
Chapter 5

Second-Order Analysis of Random Vectors

5.1 Introduction

In Chapter 4, we developed a characterization of the properties of pairs of random variables X, Y defined
on the same probability space (⌦, E ,P) by defining either a joint probability mass function (PMF) or a
joint probability density function (PDF), which can be used to compute probabilities of joint events and
expectations of functions of the random variables. Using the joint PMF or joint PDF, we computed statistics
such as the expected value of a function g(X, Y ).

In this chapter, we focus on second order statistics of a pair of random variables X, Y . These statistics
generalize the concepts of variance and standard deviation to pairs of random variables, and are easily
computed from sample data. We describe how these statistics change for linear or a�ne transformations of
the pair X, Y . We study the special case of jointly Gaussian random variables X, Y , where the joint PDF
is entirely described in terms of its second order statistics, and show special properties of jointly Gaussian
random variables that make them suitable models for problems in estimation and detection. We conclude
the chapter with a generalization of second order statistics to random vectors involving 2 or more random
variables.

5.2 Covariance and Correlation

Consider a pair of random variables X, Y defined on a probability space (⌦, E ,P). If discrete, these random
variables are characterized by a joint PMF PX,Y (x, y) and marginal PMFs PX(x), PY (y) derived from the
joint PMF by

PX(x) =
X

y2RY

PX,Y (x, y); PY (y) =
X

x2RX

PX,Y (x, y).

If X, Y are jointly continuous, the random variables are characterized by the joint PDF fX,Y (x, y), and
marginal PDFs fX(x), fY (y) computed as:

fX(x) =

Z 1

�1
fX,Y (x, y) dy; fY (y) =

Z 1

�1
fX,Y (x, y) dx.

Using the marginal PMFs or PDFs, we can compute the means of X and Y , as E[X],E[Y ]. We also
compute the variance of each of the random variables X, Y as

�2
X

= E
⇥�

X � E[X]
�2⇤

= E
⇥
X2] �

�
E[X]

�2
,

�2
Y

= E
⇥�

Y � E[Y ]
�2⇤

= E
⇥
Y 2] �

�
E[Y ]

�2
.

These variances measure how much each of the random variables deviates from their average values. However,
as statistics, they provide no information as to how the deviations of the random variables depend on each
other.

To capture that information, we define several joint statistics for the random variables X, Y . First, we
define the cross-correlation between X and Y as E[XY ]. An important property of the cross-correlation
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is ⇣
E[XY ]

⌘2
 E[X2]E[Y 2].

This follows from well-known Cauchy-Schwarz inequality, which states that, for functions f(x), g(x) with
finite square integrals,

��
Z 1

�1
f(x)g(x) dx

�� 
� Z 1

�1
f(x)2 dx

�1/2�
Z 1

�1
g(x)2 dx

�1/2
.

Similarly, for square summable sequences xn, yn,

��
1X

n=1

xnyn

�� 
� 1X

n=1

x2
n

�1/2� 1X

n=1

y2
n

�1/2
.

For continuous random variables, this implies

���E[XY ]
��� =

���
Z 1

�1

Z 1

�1
xyfX,Y (x, y) dx dy

��� =
���
Z 1

�1

Z 1

�1

�
xfX,Y (x, y)

1
2
��

yfX,Y (x, y)
1
2
�
dx dy

���


� Z 1

�1
x2fX,Y (x, y) dx dy

�1/2�
Z 1

�1
y2fX,Y (x, y) dx dy

�1/2
=

�
E[X2])1/2

�
E[Y 2]

�1/2

The cross-correlation depends on the expected value of the individual random variables. To eliminate the
dependence on the mean of the random variables, we define the covariance of random variables X and Y
as

Cov[X, Y ] = E
⇥�

X � E[X]
��

Y � E[Y ])
⇤
.

Intuitively, this captures how X and Y vary together with respect to their expected values. Unlike variances,
the covariance between two random variables can be negative. A negative covariance indicates that, when X
is greater than its mean E[X], Y is likely to be less than its mean E[Y ]. The covariance will be an important
part of how we can estimate the value of one variable (e.g. Y ) based on measurements of the other variable
(X).

Since X, Y are real-valued random variables, Cov[X, Y ] = Cov[Y, X]. As is the case for variances, there
is a useful formula for computing covariances from cross-correlations:

Cov[X, Y ] = E
⇥�

X � E[X]
��

Y � E[Y ])
⇤

= E
⇥
XY � E[X]Y � XE[Y ] + E[X]E[Y ]

⇤

= E[XY ] � E
⇥
E[X]Y

⇤
� E

⇥
XE[Y ]

⇤
+ E

⇥
E[X]E[Y ]

⇤

= E[XY ] � E[X]E[Y ] � E[X]E[Y ] + E[X]E[Y ] = E[XY ] � E[X]E[Y ]

Using the Cauchy-Schwarz inequality as before, we get the following:

|Cov[X, Y ]| 
p

Var[X]Var[Y ].

