
Chapter 4

Pairs of Random Variables

4.1 Multiple Random Variables

In the previous two chapters, we have seen one way to define multiple random variables on the same proba-
bility space (⌦, E ,P), by using a function g(·) to map a random variable X(!) to a di↵erent random variable
Y (!) = g(X(!)). However, it is natural in many experiments to generate more than one random variable
for each outcome, and for the second random variable not to be derived from the value of the first random
variable. Consider an experiment where one rolls two six-sided dice. One random variable, X(!), is the
value of the first die, and the other random variable, Y (!), is the value of the second dice. In this case,
notice that Y (!) can have multiple values for each value of X(!), which means that Y (!) is not derived as
a function of X(!). In this experiment, we expect that the values that Y (!) takes and X(!) takes are not
related, and appear uniformly in {1, 2, . . . , 6}. We recognize that this experiment was simply the combination
of two independent experiments, and that perhaps we can treat X and Y as random variables from di↵erent
experiments. Thus, it would be su�cient to know the individual probability mass functions PX(x), PY (y)
to conduct further analyses.

However, consider an experiment of rolling two dice, but generating two random variables as follows: the
first, X(!), is the sum of the dice outcomes, and the second, Y (!) is the product of the dice outcomes. Now,
X(!) takes values in {2, 3, . . . , 12}, and Y (!) takes values in a very di↵erent discrete set. Furthermore, their
values are related in unusual ways: if X(!) = 2, then Y (!) = 1. If X(!) = 4, then Y (!) 2 {3, 4}. It is clear
that the values of X, Y depend closely on the full outcome !, and cannot be separated as two independent
subexperiments. In essence, the random variables are now a two-dimensional function g(!) = (X(!), Y (!)),
with values in a discrete subset of <2. The choice of function g(·) defines the range RX,Y and will define a
probability mass function in that range.

Note that both experiments use the same underlying probability space (⌦, E ,P), with the same outcomes
⌦ and the same discrete probability measure P. However, we defined di↵erent random variables in the
experiments. We could have generated more than two random variables for the same outcome. Multiple
random variables are the result of a vector-valued function that assigns multiple real numbers to each
outcome in the sample space. Intuitively, we can think of multiple random variables as the observations from
an experiment that simultaneously produces two or more numbers for each outcome. The above discussion
highlights that the relationship between multiple random variables is more general than what we saw in
earlier chapters, where one random variable was derived from the other random variable by a function
transformation.

In this chapter, we focus on generalizing the concepts we developed for scalar random variables in Chapter
2 and Chapter 3 to the experiments that generate two random variables X(!), Y (!) for each outcome. In
later chapters, we generalize this to experiments that generate random vectors of higher dimension for each
outcome.

4.2 Pairs of Random Variables

Formally, a pair of random variables (X, Y ) in a probability space (⌦, E ,P) consists of a vector-valued function
from ⌦ ! <2. We also refer to such a pair (X, Y ) of random variables as bivariate random variables, or
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joint random variables.
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P [Event B] = PX,Y(B) Figure 4.1: Bivariate random variables map single outcomes into two numerical values.

Figure 4.1 illustrates how pairs of random variables map individual outcomes ! 2 ⌦ into an ordered pair
(X(!), Y (!)) 2 <2. We are interested in computing probabilities on the possible values of X(!), Y (!), such
as the probability that (X(!), Y (!)) 2 B1 ⇢ <2 in Fig. 4.1. Thus, we restrict ourselves to functions where
the inverse image of reasonable sets such as rectangular subsets of <2 generate events B 2 E for which P[B]
is defined.1 Then, we compute such probabilities as P[{! 2 ⌦ : (X(!), Y (!)) 2 B1]}] = P[{! 2 B}].

For scalar random variables X, we defined the cumulative distribu-
tion function FX(x) as a function that summarized the probabil-
ity of events defined in terms of intervals of values of X. For bi-
variate random variables X, Y , each random variable has its own
CDF FX(x) and FY (y), defined as in the previous chapters as
FX(x) = P[{! 2 ⌦ : X(!)  x}], FY (y) = P[{! 2 ⌦ : Y (!)  y}].
However, these CDF functions do not capture how the values of the
random variables relate to each other.

To capture the probabilistic relationship between the two random
variables, we define the joint cumulative distribution function
(CDF) for values (x, y) 2 <2 as

(x,y)

Figure 4.2: The CDF FX,Y (x, y) is the
probability that the random variables
take values in the shaded area .

FX,Y (x, y) = P[{! 2 ⌦ : X(!)  x, Y (!)  y}] = P
⇥
{! 2 ⌦ : X(!)  x} \ {! 2 ⌦ : Y (!)  y}

⇤
.

That is, the joint CDF FX,Y (x, y) measures the probability of the event of outcomes where the random
variables take values in the semi-infinite rectangle (�1, x] ⇥ (�1, y]. This is illustrated in Figure 4.2.
Note that this definition of CDF makes no distinction as to whether the joint random variables X, Y are
discrete-valued or continuous-valued.

The joint CDF satisfies the following basic properties:

• Non-negativity: 0  FX,Y (x, y).

• Normalization: limx,y!1 FX,Y (x, y) = 1.

• Non-decreasing: For any x  x̃ and y  ỹ, FX,Y (x, y)  FX,Y (x̃, ỹ).

1Formally, we define the Borel �-field in <2 as that generated from two-dimensional intervals by countable unions, intersec-
tions and complementation, and we require the function g(!) = (X(!), Y (!)) to be measurable, so inverse images of Borel sets
are events in E.
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• Marginalization: limy!1 FX,Y (x, y) = FX(x) and limx!1 FX,Y (x, y) = FY (y).

• limx,!�1 FX,Y (x, y) = 0 and limy!�1 FX,Y (x, y) = 0.

• FX,Y (x, y) is a right-continuous function of x for each y and a right-continuous function of y for each
x. That is,

lim
✏>0,✏!0

FX,Y (x + ✏, y) = FX,Y (x, y); lim
✏>0,✏!0

FX,Y (x, y + ✏) = FX,Y (x, y).

Note that the marginal CDFs FX(x), FX(y) can be derived from the joint CDF. The converse, however, is
not true, as is clear from the dice discussion earlier.

Using the joint CDF, we can perform computations of the probabilities that the bivariate random variables
take values in certain intervals, as illustrated in the following example.

Example 4.1
Compute the following probabilities using the joint CDF:

(a) P[{X > x} [ {Y > y}] (b) P[{X  x} [ {Y  y}]
(c) P[{X  x} [ {Y > y}] (d) P[{! 2 ⌦ : X(!) 2 (x, x0], Y (x) 2 (y, y0]}

Answer: Figure 4.3 shows the areas in <2 for the questions, with some ambiguity as to whether the red boundaries are
part of the region of interest. Notice the specific choice of the questions, to determine the type of interval required, as
that determines whether the boundary is included.

For (a), we see the answer is the complement of the joint CDF, as P[{X > x} [ {Y > y}] = 1� FX,Y (x, y).

For (b), the answer is a little more complex:

P[{X  x} [ {Y  y}] = P[{X  x}] + P[{Y  y}]� P[[{X  x} \ {Y  y}]
= FX,Y (x,1) + FX,Y (1, y)� FX,Y (x, y) = FX(x) + FY (y)� FX,Y (x, y)

For (c), we see that {X  x, y, Y  y} \ {Y > y} = ;, so

P[{X  x} [ {Y > y}] = FX,Y (x, y) + (1� FX,Y (1, y)) = FX,Y (x, y) + (1� FY (y))

For (d), we have

P[{! 2 ⌦ : X(!) 2 (x, x0], Y (x) 2 (y, y0]} = FX,Y (x0, y0)� FX,Y (x, y0)� FX,Y (x0, y) + FX,Y (x, y)
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Figure 4.3: Regions of interest for the questions in 4.1.

4.3 Pairs of Discrete Random Variables

4.3.1 Joint Probability Mass Function

A pair of random variables X, Y is discrete if X and Y are discrete random variables. For discrete bivariate
random variables, we define the joint probability mass function PX,Y (x, y) as follows:
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Definition 4.1
The joint probability mass function (PMF) of a pair of discrete random variables X and Y is

PX,Y (x, y) = P[{! 2 ⌦ : X(!) = x, Y (!) = y}] = P
⇥
{X = x} \ {Y = y}

⇤
.

The joint PMF is zero except at a discrete number of points in <2, each of which has positive probability
mass. The range RX,Y of a pair of discrete random variables is the set of all possible pairs of values,

RX,Y = {(x, y) : PX,Y (x, y) > 0}.

The joint PMF satisfies the following properties:

• Non-negativity: PX,Y (x, y) � 0.

• Normalization:
X

(x,y)2RX,Y

PX,Y (x, y) = 1.

• Probability of an event: Suppose we have a set B ⇢ Rx,y. Then,

P[{(x, y) 2 B}] = P
⇥
{(X, Y ) 2 B}

⇤
=

X

(x,y)2B

PX,Y (x, y).

When the range sets RX , RY of the two random variables are finite, we can visualize the joint PMF as
an array of probability masses. Let RX = {x1, x2, . . . , xn}, RY = {y1, y2, . . . , ym}, as illustrated in Table
4.1. Note that some of the numbers in the array can be zero, as the joint range RX,Y is often not equal to
the cross product RX ⇥ RY .

Y \X x1 x2 · · · xn�1 xn

y1 PX,Y (x1, y1) PX,Y (x2, y1) · · · PX,Y (xn�1, y1) PX,Y (xn, y1)
y2 PX,Y (x1, y2) PX,Y (x2, y2) · · · PX,Y (xn�1, y2) PX,Y (xn, y2)
...

...
...

...
...

...
ym�1 PX,Y (x1, ym�1) PX,Y (x2, ym�1) · · · PX,Y (xn�1, ym�1) PX,Y (xn, ym�1)
ym PX,Y (x1, ym) PX,Y (x2, ym) · · · PX,Y (xn�1, ym) PX,Y (xn, ym)

Table 4.1: Visualization of joint PMF as a table of probability masses

From the joint PMF, we can obtain marginal PMFs for each random variable X, Y as follows: The
marginal PMF PX(x) is just the PMF of X, and can be obtained from the joint PMF PX,Y (x, y) as:

PX(x) =
X

y2RY

PX,Y (x, y).

Note we sum over all the possible values of the variable that we are trying to eliminate, Y . Similarly, the
the marginal PMF PY (y) is just the PMF of Y , obtained from the joint PMF as

PY (y) =
X

x2RX

PX,Y (x, y).

In terms of the array representation in Table 4.1, PX(x) is obtained by summing the elements of the column
corresponding to X = x, and PY (y) is obtained by summing the elements of the row corresponding to Y = y.

Example 4.2
Given the details of an experiment, we can compute the joint PMF of a pair of discrete random variables X,Y by using
the underlying probability measure P on the probability space (⌦, E ,P). Specifically,

PX,Y (x, y) = P[{! 2 ⌦ : X(!) = x, Y (!) = y}].

