the derivative of the conditional CDF:

fX|B(A) =
d

da
FX|B(a) =

d

da
P[{X  a} \ B]

P[B]
=

lim✏!0
P[{Xa+✏}\B]�P[{Xa}\B]

✏

P[B]

It should be clear that, if X has a CDF that is di↵erentiable almost everywhere, the conditional CDF will
also be di↵erentiable almost everywhere, so the conditional PDF will exist as defined above.

We can simplify this when the conditioning event is {X 2 B ⇢ <}. In this case, PX [B] =
R

x2B
fX(x)d x =

P[{X 2 B}]. For this case, we have the following:

P[{X  a + ✏} \ {X 2 B}] � P[{X  a} \ {X 2 B}] =

Z

x2(�1,a+✏]\B

fX(x)d x �
Z

x2(�1,a]\B

fX(x)d x .
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Thus, taking limits and using the fundamental theorem of calculus,

lim
✏!0

P[{X  a + ✏} \ {X 2 B}] � P[{X  a} \ {X 2 B}]

✏
=

(
0 if a /2 B,

lim✏!0
P[{Xa+✏}]�P[{Xa}]

✏
if a 2 B.

Thus, when the conditioning event is {X 2 B} , we have fX|B(x) =

8
<

:

fX(x)

PX [B]
x 2 B

0 otherwise.

Example 3.15
Let X ⇠ Exponential(2) be an exponential random variable with rate 2. Consider the event B generated by {X > 1}.
Then, PX [B] = 1� FX(1) = e�2, and the conditional PDF of X given B is

fX|B(x) =

(
2e�2x

e�2 = 2e�2(x�1) x � 1,

0 x < 1 .

Note that the conditional fX|B(x) is just the original fX(x) shifted to start at x = 1! This is the memoryless property
for exponential random variables that we showed earlier for geometric random variables. If we define the time to go as
Y = X � 1, then fY |B(a) = fX(a). Thus, if you have waited for one hour for an arrival, the time you have left to wait
has the same distribution as the original arrival time.

With the conditional PDF, we can define conditional statistics: The conditional expected value of X is

E[X|B] =

Z 1

�1
xfX|B(x)d x .

The conditional expected value of a function g(X) is

E[g(X)|B] =

Z 1

�1
g(x)fX(x)d x .

With these equations, we can now compute the conditional variance of X given observation of event B as
Var[X|B] = E[X2|B] � (E[X|B])2.

3.6 Functions of a Continuous Random Variable

Assume we have a random variable X defined on a probability space (⌦, E ,P). Any measurable function
g : < ! < can be used to define a derived random variable Y = g(X) on the same probability space. However,
even if X is a continuous random variable, it is unclear as to whether the resulting random variable Y will
be continuous, or discrete, or perhaps a mixed random variable, a type that we have not discussed yet. Even
if X is a continuous random variable and g(·) is a continuous function, the resulting random variable Y is
not guaranteed to be continuous.

We have described previously how to compute statistics of Y , such as E[Y ] or E[Y 2], without having to

compute the resulting PMF or PDF of Y ; e.g. E[Y ] =

Z 1

�1
g(x)fX(x)d x. What we are after in this section

is computing the full PMF or PDF of Y , whenever it is appropriate to do so.

Example 3.16
Let X ⇠ Uniform([�1, 1]). Define g(x) =

(
0 x < 0,

x x � 0 .
. Note that g(x) is continuous, and X is a continuous random

variable, but Y = g(X) has the property that P[{Y = 0}] = 0.5, so that there is mass at the point Y = 0. Thus, Y is not
a continuous random variable, because the CDF of Y is not continuous.
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3.6.1 Transforming Continuous to Discrete

One case in which we can handle the transformation Y = g(X) is whenever the function g(·) is piecewise
constant. In this case, Y = g(X) will be a discrete random variable, with range RY written as the list of
discrete values that g(x) can take. In this case, we can determine the PMF of Y as follows:

For each value y 2 RY , determine the set of values of x such that g(x) = y. Formally, find Ay = {x :

g(x) = y} for each y 2 RY . Then, compute PY (y) =

Z

x2Ay

fX(x)d x . The resulting random variable is

discrete, and its statistics can be obtained for the PMF function computed above.