Using this inequality, we define the correlation coe�cient ⇢X,Y between two random variables X,Y as

⇢X,Y =
Cov[X,Y ]p
Var[X]Var[Y ]

The correlation coe�cient has magnitude less than or equal to 1, so its range is in [�1, 1].

Another way of interpreting the correlation coe�cient is that it is the covariance of the normalized
random variables F = Xp

Var[X]
and G = Yp

Var[Y ]
. Normalizing each of the random variables by dividing by

their standard deviation results in random variables F and G with variance 1. This normalization is used
extensively in data science and statistics to reduce the e↵ects of measurement units for feature values.
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Example 5.1
Let X,Y be a pair of random variables, and define Z = X + Y . Then,

E[Z] = E[X] + E[Y ] (linearity of expectation)

E[Z2] = E
⇥
(X + Y )2

⇤
= E[X2 + 2XY + Y 2] = E[X2] + 2E[XY ] + E[Y 2]

= E[X]2 + Var[X] + 2
⇣
E[X]E[Y ] + Cov[X,Y ]

⌘
+ E[Y ]2 + Var[Y ] (definitions of variance, covariance)

=
⇣
E[X]2 + 2E[X]E[Y ] + E[Y ]2

⌘
+ Var[X] + 2Cov[X,Y ] + Var[Y ]

= E[Z]2 + Var[X] + 2Cov[X,Y ] + Var[Y ]

Var[Z] = E[Z2]� E[Z]2 = Var[X] + 2Cov[X,Y ] + Var[Y ]

This provides a quick way of calculating the covariance of a sum of random variables. The result does not depend on
the mean of the random variables.

Example 5.2
Can the correlation coe�cient have magnitude 1? Let X be a random variable, and let Y = �3X + 1. Then,

Var[Y ] = (�3)2Var[X] = 9Var[X]

Cov[X,Y ] = E[XY ]� E[X]E[Y ] = E[�3X2 +X]� E[X]E[�3X + 1] = �3
�
E[X2]� E[X]2) = �3Var[X]

⇢X,Y =
Cov[X,Y ]p
Var[X]Var[Y ]

=
�3VarXp
9Var[X]2

= �1

When the magnitude of the correlation coe�cient is either 1 or -1, it usually indicates a linear dependence between the
two variables X,Y . Notice that, in this case, the correlation coe�cient has a negative sign, suggesting a negative linear
dependence.

Note also that the correlation coe�cient is a scale-independent measure of how the random variables depend on each
other. Thus, the scale factor of -3 between X and Y only a↵ects the correlation coe�cient by its sign, not its magnitude.

Example 5.3
Consider a pair of jointly continuous random variables X,Y with fX,Y (x, y) given as

fX,Y (x, y) =

(
xy 0  x  1, 0  y  2,

0 otherwise.

The marginal distributions are given as

fX(x) =

Z 1

�1
fX,Y (x, y) dy =

(R 2

0
xy dy = 2x x 2 [0, 1]

0 otherwise.

fY (y) =

Z 1

�1
fX,Y (x, y) dx =

(R 1

0
xy dx = y

2 y 2 [0, 2]

0 otherwise.

Note that X,Y are independent, as the range RX,Y = RX ⇥RY and thus fX,Y (x, y) = fX(x)fY (y).

Using these densities, we compute the first and second order statistics as follows:

E[X] =

Z 1

�1
xfX(x) dx =

Z 1

0

2x2 dx =
2
3

E[Y ] =

Z 1

�1
yfY (y) dx =

Z 2

0

y2

2
dy =

4
3

Var[X] = E[X2]� E[X]2 =

Z 1

0

2x3 dx� 4
9
=

1
2
� 4

9
=

1
18

Var[Y ] = E[Y 2]� E[Y ]2 =

Z 2

0

y3

2
dy � 16

9
= 2� 16

9
=

2
9

E[XY ] = E[X]E[Y ] =
8
9

(because of independence.)

Cov[X,Y ] = 0, ⇢X,Y = 0

When two random variables are independent, their covariance is 0. The converse is not true, as we will see later.
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Two random variables X and Y are uncorrelated if Cov[X, Y ] = 0 (or ⇢X,Y = 0).

• If X and Y are uncorrelated, we have that Var[X + Y ] = Var[X] + Var[Y ] and E[XY ] = E[X]E[Y ].

• Independence of X and Y implies that they are uncorrelated. However, uncorrelated X and Y need
not be independent.