We illustrate this below.
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Let the experiment consist of rolling two six-sided dice: an outcome ! is an ordered pair of numbers (a, b), with
a, b 2 {1, 2, . . . , 6}. Each outcome in ⌦ is equally likely. We define the discrete random variables X,Y as follows:

X(!) =

(
1 if the sum of dice rolls is odd,

0 otherwise;
Y (!) =

(
1 if the product of dice rolls is odd,

0 otherwise.

The range of X,Y is RX,Y = {(0, 0), (0, 1), (1, 0), (1, 1)}. To compute the PMF, for each value (x, y) 2 RX,Y , we
compute the set of outcomes ! 2 ⌦ that map to that value, and compute the probability of that set. For instance,

{! 2 ⌦ : X(!) = 0, Y (!) = 0} = {(2, 2), (2, 4), (2, 6), (4, 2), (4, 4), (4, 6), (6, 2), (6, 4), (6, 6)}.

Thus,

PX,Y (0, 0) = P[{! 2 ⌦ : X(!) = 0, Y (!) = 0}] = 9
36

=
1
4
.

What about PX,Y (1, 1)? The set {! 2 ⌦ : X(!) = 1, Y (!) = 1} = ;, because no pair of dice outcome can have an odd
sum and an odd product! Thus, PX,Y (1, 1) = 0.

To complete the PMF, note that

{! 2 ⌦ : X(!) = 0, Y (!) = 1} = {(1, 1), (1, 3), (1, 5), (3, 1), (3, 3), (3, 5), (5, 1), (5, 3), (5, 5)},

so PX,Y (0, 1) = 1
4 also. Hence, by normalization, we must have PX,Y (1, 0) = 1

2 . We can verify this, as {! 2 ⌦ : X(!) =
1, Y (!) = 0} will have the remaining 18 outcomes.

X = linspace(0,6); Y = X;
P = [ 0 0 .1 .05 0; .05 0.05 0.2 0.1 0; 0 0.15 0.05 0.1 
0; 0 0.05 0.1 0 0; 0 0 0 0 0];
S1 = zeros(100,100);
for i = 1:5

for j = 1:5
mask1 = X >= i;
mask2 = Y >= j;
S1(mask1, mask2) = S1(mask1, mask2) + P(i,j);

end
end
mesh(X,Y,S1);

PMF

CDF

x
y

Figure 4.4: Figure for example 4.3.

Example 4.3
Consider a pair of random variables X,Y with joint PMF as illustrated in Figure 4.4, where the array representation of the
joint PMF is shown on the left. Compute the probability that (X,Y ) take values in the set B = {(x, y) : x 2 [1, 2], y 2
[2, 3]}. Also, compute the marginal PMF functions PX(x) and PX(y).

To compute P[{(x, y) 2 B}], we use the joint PMF and add the probability over the masses at the points in B:

P[{(x, y) 2 B}] = PX,Y (1, 2) + PX,Y (1, 3) + PX,Y (2, 2) + PX,Y (2, 3) = 0 +
2
20

+
1
20

+
4
20

=
7
20

.

For the marginal PMFs, we first compute the PMF of X:

PX(1) =
X

y2RY

PX,Y (1, y) = PX,Y (1, 3) + PX,Y (1, 4) =
2
20

+
1
20

=
3
20

PX(2) =
X

y2RY

PX,Y (2, y) =
1
20

+
1
20

+
4
20

+
2
20

=
8
20

PX(3) =
X

y2RY

PX,Y (3, y) =
3
20

+
1
20

+
2
20

=
6
20

PX(4) =
X

y2RY

PX,Y (4, y) =
1
20

+
2
20

=
3
20
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For the marginal PMF of Y , we compute:

PY (1) =
X

x2RX

PX,Y (x, 1) = PX,Y (2, 1) =
1
20

PY (2) =
X

x2RX

PX,Y (x, 2) = PX,Y (2, 2) + PX,Y (3, 2) + PX,Y (4, 2) =
5
20

PY (3) =
X

x2RX

PX,Y (x, 3) = PX,Y (1, 3) + PX,Y (2, 3) + PX,Y (3, 3) + PX,Y (4, 3) =
9
20

PY (4) =
X

x2RX

PX,Y (x, 4) = PX,Y (1, 4) + PX,Y (2, 4) + PX,Y (3, 4) =
5
20

4.3.2 Conditional PMF

For discrete random variables X in a probability space (⌦, E ,P), we defined the conditional probability mass
function of X given observation of an event B 2 E as

PX|B(x) =

8
<

:

P[{s : X(!) = x} \ B]

P[B]
, P[B] > 0

undefined otherwise.

When we have a pair of random variables X, Y , the set B can be defined in terms of the random variable
Y as B = {! 2 ⌦ : Y (!) = y}, which we write as an abbreviated {Y = y}. For this case, the following
relationships hold:

P[{X = x} \ B] = P[{X = x} \ {Y = y}] = PX,Y (x, y); P[B] = P[{Y = y}] = PY (y)

Thus, we define the conditional PMF that X = x given that Y = y is observed as

PX|Y (x|y) =

8
<

:

PX,Y (x, y)

PY (y)
, PY (y) > 0

undefined otherwise.

Note the following: if the numerator PX,Y (x, y) > 0 for some x, y, then PY (y) > 0 and PX(x) > 0 as
obtained by marginalization. Hence, the reason for the undefined clause in the above equation is to handle
the case when both numerator and denominator in the ratio are zero, in which case we don’t define that
conditional probability.

Similarly, we define the conditional PMF that Y = y given that X = x is observed as

PY |X(y|x) =

8
<

:

PX,Y (x, y)

PX(x)
, PX(x) > 0

undefined otherwise.

In essence, the conditional probability mass function is the ratio of the joint PMF to the marginal PMF of
the variable being observed. When both PX(x) > 0, PY (y) > 0, we can also represent the joint CMF as the
product of the conditional CMF and the marginal CMF, as

PX,Y (x, y) = PX|Y (x|y)PY (y) = PY |X(y|x)P (x).

We refer to this property as the Multiplication Rule.

The conditional PMF PX|Y (x|y) is a valid probability mass function on RX , and thus satisfies the
following basic properties of probability mass functions:

• Non-negativity: PX|Y (x|y) � 0 and PY |X(y|x) � 0 for all x 2 RX , y 2 RY .
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• Normalization:
X

x2RX

PX|Y (x|y) = 1 for any y 2 RY and
X

y2RY

PY |X(y|x) = 1 for any x 2 RX .

• Additivity: For any event B ⇢ RX , the probability that X falls in B given Y = y is

P[B|{Y = y}] =
X

x2B

PX|Y (x|y) for y 2 RY .

For any event B ⇢ RY , the probability that Y falls in B given X = x is

P[B|{X = x}] =
X

y2B

PY |X(y|x) for x 2 RX .

Example 4.4
Consider two random variables X,Y with the joint PMF function used in the previous example 4.3, illustrated in Figure
4.4. Compute PX|Y (x|y) for y = 2, y = 3. The table below has the joint PMF of X,Y for this example. To compute

Y \X 1 2 3 4

1 0 1
20 0 0

2 0 1
20

3
20

1
20

3 2
20

4
20

1
20

2
20

4 1
20

2
20

2
20 0

Table 4.2: Visualization of joint PMF as a table of probability masses

PX|Y (x|3), we restrict the the value of Y to the row Y = 3. We sum the probability masses in that row to get
PY (3) = 9

20 . We use these to rescale the values in that row to get:

PX|Y (1|3) = PX,Y (1, 3)
PY (3)

=
2
20
9
20

=
2
9

PX|Y (2|3) = PX,Y (2, 3)
PY (3)

=
4
20
9
20

=
4
9

PX|Y (3|3) = PX,Y (3, 3)
PY (3)

=
1
20
9
20

=
1
9

PX|Y (4|3) = PX,Y (4, 3)
PY (3)

=
2
20
9
20

=
2
9

Notice that PX|Y (x|3) is proportional to the row PX,Y (x, 3), rescaled by dividing by PY (3) so that
P

x2RX
PX|Y (x|3) =

1.

Similarly, PX|Y (x|2) is computed as follows: PY (2) =
P

x2RX
PX,Y (x, 2) = 5

20 . Then,

PX|Y (1|2) = PX,Y (1, 2)
PY (2)

=
0
5
20

= 0

PX|Y (2|2) = PX,Y (2, 2)
PY (2)

=
1
20
5
20

=
1
5

PX|Y (3|2) = PX,Y (3, 2)
PY (2)

=
3
20
5
20

=
3
5

PX|Y (4|2) = PX,Y (4, 2)
PY (2)

=
1
20
5
20

=
1
5

The techniques we developed for conditional probabilities can be extended for conditional PMF functions,
as follows. Let RY = {y1, y2, . . .} denote the discrete range of the random variable Y . Then, the events
{! 2 ⌦ : Y (!) = y1}, {! 2 ⌦ : Y (!) = y2}, . . . are mutually disjoint if y1 6= y2, because Y is a function, so
there is only one value of y associated with an outcome ! 2 ⌦. Furthermore, they are collectively exhaustive,
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because every ! 2 ⌦ must be mapped to some y 2 RY . Thus, we can derive a version of the Law of Total
Probability for pairs of discrete random variables X, Y , which is:

Law of Total Probability:

PX(x) =
X

y2RY

PX|Y (x|y)PY (y)

PY (y) =
X

x2RX

PY |X(y|x)PX(x) .

We can also develop a version of Bayes’ Rule for pairs of discrete random variables, as:

Bayes’ Rule:

PX|Y (x|y) =
PX,Y (x, y)

PY (y)
=

PY |X(y|x)PX(x)

PY (y)

=
PY |X(y|x)PX(x)P

x02RX
PY |X(y|x0)PX(x0)

Example 4.5
Consider an X-ray source that generates photons with a specified rate � photons per unit time. The emitted photons go
through a mask that absorbs each photon with probability p, independently for each photon. For instance, in computed
tomography machines, X-ray sources are typically modulated with masks to attenuate low-energy rays during X-ray imaging,
as they contribute little to the quality of the image and get absorbed in body tissues.

Assume we operate the X-ray source for a single unit of time. The number of photons emitted is represented as a
Poisson random variable with parameter �, denoted by N . That is,

P[{N = n}] ⌘ PN (n) =
�n

n!
e��, n = 0, 1, 2, . . .

We are interested in the number of photons that make it through the mask. That is a second random variable X. Note
that if we know that N = n, then we can characterize the type of random variable that X is: There are n independent
trials for photons to go through, and the success rate of each trial is (1�p). Thus, conditioned on N = n, X is a binomial
random variable with parameters n, (1� p). That is,

P[{X = k}|{N = n}] ⌘ PX|N (k|n) =
 
n
k

!
(1� p)kpn�k, k = 1, 2, . . . , n.