3.6.2 Transforming Continuous to Continuous

If X is a continuous random variable, the function g(x) is continuous, di↵erentiable almost everywhere, and

its derivative g0(x) =
d

dx
g(x) is not zero on any interval (but can be zero at specific values), then Y = g(X)

is a continuous random variable. Under these conditions, the set of values x such that g(x) = y is discrete,
and has probability zero. Thus, probability mass does not accumulate at any value of y.

For these cases, the PDF of Y can be determined from the PDF of X and knowledge of the function g(·)
and its derivative. Given the range RX , compute the range RY = g(RX). For each y 2 RY , determine the
set of all values of x 2 RX such that g(x)  y. Formally, find By = {x 2 RX : g(x)  y} for each y 2 RY .
Then, the CDF of Y is determined as

FY (y) = P[{Y  y} =

Z

By

fX(x)d x .

Once the CDF of Y is found, the PDF is obtained as the derivative fY (y) =
d

dy
FY (y).

There is a special case of functions g(·) for which the computation of the PDF of Y is simpler, and can be
done avoiding the need to compute the CDF of Y first. That is the case where g(·) is strictly monotonic:
either strictly increasing (g(x) > g(y) if x > y) or strictly decreasing (g(x) < g(y) if x > y). In this case, the

function g(x) has an inverse function h(y) = g�1(y), and the PDF of Y = g(X) is fY (y) = fX

�
h(y)

�����
d

dy
h(y)

����.

A special case of monotone functions g(·) are a�ne functions g(x) = ax+ b where the slope a is non-zero.
In this case, h(y) = 1

a
(y � b), d

dy
h(y) = 1

a
and

fY (y) =
1

|a|fX

✓
y � b

a

◆
.

We illustrate this with several important examples:

Example 3.17
Let X be a Gaussian random variable such that X ⇠ N (µ,�2). Let g(x) = ax + b, with a 6= 0. Then, Y = g(X) is an
a�ne transformation of a Gaussian random variable. By the above formula,

fY (y) =
1
|a|

1p
2⇡�2

e�
y�b

a
�µ)2

2�2 =
1p

2⇡a2�2
e�

(y�b�µa)2

2a2�2 ⇠ N (aµ+ b, a2�2) .

This proves the important property that a�ne transformations of Gaussian random variables are Gaussian random variables.

Example 3.18
Let X be a uniform random variable, with X ⇠ Uniform((0, 1]). Let g(x) = � 1

� ln(x) which is a monotone, strictly

decreasing function with inverse h(y) = e��y. Let Y = g(X); then, RY = (0,1); then,

fY (y) = fX
�
h(y)

�����
d
dy

h(y)

���� = | d
dy

h(y)| = �e��y, y > 0 .
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This shows Y ⇠ Exponential(�), an exponential random variable.

Example 3.19
Consider a function q(y) that is continuous, monotone non-decreasing, di↵erentiable almost everywhere with values in
[0, 1] such that limy!�1 q(y) = 0, limy!1 q(y) = 1. Assume that q(y) is strictly monotone increasing over its range
RY = {y 2 < : 0 < q(y) < 1}. Let X be a uniform random variable on [0, 1]. We want to find a transformation Y = g(X)
such that the derived random variable Y has CDF FY (y) = q(y).

Let r(y) = q�1(y) be the inverse of q, so that r : (0, 1) ! RX , and define Y = r(X). Then,

FY (y) = P[{Y  y}] = P[{X  q(y)}] = FX(q(y)) = q(y)

Hence, we can transform uniform random variables on [0,1] to random variables Y with CDF q(Y ) as long as q(Y ) is
strictly increasing over its e↵ective range.

Example 3.20
Let X ⇠ N (0, 1), and let Y = X2. Note that g(·) is continuously di↵erentiable, but not monotone. For any value
y 2 [0,1), let By = {x 2 < : x2  y} = .{x 2 < : �p

yx  p
y}. Then,

FY (y) = PX [By] = �(
p
y)� �(�p

y) .

Hence, its PDF for y > 0 is

fY (y) =
d
dy

(�(
p
y)� �(�p

y)) =
1

2
p
y

1p
2⇡

e�
y

2 +
1

2
p
y

1p
2⇡

e�
y

2 =
1p
2⇡y

e�
y

2 .

3.7 Mixed Random Variables

There are many random variables that are neither continuous nor discrete. For instance, consider the random
variable X with CDF given by

FX(x) =

8
><

>:

0 x < 0

0.5 + 0.5x 0  x < 1

1 x � 1 .