With these ideas, we can define the joint PMF of N,X as the product of a conditional probability and a marginal
probability, as

PN,X(n, x) = PX|N (x|n)PN (n) =

 
n
x

!
(1� p)xpn�x �

n

n!
e��.

The range of values for N,X require that X  N , so it is

RN,X =
�
(n, x) : n 2 {0, 1, 2, . . .}, x 2 {0, 1, . . . , n}

 

We can now perform computations that would be of interest, such as finding the
marginal probability of X, the number of photons that make it through the mask.
We get the marginal probability of X from the joint probability of N,X by marginal-
ization over the values of N . Notice that, for a particular value of X = x, we have
PN,X(n, x) = 0, n < x, as illustrated in the figure on the right.
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Thus, the marginal probability of X is computed as:

PX(x) =
1X

n=0

PN,X(n, x) =
1X

n=x

 
n
x

!
(1� p)xpn�x �

n

n!
e�� where the lower sum limit is x because of the range RN,X

=
1X

n=x

n!
x!(n� x)!

(1� p)xpn�x �
n

n!
e�� =

1X

n=x

�n

x!(n� x)!
(1� p)xpn�xe�� (cancel the n! terms)

=

�
�(1� p)

�x

x!
e��

1X

n0=0

(�p)n
0

(n0)!
(substitute n� x = n0)

=

�
�(1� p)

�x

x!
e��e�p =

�
�(1� p)

�x

x!
e��(1�p) (recognizing the sum is an exponential.)

Remarkably, we have just proven that the number of photons that make it through the mask is also a Poisson random
variable, with parameter �(1 � p), which is the product of the incoming photon intensity times the probability that each
photon makes it through. Thus, we know that the expected number of photons that make it through the mask is �(1�p),
and the variance of the number of photons that make it through the mask is also �(1� p).

The above result can be stated generally as: A Poisson random variable with intensity � that undergoes independent
sampling for each instance with probability p remains a Poisson random variable with a reduced intensity p(1 � �). This
result has many applications in engineering: For instance, consider a fork in a tra�c road, where cars randomly choose
with probability p to take the left fork and with probability (1� p) to take the right fork. If the number of arrivals to the
fork is modeled as a Poisson random variable with intensity �, the number of departures on the left fork will be a Poisson
random variable with intensity �p. Similarly, the number of departures on the right fork will be a Poisson random variable
with intensity �(1� p).

Many sensor systems that count particles using physical mechanisms are modeled similarly. For instance, Geiger
counters for radiation detection interact with ↵-particles, and detect each particle with a given probability. X-ray detector
panels use scintillating materials that interact with incoming X-ray photons, and convert each photon to electrons with a
given probability. If the arrival of particles is modeled as a Poisson random variable, the measured counts in these systems
will also be Poisson random variables, albeit with reduced intensity.

Example 4.6
Consider the model of the previous example 4.5 for the pair of random variables N,X. Assume we observe that X = 5.
What is the conditional probability distribution of N , given the information that X = 5?

To solve this, we apply Bayes’ Rule for discrete random variables, as PN|X(n|x) = PN,X(n, x)
PX(x)

.

Fortunately, we have expressions for all of these from the previous problem:

PN,X(n, x) =

 
n
x

!
(1� p)xpn�x �

n

n!
e��; PX(x) =

�
�(1� p)

�x

x!
e��(1�p) .

Hence, for observing X = x,

PN|X(n|x) = PN,X(n, x)
PX(x)

=

�
n
x

�
(1� p)xpn�x �n

n! e
��

�
�(1�p)

�
x

x! e��(1�p)

=
I{n�x}

n!
x!(n�x)! (1� p)xpn�x �n

n! e
��

�
�(1�p)

�
x

x! e��(1�p)

where the indicator function I{n�x} is 1 if the condition is true (n � x), and zero otherwise. Canceling the appropriate
factors in the numerator and denominator, we get

PN|X(n|x) =
I{n�x}

�n

(n�x)! (1� p)xpn�xe��

�
�(1� p)

�x
e��(1�p)

= I{n�x}
�n�x

(n� x)!
pn�xe��p

Substituting x = 5 above gives the desired conditional PMF for N .

We can recognize what type of conditional distribution is PN|X(n|x) by defining a derived random variable, conditioned
on knowing X = x, as N 0 = N � x. Note that

PN|X(n|x) = I{n�x}
(�p)n�x

(n� x)!
e��p = I{n0�0}

(�p)n
0

(n0)!
e��p = PN0|X(n0|x).
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Thus, conditioned on X = x, N has the PMF of the sum of x and a Poisson random variable with intensity �p. Notice
that the gap from X = x to N = n corresponds to absorbed photons, and the probability of absorption for each photon
is p. As discussed in example 4.5, the number of absorbed photons is a Poisson random variable with intensity �p. Using
this reasoning, we could have obtained the above answer directly with no computation.

4.4 Pairs of Continuous Random Variables

For discrete scalar random variables X, the PMF PX(x) described how probability mass accumulated in
discrete points in the real line <. In contrast, a continuous random variable X spreads its probability
over the real line < so that there is no probability mass at any point, but instead we have a probability
density function (PDF) fX(x), measured in probability per unit length, that describes how probability is
accumulated. Indeed, for a random variable X to be continuous, its cumulative distribution function (CDF)
FX(x) must be di↵erentiable almost everywhere, and

fX(x) =

(
d

dx
FX(x) if FX(x) is di↵erentiable at x,

arbitrary elsewhere.

We want to extend these concepts to bivariate random variables (X, Y ) defined on a common probability
space (⌦, E ,P). In the previous section, we saw how we defined discrete bivariate random variables, and
characterized their properties using the joint PMF function PX,Y (x, y). We define the concept of jointly
continuous bivariate random variables as follows.

Definition 4.2
A pair of random variables X,Y are said to be jointly continuous if their joint CDF FX,Y (x, y) is continuous, and
di↵erentiable almost everywhere, so that there exists a joint probability density function fX,Y (x, y) such that

FX,Y (x, y) =

Z x

�1

Z y

�1
fX,Y (x0, y0)d x0d y0 .

An implication of this definition is that there is no region B ⇢ <2 where the area of B is zero, and the
probability P[{! 2 ⌦ : (X(!), Y (!)) 2 B}] > 0. Thus, there are no points which have positive probability
masses, and there are no lines or curves with zero area that have positive probability of occurring.

4.4.1 Joint Probability Density Function

From the above definition, the joint probability density function (PDF) fX,Y (x, y) is computed as

fX,Y (x, y) =

(
@
2

@x @y
FX,Y (x, y)@x@y if FX,Y (x, y) is di↵erentiable at (x, y),

arbitrary otherwise.

The range RX,Y of a pair of continuous random variables is the set of all possible pairs of values,

RX,Y =
�
(x, y) : fX,Y (x, y) > 0

 
.

The joint PDF has some structural properties that we highlight below:

• fX,Y (x, y) � 0 for all (x, y) 2 <2. This follows from the fact that the joint CDF FX,Y (x, y) is monotone
non-decreasing, and thus has non-negative derivatives.

•
R1

�1
R1

�1 fX,Y (x0, y0)d x0d y0 = FX,Y (1, 1) = 1. That is, the total volume between the surface map
of fX,Y (x, y) and the x-y plane must be equal to 1.
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Being a density and not a probability, the joint PDF can take positive values greater than 1.

Figure 4.5 illustrates the joint PDF of a pair of jointly continuous
random variables X, Y . The top figure shows a small area �A around
a point (x, y). the probability that (X,Y ) take on values in �A is
approximately computed as

P[{(X, Y ) 2 �A}] ⇡ fX,Y (x, y)|�A|,

where |�A| is the area of the region �A. This is approximately the vol-
ume of a column over �A, with height fX,Y (x, y), that is, the volume
under the fX,Y graph that is above the area �A.
For any subset A 2 <2 with positive area, we compute the probability
that (X, Y ) take values in A using the joint PDF as

P[{(X,Y ) 2 A}] =

ZZ

A

fX,Y (x, y)d xd y.

x

y

fX,Y(x,y)

x

y

fX,Y(x,y)

DA

A

Figure 4.5: Illustration of joint PDF
used for computation of probabili-
ties.

Example 4.7
Consider a continuous random variable X defined on a probability space (⌦, E ,P). For a continuous function g : < ! <,
we define the random variable Y = g(X). Is the pair (X,Y ) a jointly continuous pair of random variables?

The answer is no. To make this discussion simpler, let g(x) = x, and define the region B = {(x, y) 2 < : x = y}.
Note that this region is a line in the x-y plane, and has no area: |B| = 0. However, it is clear that P[{(X,Y ) 2 B}] = 1,
so that there is probability mass for a set of zero area. Hence, the pair of random variables is not jointly continuous.

You can extend this argument for any continuous function g(·). Basically, the set B = {(x, y) 2 < : x = y} represents
a continuous line in the x-y plane which has zero area, and the probability that (X,Y ) take values in B is one. This
argument can also be extended to discontinuous functions g(·).

Example 4.8
Consider a pair of random variables (X,Y ) with joint PDF given by

fX,Y (x, y) =

(
1 0  x  1, 0  y  1,

0 otherwise.

Note that the plot of this joint PDF is a cube of height 1 over the rectangle of area 1, and hence this join PDF satisfies
the properties highlighted above: It is nonegative, and it integrates to 1, as the volume under the graph is 1.

What is the joint CDF of (X,Y )? By definition, this is FX,Y (x, y) =

Z x

�1

Z y

1
fX,Y (x, y)d xd y.

Note that this integral is zero as long as either x  0 or y  0, as
the integral takes place over a region where fX,Y (x, y) = 0. Further-
more, if x > 1 and y > 1, then FX,Y (x, y) = 1, because we inte-
grate over the entire region where fX,Y (x, y) > 0, namely the range
RX,Y . Elsewhere, we integrate to compute FX,Y (x, y). To make this
easier, lets rewrite the joint PDF of X,Y using indicator functions, as:
fX,Y (x, y) = 1I{x2[0,1]}I{y2[0,1]}. Then, for x > 0, y > 0, we have

FX,Y (x, y) =

Z x

�1

Z y

�1
I{x2[0,1]}I{y2[0,1]}d xd y

= (

Z x

0

I{x2[0,1]}d x)(

Z y

0

I{y2[0,1]}d y) = min(x, 1)min(y, 1).

Figure 4.6 shows a plot of the resulting CDF.

0

1

1

X

Y

0

1
1

X

Y

PDF

CDF

1

1

Figure 4.6: Joint CDF for Example 4.8.
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Putting all the equations together yields

FX,Y (x, y) =

(
min(x, 1)min(y, 1), x � 0, y � 0

�0 otherwise.

Example 4.9
Consider a pair of random variables (X,Y ) with joint PDF given by

fX,Y (x, y) =

(
2 0  x  y  1,

0 otherwise.

Compute the following probabilities: What is the probability that X + Y > 1?. What is the probability that (X � 0.5)2 +
(Y � 0.5)2 < 0.25?

A diagram is helpful to identify the sets involved in the answering the questions: First,
the range RX,Y is a triangle in the plane, with corners (0,0), (1,1), (0,1). This is
illustrated in Figure 4.7, which shows a plot of the joint PDF of (X,Y ) with the range
RX,Y outlined in the x-y plane. The intersection of the region {(x, y) : x + y � 1}
is highlighted in orange. Let A = {(x, y) : x + y � 1, 0  x  y  1} denote
that intersection region. The probability that X + Y > 1 is the probability that
(X,Y ) take values in A, which is computed from the join PDF as P[{(X,Y ) 2 A}] =RR

A
fX,Y (x, y)d xd y.

Fortunately, the joint probability density function is constant (= 2) in the region A, so
we can compute the integral using simple geometric ideas: The volume of the region
between the graph of the joint PDF and the area A is just the height times the area
of the triangular base. The height is 2, and the triangle is seen to have a base of 1,
height 0.5 so its area is 0.25. Hence, P[{(X,Y ) 2 A}] = 2⇥ 0.25 = 0.5.

Similarly, Let B = {(x, y) : (x � 0.5)2 + (y � 0.5)2 < 0.25} \ RX,Y . This area
is highlighted in Figure 4.8. Then the probability that (X � 0.5)2 + (Y � 0.5)2 <
0.25 is the probability that (X,Y ) takes values in B, which is P[{(X,Y ) 2 B}] =RR

B
fX,Y (x, y)d xd y. Reasoning as above, this is 2 times the area of B, which can

be recognized from Figure 4.8 to be a half circle with radius 0.5. Hence,

P[{(X,Y ) 2 B}] = 2⇥ (0.5⇡(0.5)2) =
⇡
4

.

x

y

2 1

10 x

y

2 1

10

x

y
2 1

1

Figure 4.7: Joint PDF for Ex-
ample 4.9. x

y

2 1

10 x

y

2 1

10

x

y
2 1

1

Figure 4.8: Joint PDF for Ex-
ample 4.9.

4.4.2 Marginal PDF

If X, Y are jointly continuous random variables, then X and Y are continuous random variables individually,
and have probability density functions fX(x) and fY (y), called the marginal probability density functions.
These can be computed from the joint CDF of (X, Y ), by computing the marginal CDFs of X, Y and
di↵erentiating to obtain the marginal pdfs:

FX(x) = FX,Y (x, 1) =

Z
x

�1

Z 1

�1
fX,Y (x0, y)d ydx0

fX(x) =
d

dx
FX(x) =

Z 1

�1
fX,Y (x, y)dy

FY (y) = FX,Y (1, y) =

Z
y

�1

Z 1

�1
fX,Y (x, y0)d xdy0

fY (y) =
d

dy
FY (y) =

Z 1

�1
fX,Y (x0, y)d x0 .

Alternatively, we obtain the marginal PDF of X at X = x directly from the joint PDF by integrating
the joint PDF over all values y such that (x, y) 2 RX,Y . The result is still a density, not a probability.
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Example 4.10
Let X,Y be jointly continuous random variables with PDF given by fX,Y (x, y) =

(
c(1� x� y) 0  x  (1� y)  1

0 otherwise,

where c is a constant that needs to be determined so that
R1
�1 fX,Y (x, y)d xd y = 1. Find the value of c, and then the

marginal PDF fX(x). Also, compute the probability that X < Y .

To begin with, it is always useful to visualize the range RX,Y where the joint PDF is
non-zero. In this case, it is a triangle defined by the inequalities 0  x  (1� y)  1.
Figure 4.9 shows this area, a triangle defined by the three inequalities x � 0, y �
0, x + y  1. This will help us evaluate the limits of integration for computing the
marginal densities or the constant of integration. Let’s compute c first. We can do
this with geometry if we visualize the graph of the joint PDF as a pyramid, as shown
in Figure 4.10 because the joint PDF is a linear function of x, y. Since we know the
volume of a pyramid is (1/3)⇥ base area ⇥ height, and the height is c, the volume
under the joint PDF is

ZZ

RX,Y

fX,Y (x, y)dxdy =
1
3
⇥ 1

2
⇥ c =

c
6
= 1,

which implies that c = 6.

Alternatively, we compute this more generally from the double integral directly. Using
the diagrams of Figures 4.9 and 4.10 to set the limits of integration, we obtain:

ZZ

RX,Y

fX,Y (x, y)dxdy =

Z 1

0

✓Z 1�x

0

c(1� x� y) dy

◆
dx

=

Z 1

0

c(1� x)2

2
dx =

c
6

and we get the same answer, c = 6.

x

y
1 Line x + y = 1

Figure 4.9: Range RX,Y .

x

y
1

1a

b

1– a

c = 6, as obtained earlier

x

y1

1

c

(x, 1–x)
x

1–x

Figure 4.10: Joint PDF.

To compute the marginal fX(x), we integrate the joint PDF over the range of possible values of Y with nonzero joint
PDF for a given value X = x. Using the diagram of Figure 4.9 to set limits, we see that the range of values of Y for a
given X = x is y 2 [0, 1� x]. Thus,

fX(x) =

Z 1

�1
fX,Y (x, y)dy =

(R 1�x

0
6(1� x� y)dy = 3(1� x)2 x 2 [0, 1]

0 otherwise.

Note that
R1
�1 fX(x)dx = 1, which is the normalization property of PDFs. By symmetry, we also get that the marginal

PDF of Y is fY (y) =

(
3(1� y)2 y 2 [0, 1]

0 otherwise.

Finally, we compute the probability that X  Y . If we are really clever, we see that the line X = Y bisects RX,Y

into two equal regions, so the volume under the joint PDF in the region {(x, y) : (x, y) 2 RX,Y , x  y} is exactly 1/2.
However, let’s avoid cleverness and compute this as an integral, as one would have to do in a more general setting. The
key is to visualize the region, and set the right limits for the integrals. We note that the maximum value for X such that
X  Y is 1/2, and that, for each value X = x, the region of values of y that we are interested is y 2 [x, 1� x]. Then,

P[{X  Y }] =
Z 1/2

0

(

Z 1�x

x

6(1� x� y)dy)dx =

Z 1/2

0

3
2
(1� 2x)2dx =

1
2
.

Example 4.11
Consider a pair of continuous random variables X,Y , uniformly distributed on
the unit disk with radius 1, centered at (0,0). Thus, the joint PDF of X,Y is
given by

fX,Y =

(
1
⇡ 0  x2 + y2  1,

0 otherwise.

The joint PDF of X,Y is illustrated in Figure 4.11.
For this problem, we want to compute E[X],E[Y ]. We also want to compute
the marginal PDFs fX(x), fY (y). Note that, by symmetry of the density, both
E[X] = 0,E[Y ] = 0.

y

x

radius = 1
area = π

Figure 4.11: Example 4.11.
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To compute the marginal density, it is useful to examine the range RX,Y illustrated in Fig. 4.11. For a given value of x,
the values of y range from �

p
1� x2 to

p
1� x2. Then, the marginal density fX(x) is computed as:

fX(x) =

Z 1

�1
fX,Y (x, y) dy =

Z p
1�x2

�
p

1�x2

1
⇡
dy =

2
p
1� x2

⇡
.

By symmetry, it is clear that

fY (y) =
2
p

1� xy2

⇡
.

Example 4.12
Consider joint continuous random variables X,Y with join PDF fX,Y (x, y) =

(
e�x 0  y  x  1
0 otherwise

.

Compute the marginal PDFs for X,Y , and compute the probability that X + Y  c for a constant c � 0.

It is useful to visualize the region RX,Y where the joint PDF is positive. This is an infinite triangle in the x-y plane,
with origin at (0,0), bounded by the x-axis and the line x = y. Using this to compute limits, we see that, for a fixed x,
the range of possible values of y is from 0 to x; for a fixed y, the range of possible x is from y to 1. Thus,

fX(x) =

Z 1

�1
fX,Y (x, y)dy =

(R x

0
e�xdy = xe�x x � 0

0 otherwise.

fY (y) =

Z 1

�1
fX,Y (x, y)dx =

(R1
y

e�xdx = e�y y � 0

0 otherwise.

To compute the probability that X + Y  c, for c � 0, visualize the area in the x-y plane where (x, y)  c and
(x, y) 2 RX,Y : This is a triangular area, where y 2 [0, c/2], and x 2 [y, c� y]. Denote this area as B. This helps set the
limits for the integrals to compute the probability as:

P[{X + Y  c}] =
ZZ

B

fX,Y (x, y)dxdy =

Z c/2

0

(

Z c�y

y

e�xdx)dy

=

Z c/2

0

(e�y � ey�c)dy = 1� e�c/2 � e�c/2 + e�c = (1� e�c/2)2.

This last computation is useful if we wanted to define a derived random variable Z = X + Y . We have just computed

FZ(z) = P[{Z  z}] = P[{X + Y  z}] =
(
(1� e�z/2)2 z � 0,

0 otherwise.

From this, we can compute the PDF of Z as

fZ(z) =
d
dz

FZ(z) =

(
(1� e�z/2)e�z/2 z � 0,

0 otherwise.

This is a useful technique for computing the PDFs of derived random variables: Compute the CDF first, then di↵erentiate
to get the PDF.

4.4.3 Conditional PDF

We want to extend the concept of conditional probability to jointly continuous random variables. Let X, Y be
jointly continuous random variables, and define the set A = {(X, Y ) 2 B} for some B ⇢ RX,Y . Conditioned
on observing that A has occurred, we define the conditional CDF of X, Y given A using the definition of
conditional probability for events, as
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FX,Y |A(x, y|A) =

(P[{Xx,Y y}\A]
P[A] , P[A] > 0

undefined P[A] = 0 .

=

8
><

>:

RR

(�1,x]⇥(�1,y]\B

fX,Y (x,y)dxdy

RR

B

fX,Y (x,y)dxdy
P[A] > 0

undefined P[A] = 0 .

That is, we restrict the probability to values (x, y) 2 B, and rescale the probability so that it satisfies the
normalization properties. From this, we can obtain the conditional density as

fX,Y |A(x, y|A) =
@

@x

@

@y
FX,Y |A(x, y|A).

This yields the result:

fX,Y |A(x, y|A) =

8
><

>:

f(x,y)
P[A] , (x, y) 2 A,P[A] > 0

0, (x, y) /2 A,P[A] > 0

undefined P[A] = 0 .

which has the same interpretation we saw previously: we restrict the range of the conditional density to
values in the observed set A, and we rescale the conditional density to satisfy the normalization property.