This CDF is not continuous, as it has a jump at x = 0. However, the range of X is RX = [0, 1], an
uncountable space. Random variables with a CDF that has a discrete set of discontinuities, but is almost
surely di↵erentiable elsewhere are mixtures of discrete and continuous random variables. We refer to such
random variables as mixed random variables.

The di�culty with mixed random variables X is that we cannot compute either a probability mass
function or a probability density function from the CDF FX(x). Hence, we don’t have the basic information
needed for computing statistics, or expectations of functions of X.

We will overcome this di�culty by defining a generalized version of a CDF using generalized derivatives
of the CDF. Specifically, at points where the CDF has discontinuities, we represent the derivative using an
impuse �(·) function. In engineering, the impulse function is defined by the following properties:

�(a) = 0if a 6= 0

Z
c

b

�(a) d a =

8
><

>:

0 if b  c < 0

1 if b  0  c

0 if 0 < b  c .

Z 1

�1
�(a � s)g(!) d s = g(a) if g is continuous at a.
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Using this concept, we define the PDF of a mixed random variable X as: fX(x) = d

dx
FX(x) where we

use impulse functions to represent derivatives at points where the CDF is discontinuous. Note we can use
this do define a PDF for discrete random variables also. For example,

fX(x) = 0.5�(x + 1) + 0.5�(x � 1)

is the density of a random variable taking on the values {�1, 1} each with equal probability.

The most important property of impulse functions is that we can integrate them. We use PDFs to
compute probabilities of events by integrating the PDF over the range of values in the event. Thus, for the
above variable X, we can compute the second moment directly, as

E[X2] =

Z 1

�1
x2fX(x)d x =

Z 1

�1
x2(0.5�(x + 1) + 0.5�(x � 1))d x = 0.5(�1)2 + 0.5(1)2 = 1 .

Similarly, assume that the CDF of a mixed random variable X is

FX(x) =

8
><

>:

0 x < 0

0.5 + 0.5x 0  x < 1

1 x � 1 .

The PDF can be computed as
fX(x) = 0.5�(x) + 0.5I{x2(0,1(}

where the indicator function I{x2(0,1(} =

(
0 x /2 A

1 x 2 A
.

Note that we still maintain the fundamental relationships between CDF and PDF:

FX(a) =

Z
a

�1
fX(!)ds.

Furthermore, for random variables Y = g(X), we still have

E[Y ] = E[g(X)] =

Z 1

�1
g(x)fX(x)d x .

whenever the integrals are finite and well-defined.

Example 3.21
A service station has two servers that it can use to handle services: a robot that always completes its service in 10 seconds,
and a human that completes its service in a random time, distributed uniformly between 5 and 15 seconds. When you
request service, you will be assigned the robot with probability 0.6, and the human with probability 0.4. Let X denote
the random variable representing the time at which your service request will be completed. Note that X can take values
between 5 and 15 seconds, a continuous interval.

What is the CDF of X? Let’s compute this using the Law of Total Probability. Let B1 be the set of all outcomes
where the robot performs your service, and B2 be the set of all outcomes where the human performs the service. Then,
B1, B2 is a partition of all the possible outcomes. Using the Law of Total Probability,

FX(x) = P[{X  x}] = P[{X  x}|B1]P[B1] + P[{X  x}|B2]P[B2]

From the information in the problem, P[B1] = 0.6,P[B2] = 0.4. We are also given

P[{X  x}|B1] =

(
0 x < 10

1 x � 10 .
; P[{X  x}|B2] =

8
><

>:

0 x < 5
x�5
10 5 � x < 10

1 x � 10 .

The CDF of X is thus obtained by direct substitution into the formula above. It is clearly the CDF of a mixed random
variable, as it has a discontinuity at x = 10.
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We compute the PDF of X as the derivative of this CDF, as

fX(x) = 0.6�(x� 10) + 0.04I{x2[5,15]} .

We can now compute the expected value of X and its variance as:

E[X] =

Z 1

�1
xfX(x)d x = 0.6

Z 1

�1
x�(x� 10)dx+ 0.04

Z 15

5

xdx = 6 + 4 = 10

E[X2] =

Z 1

�1
x2fX(x)d x = 0.6

Z 1

�1
x2�(x� 10)dx+ 0.04

Z 15

5

x2dx

= 60 + 0.04
153 � 53

3
= 60 + 130/3

Var[X] = E[X2]� (E[X])2 = 60 + 130/3� 100 =
10
3