We are also interested in the conditional probability of X given observations of values of Y . Consider
first observing the event A = {Y  y}. From the definition of conditional probability for events,

FX|A(x|A) =
P[{X  x} \ A]

P[A]
=

R
x

�1
R

y

�1 fX,Y (x0, y0)dx0dy0

FY (y)
.

for all y such that FY (y) > 0. From this conditional CDF, we compute the conditional PDF of X given A,
as

fX|A(x|A) =
d

dx
FX|A(x|A) =

R
y

�1 fX,Y (x, y0)dy0

FY (y)
.

Example 4.13
Let X,Y be jointly continuous random variables with joint PDF fX,Y (x, y) =

(
2 0  x  y  1

0 otherwise.
. Let A = {Y  0.5}.

Compute the conditional density of X given that A is observed.

Note that RX,Y , the range where the joint PDF is positive, is a triangle formed by
the lines x = 0, x = y, y = 1, which helps us identify the limits of integration. This is
shown in Figure 4.12. Proceeding as above,

P[A] = FY (0.5) =

Z 0

0

.5(

Z y

0

2dx)dy = 0.25 (2 times the area of orange triangle)

fX|A(x|A) =

R 0.5

�1 fX,Y (x, y0)dy0

FY (0.5)
=

( R 0.5
x

2dy

0.25 = 4� 2x x 2 (0, 0.5)

0 otherwise.

x

4

1/2

| ( | )X Af Ax

x

4

1/2

| ( | )X Af Ax

x

y

1

1

1/2

x
x

A

1/2

Figure 4.12: Range RX,Y .

What if we observe the event A = {Y = y}? In this case, P[A] = 0, so we cannot apply the definitions of
conditional probability for events. We will use a limiting argument to define a conditional PDF of X given
observation of the event {Y = y}, as follows.

Define the event B = {Y 2 (y, y + �]} for some � > 0. Then, P[B] = FY (y + �) � FY (y). Assume we
select y so that P[B] > 0; that is, we select y in the interior of RY . Then, we define the conditional CDF
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and PDF of X as:

FX|B(x|B) =
P[{X  x} \ B]

P[B]
=

R
x

�1
R

y+�
y

fX,Y (x0, y0)dx0dy0

FY (y + �) � FY (y)
.

From this conditional CDF,we get the density by di↵erentiation:

fX|B(x|B) =
d

dx
FX|B(x|B) =

R
y+�
y

fX,Y (x, y0)dy0

R
y+�
y

fY (y0)dy0
.

If we take limits as � ! 0 in the above expression, both the numerator and denominator go to zero.
However, using L’Hopital’s rule, we can compute the limit as:

lim
�!0

R
y+�
y

fX,Y (x, y0)dy0

R
y+�
y

fY (y0)dy0
= lim

�!0

d

d�

R
y+�
y

fX,Y (x, y0)dy0

d

d�

R
y+�
y

fY (y0)dy0
=

fX,Y (x, y)

fY (y)
,

as long as fY (y) > 0. This allows us to define the conditional PDF of X when Y = y as this limit:

Definition 4.3
Given two jointly continuous random variables X,Y , the conditional PDF of X given that Y = y is given by

fX|Y (x|y) =
(

fX,Y (x,y)

fY (y) fY (y) > 0

undefined otherwise.

Similarly, the conditional PDF of Y given X = x is defined as

fY |X(y|x) =

(
fX,Y (x,y)

fX(x) fX(x) > 0

undefined otherwise.

The conditional PDF of X given Y = y is a probability density for the continuous random variable X,
and thus satisfies the following basic properties of probability densities:

• Non-negativity: fX|Y (x|y) � 0 and fY |X(y|x) � 0 for all x and y where fX(x) > 0, fY (y) > 0.

• Normalization:

Z 1

�1
fX|Y (x|y) dx = 1 for any y such that fY (y) > 0, and

Z 1

�1
fY |X(y|x) dy = 1 for

any x such that fX(x) > 0.

• Additivity: For any event B ⇢ RX , the probability that X takes values in B given Y = y is

P[{X 2 B}|{Y = y}] =

Z

B

fX|Y (x|y) dy.

For any event C ⇢ RY , the probability that Y takes values in C given X = x is

P[{Y 2 C}|{X = x}] =

Z

C

fY |X(y|x) dx.

The techniques we developed for conditional probabilities also apply to conditional PDFs:

• Multiplication Rule: fX,Y (x, y) = fX|Y (x|y)fY (y) = fY |X(y|x)fX(x).

• Law of Total Probability:

fX(x) =

Z 1

�1
fX,Y (x, y)dy =

Z 1

�1
fX|Y (x|y)fY (y)dy

fY (y) =

Z 1

�1
fY |X(y|x) fX(x) dx
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• Bayes’ Rule:

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

fY |X(y|x)fX(x)

fY (y)

fY |X(y|x) =
fX|Y (x|y)fY (y)

fX(x)
.

Example 4.14
Consider two jointly continuous random variables X,Y , with joint PDF given by

fX,Y (x, y) =

(
6(1� x� y) 0  x  1� y  1

0 otherwise.

This is the same joint PDF considered in Example 4.10, illustrated in Figures 4.9 and 4.10. Let ↵ 2 (0, 1). Compute
fX|Y (x|↵).

Note that in Example 4.10, we computed the marginal PDF of Y as fY (y) =

(
3(1� y)2 y 2 [0, 1]

0 otherwise.

From the definition of conditional PDF, we have

fX|Y (x|y) =
(

fX,Y (x,y)

fY (y) if fY (y) > 0,

undefined elsewhere.

We need to be careful to account for limits in substituting in the numerator. Note that, if Y = ↵, then fX,Y (x,↵) = 0
if x > 1� ↵. Thus,

fX|Y (x|↵) =

8
><

>:

6(1�x�↵)
3(1�↵)2

= 2 (1�x�↵)
(1�↵)2

if ↵ 2 (0, 1), x 2 (0, 1� ↵),

0 if ↵ 2 (0, 1), x /2 (0, 1� ↵),

undefined ↵ /2 (0, 1).

4.5 Conditional Probability and Expectation

Given two discrete random variables X, Y , we have defined the conditional probability mass function
PX|Y (x|y) as the probability that X = x given that we have observed the event Y = y. Using this conditional
PMF, we define the conditional expected value of a function g(X) given Y = y as

E[g(X)|Y = y] =
X

x2RX

g(x)PX|Y (x|y).

Note that this expected value is a function of y, as we are averaging g(X) over the conditional PMF of
X given Y = y. Denote h(y) = E[g(X)|Y = y]. Then, we can compute the expected value of h(Y ) over the
PMF of Y , as

E[h(Y )] =
X

y2RY

h(y)PY (y).

Let’s combine the last two equations, to get:

E[h(Y )] = E[E[g(X)|Y ]] =
X

y2RY

E[g(X)|Y = y]PY (y)

=
X

y2RY

X

x2RX

g(x)PX|Y (x|y)PY (y)

=
X

y2RY

X

x2RX

g(x)PX,Y (x, y)

= E[g(X)]



108 CHAPTER 4. PAIRS OF RANDOM VARIABLES

This last result is known as the smoothing property of conditional expectations. Basically, E
⇥
E[g(X)|Y ]

⇤
=

E[g(X)]. In particular, this is true for the function g(X) = X, so that E
⇥
E[X|Y ]

⇤
= E[X].

We can obtain a similar result for jointly continuous random variables X, Y . Given a function g(x) we
compute the conditional expected value of g(X) given Y = y using the conditional PDF of X given Y = y
as

E[g(X)|Y = y] =

Z 1

�1
g(x)fX|Y (x|y) dx.

Note that this will be a function of y, which we denote as h(y). Proceeding as before,

E[h(Y )] = E[E[g(X)|Y ]] =

Z 1

�1
E[g(X)|Y = y]fY (y) dy

=

Z 1

�1
(

Z 1

�1
g(x)fX|Y (x|y) dx)fY (y) dy

=

Z 1

�1

Z 1

�1
g(x)fX|Y (x|y)fY (y) dx dy.

=

Z 1

�1

Z 1

�1
fX,Y (x, y) dx dy. = E[g(X)]

which shows the smoothing property of conditional expectations also holds for jointly continuous random
variables.

Example 4.15
Let X be a continuous random variable, uniformly selected in (0, 1). Hence, fX(x) =

(
1 x 2 (0, 1)

0 otherwise.

Given that X = x, select Y to be a uniform random variable on [0, x]. That is,

fY |X(y|x) =
(

1
x y 2 [0, x]

.0 otherwise.

Combining these two densities, we have

fX,Y (x, y) = fY |X(y|x)fX(x) =

(
1
x 0  y  x  1

0 otherwise.

Compute E[X|Y = y], and Var[X|Y = y].

We first compute the marginal density of y, given by

fY (y) =

Z 1

y

1
x
dx = � ln(y).

Note that this integrates to 1 for y 2 [0, 1], as a density should. To compute the conditional density of X given Y = y, we
need to compute the conditional density fX|Y (x|y), which we do using Bayes’ Rule and the Law of Total Probability as

fX|Y (x|y) =
fY |X(y|x)fX(x)

fY (y)
=

1
x

fY (y)
, 0  y  x  1

=
1
x

� ln(y)
=

�1
x ln(y)

, 0  y  x  1

Note how the limits of integration were evaluated for computing fY (y), as we know that x 2 [y, 1]. Using this
conditional density, we get

E[X|Y = y] =

Z 1

�1
xfX|Y (x|y) dx =

Z 1

y

x
�1

x ln(y)
dx =

y � 1
ln(y)

, y 2 (0, 1)

Let’s now compute E[X] as:

E[X] = E
⇥
E[X|Y = y]

⇤
=

Z 1

0

y � 1
ln(y)

fY (y) dy =

Z 1

0

y � 1
ln(y)

(� ln(y)) dy =

Z 1

0

(1� y) dy =
1
2
.



4.6. INDEPENDENCE OF PAIRS OF RANDOM VARIABLES 109

which is exactly what it should be, as X was a uniform random variable on [0, 1].

To compute the conditional variance of X given Y = y, we compute first E[X2|Y = y]:

E[X2|Y = y] =

Z 1

0

x2 �1
x ln(y)

dx =
�1
ln(y)

Z 1

0

x dx

=
�1

2 ln(y)

Var[X|Y = y] = E[X2|Y = y]�
⇣
E[X|Y = y]

⌘2
=

�1
2 ln(y)

� (1� y)2

(ln(y))2

4.6 Independence of Pairs of Random Variables

In a probability space (⌦, E ,P), two events A, B 2 E are called independent if P[A \ B] = P[A]P[B]. For
pairs of random variables X, Y , the concept of independence is stronger: we want events of the type
A = {X 2 C ⇢ RX} and B = {Y 2 D ⇢ RY } to be independent for any choice of C ⇢ RX , D ⇢ RY .
Fortunately, there is a simple way to check for independence without checking all such pairs of events.
If the sets C = (�1, x], and D = (1, y], then P[{X 2 C} \ {Y 2 D}] = FX,Y (x, y). Furthermore,
P[{X 2 C}] = FX(x) and P[{Y 2 D}] = FY (y). Thus, independence requires that FX,Y (x, y) = FX(x)FY (y)
for all (x, y) 2 <2. It turns out that this condition is also su�cient to guarantee that P[{X 2 C} \ {Y 2
D}] = P[{X 2 X}]P[{Y 2 D}] for any sets C and D defined by unions and intersections of intervals (Borel
sets), because all those probabilities can be computed from the joint and marginal CDFs.

Definition 4.4
A pair of random variables X and Y are independent if and only if FX,Y (x, y) = FX(x)FY (y).

For pairs of discrete random variables, the above condition leads to a characterization of independence
in terms of the probability mass functions, as follows:

Lemma 4.1
A pair of discrete random variables X,Y are independent if and only if PX,Y (x, y) = PX(x)PY (y).

Proof: To show the if part, assume PX,Y (x, y) = P (x)P (y). Note this means RX,Y = RX ⇥ RY , because
PX,Y (x, y) > 0 implies both PX(x) and PY (y) are positive. Then,

FX,Y (x, y) =
X

(xi,yj)2RX,Y

xix,yjy

P (xi)P (yj) =
X

xi2RX

xix

X

yj2RY

yjy

P (xi)P (yj)

=
X

xi2RX

xix

P (xi)
X

yj2RY

yjy

P (yj) = FX(x)FY (y)

and hence the random variables X, Y are independent.

To show the only if part, assume X, Y are independent, so FX,Y (x, y) = FX(x)FY (y). Again, this implies
RX,y = RX ⇥ Ry, because FX,Y (x, y) must change values everywhere FX(x) changes value and FY (y)
changes value. Let (x, y) be a point in RX,Y . Since RX , RY are discrete sets, there is an ✏ > 0 such that
FX(x) � FX(x � ✏) = PX(x) and FY (y) � F (y � ✏) = PY (y). We want to compute P[{X 2 (x � ✏, x]} \ {Y 2
(y � ✏, x]} = PX,Y (x, y). In Example 4.1 we showed that

P[{X 2 (x � ✏, x]} \ {Y 2 (y � ✏, x]}] = FX,Y (x, y) � FX,Y (x � ✏, y) � FX,Y (x, y � ✏) + FX,Y (x � ✏, y � ✏)
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Since X,Y are independent, this means

PX,Y (x, y) = FX(x)FY (y) � FX(x � ✏)FY (y) � FX(x)FY (y � ✏) + FX(x � ✏)FY (y � ✏)

= (FX(x) � FX(x � ✏))FY (y) � (FX(x) � FX(x � ✏))FY (y � ✏)

= PX(x)FY (y) � P (x)FY (y � ✏) = PX(x)(FY (y) � FY (y � ✏))

= PX(x)PY (y)

For pairs of continuous random variables, we have a similar equivalent condition in terms of probability
density functions:

Lemma 4.2
A pair of jointly continuous random variables X,Y are independent if and only if fX,Y (x, y) = fX(x)fY (y).

proof: The if direction is easy to prove, because

FX,Y (x, y) =

Z
x

�1

Z
y

�1
fX,Y (x0, y0)dy0dx0 =

Z
x

�1

Z
y

�1
fX,Y (x0, y0)dy0dx0 =

Z
x

�1

Z
y

�1
fX(x0)fY (y0)dy0dx0

= (

Z
x

�1
fX(x0)dx0)(

Z
y

�1
fY (y)dy0)) = FX(x)FY (y)

and hence, X and Y are independent.

To show the only if direction, let X, Y be independent. Then, FX,Y (x, y) = FX(x)Fy(y). Then,

fX,Y (x, y) =
@

@x

@

@y
FX,Y (x, y) =

@

@x

@

@y
FX(x)Fy(y)

= (
@

@x
FX(x))(

@

@y
FY (y)) = fX(x)fY (y),

establishing the result.

Independence is one of the most important properties used in modeling experiments with multiple random
variables. By assuming independence, we can describe the two-dimensional joint PDF as a product of two
one-dimensional PDFs.

Independence between a pair of random variables has implications on the conditional probability. For
a pair of discrete random variables X, Y , we know that the conditional probability mass function of X
given observations that Y = y satisfies the following relationship: PX,Y (x, y) = PX|Y (x|y)PY (y).. If X, Y
are independent, then PX,Y (x, y) = PX(x)PY (y). This means that, for independent X,Y , the conditional
probability mass function is equal to the marginal, unconditional probability mass function:

PX|Y (x|y) = PX(x) for all y 2 RY .

A similar result applies to jointly continuous random variables X,Y that are independent. For jointly con-
tinuous X, Y , we know fX,Y (x, y) = fX|Y (x|y)fY (y). If X, Y are independent, then fX,Y (x, y) = fX(x)fY (y).
Thus, for jointly continuous, independent X, Y , we have

fX|Y (x|y) = fX(x) for all y 2 RY .

Independence between pairs of random variables is often a property that is assumed. To prove that a
pair of random variables are independent, one would have to verify the factorization property PX,Y (x, y) =
PX(x)PY (y) or fX,Y (x, y) = fX(x)fY (y) for all values (x, y). In some cases, we can recognize that X, Y are
dependent simply by looking at the range sets RX , RY , RX,Y . Specifically, if X,Y are independent random
variables, then RX,Y = RX ⇥ RY . For discrete random variables, this is because PX,Y (x, y) > 0 only if both
PX(x), PY (y) > 0. Thus, to recognize two discrete random variables X, Y are dependent, we simply need
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to find a pair (x, y) where PX,Y (x, y) = 0, but PX(x) > 0, PY (y) > 0. We can recognize this by finding a
zero entry in the table representation of the joint PMF, where neither the entire row nor the entire column
containing that entry is zero.

For jointly continuous, independent random variables X,Y , RX,Y = RX⇥RY follows because fX,Y (x, y) >
0 only if both fX(x), fY (y) > 0. Thus, to recognize that two random variables are dependent, we simply
need to find a pair (x, y) 2 <2 where fX,Y (x, y) = 0, but fX(x) > 0, fY (y) > 0. We can recognize this by
finding a point (x0, y0) 2 <2 where fX,Y (x0, y0) = 0, but either the line x = x0 or the line y = y0 intersect
RX,Y . Thus, for jointly continuous, independent random variables, the range RX,Y must be of rectangular
type with boundaries parallel to the edges.

Note that showing RX,Y = RX ⇥ RY is insu�cient to show independence of X, Y . It is a necessary
condition, so if it is not satisfied, then the random variables are not independent.

Example 4.16
Consider two discrete random variables X,Y with the joint PMF function used in examples 4.3 and 4.4, which is shown
in the table below. We can quickly see that X,Y are not independent, as PX,Y (4, 4) = 0, but the row corresponding to

Y \X 1 2 3 4

1 0 1
20 0 0

2 0 1
20

3
20

1
20

3 2
20

4
20

1
20

2
20

4 1
20

2
20

2
20 0

Y = 4 and the column corresponding to X = 4 are not identically zero. We could have picked several other zero entries
to verify that X,Y are not independent.

x

y
1

1

1

1
a) b)

x

y

x
c)

Figure 4.13: Figure for example 4.17.

Example 4.17
Assume X,Y are jointly continuous random variables with range RX,Y as one of the three ranges depicted in Figure 4.13.
For which one of the three ranges can X,Y be independent random variables?

Consider the range on the left. We can select a point (x, y) /2 RX,Y , such as (0.6, 0.6), where fX,Y (x, y) = 0.
However, fX(0.6) > 0, and fY (0.6) > 0, because the line x = 0.6 intersects the range RX,Y with a non-zero length,
and the line y = 0.6 intersects the range RX,Y also with a non-zero length. Therefore, X and Y cannot be independent
random variables.

Consider next the range in the center. Again, we can select a point (x, y) = (0.3, 0.3) /2 RX,Y so that the vertical
and horizontal lines through this point intersect RX,Y with non-zero length. This implies that fX,Y (0.3, 0.3) = 0 while
fX(0.3) > 0, fY (0.3) > 0, so X,Y cannot be independent.

On the other hand, if the rangeRX,Y is as depicted in the figure on the right, then we cannot find a point (x0, y0) /2 RX,Y

where both the vertical line x = x0 and the horizontal line y = y0 have positive length intersection with RX,Y . In this
case, it is possible that X,Y are independent. To show independence, we need to verify that, for all (x, y) 2 RX,Y , we
have fX,Y (x, y) = fX(x)fY (y).
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4.7 Expected Value of a Function of Two Random Variables

In the previous section, we have developed the concept of joint probability mass functions, and joint probabil-
ity density functions, to characterize the properties of pairs of random variables X, Y on a probability space
(⌦, E ,P). Consider now a function g : <2 ! <. This function defines a new random variable W = g(X,Y ).
We can compute the expected value, or mean of W , using the joint PMF or the joint PDF of X, Y , as
follows:

Discrete: E[W ] =
X

x2RX

X

y2RY

g(x, y)PX,Y (x, y)

Continuous: E[W ] =

Z 1

�1

Z 1

�1
g(x, y)fX,Y (x, y) dx dy

In either case, note that the expectation operation is a linear operation: For any functions g1(x, y), g2(x, y),
and constants a1, a2,

E
⇥
a1g1(X, Y ) + a2g2(X,Y )

⇤
= a1E[g1(X,Y )] + +a2E[gn(X, Y )],

This is because the expectation operation is based on summation and integration, both of which are linear
operations. That is, for discrete random variables X, Y ,

E
⇥
a1g1(X, Y ) + a2g2(X, Y )

⇤
=

X

x2RX

X

y2RY

�
a1g1(x, y) + a2g2(x, y)

�
PX,Y (x, y)

=
X

x2RX

X

y2RY

a1g1(x, y)PX,Y (x, y) +
X

x2RX

X

y2RY

a2g2(x, y)PX,Y (x, y)

= a1

X

x2RX

X

y2RY

g1(x, y)PX,Y (x, y) + a2

X

x2RX

X

y2RY

g2(x, y)PX,Y (x, y)

= a1E
⇥
g1(X, Y )

⇤
+ a2E

⇥
g2(X, Y )

⇤

A similar argument shows the result for jointly continuous random variables using integrals instead of sums.

A useful special case is when the function g(x, y) is an a�ne function, so that g(x, y) = ax + by + c for
some constants a, b, c. In this case,

E[aX + bY + c] = E[aX] + E[bY ] + E[c] = aE[X] + bE[Y ] + c

Note that this is true regardless of whether X, Y are independent or not. It is strictly a consequence of the
linearity of the expectation operator E[·].

However, if X, Y were independent, and g(x, y) = f1(x)f2(y) so that it can be written as a separable
product of two functions, we have an interesting decomposition. Assume that X, Y were jointly continuous
random variables with joint PDF fX,Y (x, y). Then,

E[g(X,Y )] =

Z 1

�1

Z 1

�1
g(x, y)fX,Y (x, y) dx dy =

Z 1

�1

Z 1

�1
f1(x)f2(y)fX,Y (x, y) dx dy

=

Z 1

�1

Z 1

�1
f1(x)f2(y)fX(x)fY (y) dx dy because X, Y are independent,

=

✓Z 1

�1
f1(x)fX(x) dx

◆✓Z 1

�1
f2(y)fY (y) dy

◆

= E[f1(X)]E[f2(X)]
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The smoothing property of conditional expectation continues to apply to functions g(X, Y ). We show
this for jointly continuous X, Y below, as

E[g(X, Y )] =

Z 1

�1

Z 1

�1
g(x, y)fX,Y (x, y) dx dy =

Z 1

�1

Z 1

�1
g(x, y)fX|Y (x, y)fY (y) dx dy

=

Z 1

�1
(

Z 1

�1
g(x, y)fX|Y (x, y) dx)fY (y) dy

=

Z 1

�1
E[g(X, y)|Y = y])fY (y) dy = E

⇥
E[g(X, Y )|Y ]

⇤

The above results allow us to compute the expected value of a random variable W that is derived from
X, Y by a function W = g(X, Y ).

Example 4.18
Assume that the number of people in line at the bank when you arrive is N , where N is random, having a Poisson
distribution with parameter ↵. The time T that it takes to serve each person ahead of you can be described by an
exponential distribution with parameter �, and is independent of N . The time to serve each person is thee same. How
long do you expect to wait before someone starts to serve you?

Let W be the time you will wait. W is a function of N , T , as W = NT.

Since N,T are independent, E[W ] = E[T ]E[N ] = alpha
� .

4.7.1 Transformation of pairs of random variables

In some cases we want to compute the full probability mass function or probability density function of W ,
depending on whether W is discrete or continuous. If W is discrete with range RW , then for each wi 2 RW ,
we can define the inverse image of w as the set g�1(w) = Aw = {(x, y) 2 RX,Y : g(x, y) = w}. As long as
the function g is well-behaved, we compute the probability mass function of W as:

PW (w) = P[{! : (X(!), Y (!)) 2 Aw}] =
X

(x,y)2Aw

FX,Y (x, y).

Thus, we can readily derive the probability mass function of W from the joint probability mass function of
X, Y , as long as we can readily compute the inverse image g�1(w).

If X, Y are jointly continuous, and the map W = g(X,Y ) results in a continuous random variable W , the
above approach is limited because the probability that W takes on a particular value is zero. In this case,we
can instead compute the cumulative distribution function FW (w). Let Bw = {(x, y) 2 RX,Y : g(x, y)  w}
be the region in RX,Y that maps into values g(x, y)  w. In this case, the CDF FW (w) can be computed as

FW (w) =

ZZ

(x,y)2Bw

fX,Y (x, y) dx dy.

From the CDF, we can get the PDF of W by di↵erentiation, as fW (w) = d

dw
FW (w).

The above equations were derived for general functions g(x, y), and require solving for the inverse maps
of a region of values Bw when W is continuous W or Aw for discrete W . This can be challenging for
complicated functions g(x, y). However, there are cases of functions g(x, y) where these inverse maps are
straightforward to compute. For instance, let g(x, y) = ax + by + c be a linear function, where a, b 6= 0.
Then, the line ax + by + c = w divides the x-y plane into two half planes, one of which is Bw. In particular,
let’s consider W = X + Y .



114 CHAPTER 4. PAIRS OF RANDOM VARIABLES

In this case, for discrete X, Y , the set Aw = {(x, y) 2 <2 : x + y = w} =
{(x, w � x) : x 2 <}. Therefore, the PMF of W can be computed as

PW (w) =
X

x2<
PX,Y (x, w � x) =

X

x2RX

PX,Y (x, w � x),

where the second equality follows because PX,Y (x, w�x) = 0 unless x 2 RX .

This operation is illustrated in Figure 4.14. To get the probability mass
PW (w), we sum up all the probability masses PX,Y (x, y) on the line x+y =
w.

For jointly continuous X,Y , the set the set Bw = {(x, y) 2 <2 : x + y 
w} = {(x, y) : x 2 <, y 2 (�1, w � x]}. Therefore, we compute the CDF
FW (w) as

FW (w) = P[{X + Y  w}] =

1Z

x=�1

w�xZ

y=�1

fX,Y (x, y) dy dx.

From this CDF, we compute the PDF of W by di↵erentiating:

x

z
, ( , )X Yf x y

z

yFigure 4.14: Projection to
compute PMF of X + Y .

x

w , ( , )X Yf x y

w

y

Figure 4.15: Projection to
compute PDF of X + Y .

fW (w) =
d

dw

1Z

x=�1

w�xZ

y=�1

fX,Y (x, y) dy dx =

1Z

x=�1

(
d

dw

w�xZ

y=�1

fX,Y (x, y) dy) dx =

1Z

x=�1

fX,Y (x, w � x) dx.

This operation is shown in Figure 4.15. In essence, one integrates the joint PDF along the line x + y = w.
This is similar to computing a marginal distribution from a joint distribution, except we integrate along an
inclined line instead of a vertical or horizontal line.

For the special case that X,Y are independent,

fW (w) =

Z 1

x=�1
fX,Y (x, w � x) dx =

Z 1

x=�1
fX(x)fY (w � x) dx,

which shows that the probability density of the sum of independent random variables X and Y is the
convolution of their probability densities.

Example 4.19
Assume we have a pair of continuous random variables X,Y with joint PDF

fX,Y (x, y) =

(
6(1� x� y) x � 0, y � 0, x+ y  1,

0 otherwise.

Let Z = max(X,Y ). Find the probability density function fZ(z).

The joint PDF of X,Y is illustrated in Figure 4.16, where we have drawn also
contours for equal values of z, illustrated by the red squares on the x-y plane.
We first compute the cumulative distribution of Z for values z  0.5. In this
range, the region of integration Bz lies entirely in RX,Y .

Using the limits as indicated in Figure 4.16, we obtain for 0  z  0.5,

x

1

1

6

45o

yz
z

Figure 4.16: Figure for example
4.19.

P[{Z  z}] = FZ(z) = P[{X  z} \ {Y  z}] =
Z z

0

Z z

0

fX,Y (x, y) dx dy

=

Z z

0

Z z

0

6(1� x� y) dx dy =

Z z

0

6(1� y)z � 3z2 dy = 6z2 � 6z3, z 2 [0, 0.5]
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Note that FZ(z) = 0 for z  0. Furthermore, FZ(z) = 1 for z > 1, as the region of integration expands to include all
of the range RX,Y .

For z 2 [0.5, 1], examine the diagram in Figure 4.16. The region of integration Bw now expands beyond RX,Y . It is
easier to compute this as follows:

P[{Z  z}] = FZ(z) = 1� P[{X � z}]� P[{Y � z}]

= 1�
Z 1

z

Z 1�x

0

6(1� x� y) dy dx�
Z 1

z

Z 1�y

0

6(1� x� y) dx dy

= 1�
Z 1

z

3(1� x)2 dx�
Z 1

z

3(1� y)2 dy

= 1� 2(1� z)3, z 2 [0.5, 1]

At z = 0.5, FZ(z) = 3
4 , which agrees with the value computed previously, as FZ(z) is a continuous function.

The density fZ(z) is now readily obtained by di↵erentiating, to get

fZ(z) =
d
dz

FZ(z) =

8
><

>:

0 z /2 [0, 1],

12z � 18z2 z 2 (0, 0.5),

6(1� z)2 .z 2 (0.5, 1).

Example 4.20
Let X,Y be independent, uniform(0, 1) random variables, and let Z = X + Y . Find the PDF of Z.

Note first that the range of Z will be RZ = [0, 2], the set of values that can have probability. Using the formula
provided above for the sum of random variables,

fZ(z) =

Z 1

x=�1
fX,Y (x, z � x) dx =

Z 1

x=�1
fX(x)fY (z � x) dx by independence,

We use the fact that RX = [0, 1], RY = [0, 1] to determine the limits of integration, as follows:

fZ(z) =

8
><

>:

0 z /2 [0, 2],R 1

0
fY (z � x) dx =

R z

0
dx = z z 2 [0, 1],R 1

0
fY (z � x) dx =

R 1

z�1
dx = 2� z z 2 [1, 2]

Example 4.21
Let X,Y be independent, exponential(�) random variables, and let Z = X + Y . Find the PDF of Z.

Note first that the range of Z will be RZ = [0,1), the set of values that can have probability. Using the formula
provided above for the sum of random variables,

fZ(z) =

Z 1

x=�1
fX,Y (x, z � x) dx =

Z 1

x=�1
fX(x)fY (z � x) dx by independence,

=

(
0 z  0,R z

0
�e��x�e��(z�x) dx z � 0

=

(
0 z  0,

�2ze��z dx z � 0

The sum of two independent exponential random variables with the same rate parameter defines a random variable that has
an Erlang(2,�) distribution. If we were to sum n independent exponential random variables with the same rate parameter
�, we obtain an Erlang(n,�) random variable.

Example 4.22
Let X,Y be independent standard Gaussian random variables, so X,Y ⇠ N(0, 1), and let Z = aX + bY + c for some
constants a 6= 0, b > 0, c. Find the PDF of Z.

We start by finding the CDF of Z, exploiting the independence of X,Y and the positivity of b, as

FZ(z) = P[{aX + bY + c  z}] =
Z 1

x=�1

Z z�ax�c

b

y=�1
fX(x)fY (y) dy dx.
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Di↵erentiating, we get

fZ(z) =

Z 1

x=�1

 
d
dz

Z z�ax�c

b

y=�1
fX(x)fY (y) dy

!
dx

=

Z 1

x=�1

1
b
fX(x)fY (

z � ax� c
b

) dx

Substitute the Gaussian PDF formulas for X,Y to get:

fZ(z) =

Z 1

�1

1
b

1p
2⇡

e�
x
2

2
1p
2⇡

e�
(z�ax�c)2

2b2 dx

Let’s manipulate the exponent in the integral to isolate the dependence on x as follows:

�x2

2
� (z � ax� c)2

2b2
= �x2

2
� (ax)2

2b2
+

2ax(z � c)
2b2

� (z � c)2

2b2

= �(1 +
a2

b2
)
x2

2
+

a(z � c)
b2

x� (z � c)2

2b2

=
(a2 + b2)

b2

✓
�x2

2
+

a(z � c)
a2 + b2

x� (z � c)2

2(a2 + b2)

◆

=
(a2 + b2)

b2

 
�
(x� a(z�c)

a2+b2
)2

2
+

a2(z � c)2

2(a2 + b2)2
� (z � c)2

2(a2 + b2)

!

= �
(x� a(z�c)

a2+b2
)2

2K2
+

a2(z � c)2

2(a2 + b2)b2
� (z � c)2

2b2
where K2 =

b2

a2 + b2

= �
(x� a(z�c)

a2+b2
)2

2K2
� (z � c)2

2(a2 + b2)
where K2 =

b2

a2 + b2

The reason for this transformation is to express the integral in terms of an integral for a Gaussian PDF. With this
transformation, we have

fZ(z) =
1
b

Z 1

�1

1p
2⇡

e�
(x� a(z�c)

a2+b2
)2

2K2
1p
2⇡

e
� (z�c)2

2(a2+b2) dx =
1p

2⇡(a2 + b2)
e
� (z�c)2

2(a2+b2)

Z 1

�1

1p
2⇡K2

e�
(x� a(z�c)

a2+b2
)2

2K2 dx

=
1p

2⇡(a2 + b2)
e
� (z�c)2

2(a2+b2)

because the last integral is the integral of a Gaussian PDF with variance K2 and a given mean, which equals 1 because
of the normalization property of PDFs. Furthermore, note that fZ(z) is also a Gaussian pdf, with mean c and variance
a2 + b2 (thus Z ⇠ N(c, a2 + b2).) We have just shown that an a�ne combination of two independent Gaussians will also
be a Gaussian random variable. With a similar argument, we can show that any a�ne combination of Gaussian random
variables will be a Gaussian random variable.

Example 4.23
Let X,Y be independent continuous random variables, and let Z = max(X,Y ). Find the PDF of Z.

In contrast with Example 4.19, we don’t specify the pdf of the random variables, but we specify that they are indepen-
dent. We first derive the CDF of Z:

P[{Z  z}] = P[{X  z} \ {Y  z}] = P[{X  z}]P[{Y  z}] by independence.

Hence,
FZ(z) = FX(z)FY (z)

and the PDF of Z can be obtained as

fZ(z) =
d
dz

FZ(z) = FX(z)fY (z) + FY (z)fX(z).

Given the CDF and PDF of the random variables X,Y , we can get the CDF and PDF of Z.

To illustrate this, consider the following pair of jointly continuous random variables X,Y , with joint PDF given by

fX,Y (x, y) =

(
(1� x

2 )(1�
y
2 ) 0  x, y  2

0 otherwise.
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Let Z = max(X,Y ). Then,

fX(x) =

(
(1� x

2 ) 0  x  2,

0 otherwise.
fY (y) =

(
(1� y

2 ) 0  y  2,

0 otherwise.

FX(x) =

8
><

>:

0 x < 0,

x� x2

4 0  x  2,

1 x > 2

FY (Y ) =

8
><

>:

0 y < 0,

y � y2

4 0  y  2,

1 y > 2

Using the above formula,

fZ(z) =

8
><

>:

0 z < 0,

2(z � z2

4 )(1� z
2 ) 0  z  2,

0 z > 2.

Does the same idea work for the minimum of two random variables? Let W = min(X,Y ). Then,

P[{W > w}] = P[{X > w} \ {Y > w}] = P[{X > w}]P[{Y > w}] by independence.

Hence, 1� FW (w) = (1� FX(w))(1� FY (w)) which leads to

FW (w) = 1� (1� FX(w))(1� FY (w)) = FX(w) + FY (w)� FX(w)FY (w).

Di↵erentiating with respect to w yields

fW (w) =
d
dw

FW (w) = (1� FY (w))fX(w) + (1� FX(w))fY (w)

We conclude this chapter with two examples from a mathematics competition. Questions like these often
show up as interview questions for companies like Google. We state first the word problems, and then
formulate the problem using pairs of random variables. These examples are di�cult, but show how the
techniques of this Chapter are used to formulate and solve problems.

Example 4.24
You have a stick of length 1. You pick a point along the stick, uniformly distributed, to break it into two pieces. You take
the longer of the two pieces, you pick a point uniformly along that piece, and break the long piece into two pieces. You
now have three pieces. What is the expected length of the shortest of the three pieces remaining?

LetX denote the length of the shorter piece remaining after the first break. Since the first break was uniform distributed,
it is straightforward to compute the PDF of X as

fX(x) =

(
2 0  x  0.5

.0 otherwise.

The length of the longer piece is 1 � X. Let Y denote the length of the shortest of the two pieces that remain after
breaking the longer piece. Then, Y has conditional PDF

fY |X(y|x) =
(

2
1�x , y 2 [0, 1�x

2 ]

0 otherwise.

and thus is distributed uniformly in [0, 1�X
2 ] using a similar argument as before. The joint PDF of X,Y is defined using

using the multiplication rule as:

fX,Y (x, y) = fY |X(y|x)fX(x) =

(
4

1�x 0  x  0.5, 0  y  1�x
2 ,

0 otherwise.

We already know that Y is the shortest of the two pieces from the second break, and X is the length of the shortest piece
after the first break. Hence, the length of the shortest of the three pieces is min(X,Y ). We have now transformed the
original problem into computing the expected value of a function of two random variables, where we know the joint PDF:

E[min(X,Y )] =

Z 1
2

0

� Z 1�x

2

0

min(x, y)
4

1� x
dy
⌘
dx



118 CHAPTER 4. PAIRS OF RANDOM VARIABLES

The rest is tedious calculus that is easy to do with a computer. We have completed the probability part of the problem, and
written the correct integral. Nevertheless, let’s show the calculus computation. The trick is to figure out the regions where
we can write explicitly the minimum of x, y. First, assume x � 1�x

2 , which is equivalent to x � 1
3 . Then, min(x, y) = y

for y 2 [0, 1�x
2 ]. Next, if x < 1

3 , then min(x, y) = x for y 2 [x, 1�x
2 ], and min(x, y) = y for y 2 [0, x]. We use this to

rewrite the integral as:

E[min(X,Y )] =

Z 1
3

0

� Z 1�x

2

0

min(x, y)
4

1� x
dy
⌘
dx+

Z 1
2

1
3

� Z 1�x

2

0

min(x, y)
4

1� x
dy
⌘
dx

Z 1
2

1
3

� Z 1�x

2

0

min(x, y)
4

1� x
dy
⌘
dx =

Z 1
2

1
3

� Z 1�x

2

0

y
4

1� x
dy
⌘
dx

=

Z 1
2

1
3

4(1� x)2)
8(1� x)

dx =

Z 1
2

1
3

(1� x))
2

dx =
1
9
� 1

16

Z 1
3

0

� Z 1�x

2

0

min(x, y)
4

1� x
dy
⌘
dx =

Z 1
3

0

� Z x

0

y
4

1� x
dy +

Z 1�x

2

x

x
4

1� x
dy
⌘
dx

=

Z 1
3

0

� 2x2

1� x
+

2x(1� 3x)
1� x

⌘
dx

=

Z 1
3

0

2x� 4x2

1� x
dx ⇡ 0.078.

E[min(X,Y )] = 0.078 +
1
9
� 1

16
⇡ 0.1266

Example 4.25
You have a stick of length 1. You pick two points along the stick, uniformly distributed, selected independently, You break
the stick at the two points, resulting in three sticks. What is the expected length of the shortest stick?

The di↵erence in this example from the previous example is that the points are selected independently, not sequentially.
Let’s propose a formulation using pairs of random variables. Let X be one of the points, and Y be the other. We know
the joint PDF of X,Y , given by

fX,Y (x, y) =

(
.1 0  x  1, 0  y  1,

0 otherwise.

In terms of X,Y , what is the length of the shortest stick? Let S(X,Y ) be this length. If X > Y , then S(X,Y ) =
min(Y,X � Y, 1 � X). Let B be the event that X > Y . By symmetry, P[B] = 1

2 . Then, the conditional joint PDF of
X,Y is given by

fX,Y |B(x, y) =

(
fX,Y (x,y)

P[B] (x, y) 2 B,

0 otherwise
=

(
2 0  y  x  1,

0 otherwise.

Our answer is the conditional expected value of S(X,Y ) given the event B, because either X or Y has to be the smallest,
so without loss of generality, we call X the smallest. Note that this introduces a factor of 2 to the conditional density,
corresponding to mapping the original probability density from the unit square to the triangle 0  y  x  1. Hence, our
answer is

E[S(X,Y )|X > Y ] =

Z 1

0

⇣Z x

0

2min(y, x� y, 1� x) dy
⌘
dx

The rest is calculus...it does require breaking down the integral into regions where we can recognize which one of the terms
is the minimum so we can do the integrals. A diagram will be most useful. We need to identify the regions in the triangle
0  y  x  1 where min(y, x � y, 1 � x) = y, min(y, x � y, 1 � x) = x � y, and min(y, x � y, 1 � x) = 1 � x and
compute the appropriate expected values in those regions.

The diagram is shown on the right. The three regions have a common point (2/3, 1/3)
where all three lengths are equal. Region 1 in the diagram is the region where the minimum
is y, so y < x� y, y < 1� x. Hence, this region is y < x/2, y < 1� x. Region 2 is where
the minimum is x�y, so x�y < y, x�y < 1�x so y > x/2, y > 2x�1. Region 3 is where
the minimum is 1� x, so 1� x < y, 1� x < x� y and therefore y > 1� x, y > 2x� 1.
The answer we want is

E[S(X,Y )|X > Y ] =

ZZ

R1

2y dx dy +

ZZ

R2

2(x� y) dx dy +

ZZ

R3

2(1� x) dx dy

1

2 3

Figure 4.17: Example
4.25.
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Computing each integral yields:

ZZ

R1

2y dx dy =

Z 1
3

0

⇣Z 1�y

2y

2y dx
⌘
dy =

Z 1
3

0

2y(1� 3y) dy =
1
9
� 2

27
=

1
27

ZZ

R2

2(x� y) dx dy =

Z 2
3

0

⇣Z x

x

2

2(x� y) dy
⌘
dx+

Z 1

2
3

⇣Z x

2x�1

2(x� y) dy
⌘
dx

=

Z 2
3

0

(x2 � x2 +
x2

4
) dx+

Z 1

2
3

(2x(1� x)� x2 + (2x� 1)2) dx

=

Z 2
3

0

x2

4
dx+

Z 1

2
3

(2x� 2x2 � x2 + 4x2 � 4x+ 1) dx

=
1
12

· 8
27

+

Z 1

2
3

(x2 � 2x+ 1)dx =
2
81

+
1
81

=
1
27

ZZ

R3

2(1� x) dx dy =

Z 1

2
3

⇣Z 2x�1

1�x

(1� x) dy
⌘
dx =

Z 1

2
3

(1� x)2 dx =
1
27

Assembling the answer yields that the expected value of the shortest piece is 1
9 . Note that this is a little shorter than the

answer to the previous example. The reason is that, in the previous problem, after we selected the first point, we broke
the longer of the two pieces. Here, we select the second break randomly, so we can break the shorter of the two pieces,
thereby resulting in shorter pieces. It is useful to check that your answers have common sense explanations.