To clarify, if X, Y are independent, then, for bounded functions f, g, we have

E[f(X)g(Y )] =

Z 1

�1

Z 1

�1
f(x)g(y)fX,Y (x, y) dx dy

=

Z 1

�1

Z 1

�1
f(x)g(y)fX(x)fY (y) dx dy (independence of PDF)

=
⇣ Z 1

�1
f(x)fX(x) dx

⌘⇣ Z 1

�1
g(y)fY (y) dy

⌘
= E[f(X)]E[g(Y )]

The converse of this is also true: if E[f(X)g(Y )] = E[f(X)]E[g(Y )] for any bounded functions f, g, then
X and Y are independent. However, X, Y are uncorrelated if and only if E[XY ] = E[X]E[Y ]. Thus, the
condition for uncorrelated random variables involves only linear functions of X, Y , whereas the condition for
independence must hold for the broader class of bounded nonlinear functions of X, Y .

Furthermore, if X, Y are independent, then fX|Y (x|y) = fX,Y (x,y)
fY (y) = fX(x)fY (y)

fY (y) = fX(x). Hence,

E[X|Y = y] = E[X] for all y 2 RY . Similarly, E[Y |X = x] = E[Y ] for all x 2 RX . Independence
is a strong property of the underlying densities of the random variables, while uncorrelatedness is only a
property of second order statistics.

One of the interesting properties of uncorrelated random variables X, Y is that, if Z = X + Y , then
Var[Z] = Var[X] + Var[Y ]. This is because, as derived in Example 5.1,

Var[Z] = Var[X] + Var[Y ] + 2Cov[X, Y ] = Var[X] + Var[Y ],

since Cov[X, Y ] = 0 because X, Y are uncorrelated. This generalizes to arbitrary sums, so that the variance
of a sum of uncorrelated random variables is the sum of the variances of the individual random variables.

Two random variables X and Y are orthogonal if and only if E[XY ] = 0. If X and Y are orthogonal,
E[(X+Y )2] = E[X2]+E[Y 2]. Note that orthogonal and uncorrelated random variables are di↵erent concepts.
If two random variables are both orthogonal and uncorrelated, then the mean of at least one must be zero. For
zero mean random variables, orthogonality and uncorrelatedness are equivalent. For instance, the random
variables X, Y in Example 5.3 are independent, and thus uncorrelated. However, they are not orthogonal,
because neither X nor Y has zero mean.

Example 5.4
Consider a pair of discrete random variables X,Y with joint PMF given
by the table on the right. Are X,Y independent? Are X,Y uncorrelated?
What is the covariance of X,Y ?
With respect to independence, the answer is clearly not. Note that
PX,Y (0, 1) = 0, but PX(0) = 0.01 and PY (1) = 0.09.
Are X,Y uncorrelated? We compute E[X] = 0.18 + 2 · 0.81 = 1.80, and
E[Y ] = 0.09 + 2 · 0.81 = 1.71. We then compute

y
PXY (x, y) 0 1 2

x
0 0.01 0.00 0.00
1 0.09 0.09 0.00
2 0.00 0.00 0.81

E[XY ] = 0.09 · 1 · 1 + 0.81 · 2 · 2 = 3.33 6= (1.71) · (1.89)

Hence, they are not uncorrelated.

The covariance Cov[X,Y ] = 3.33� (1.71) · (1.89) ⇡ 0.252.
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Example 5.5
Consider a pair of discrete random variables X,Y with joint PMF given
by the table on the right. What are the means and variances of X,Y ?
Are X,Y independent?
We compute the marginal PMFs by doing column and row sums to get

y
PXY (x, y) 0 1 2 3

x
0 0.06 0.18 0.24 0.12
1 0.04 0.12 0.16 0.08

PX(0) = 0.6, PX(1) = 0.4.

PY (0) = 0.1, PY (1) = 0.3, PY (2) = 0.4, PY (3) = 0.2.

With this, we compute E[X] = 0.6 · 0 + 0.4 · 1 = 0.4; similarly, E[X2] = 0.6 · 02 + 0.4 · 12 = 0.4. Thus, Var[X] =
0.4� (0.4)2 = 0.24.

For Y , E[Y ] = 0 · 0.1 + 1 · 0.3 + 2 · 0.4 + 3 · 0.2 = 1.7. Similarly, E[Y 2] = 02 · 0.1 + 12 · 0.3 + 22 · 0.4 + 32 · 0.2 = 4.1l.
Hence, Var[Y ] = 4.10� (1.7)2 = 4.10� 2.89 = 1.21.

With respect to independence, note that there are no zeros in the table, so RX,Y = RX ⇥RY . We now have to check that
PX,Y (x, y) = PX(x)PY (y) for all (x, y) 2 RX,Y . We quickly verify that this is indeed the case, so X,Y are independent.
Therefore, Cov[X,Y ] = 0.

Example 5.6
Consider a pair of continuous random variablesX,Y , uniformly distributed
on the unit disk with radius 1, centered at (0,0). Thus, the joint PDF of
X,Y is given by

fX,Y (x, y) =

(
1
⇡ 0  x2 + y2  1,

0 otherwise.

The joint PDF of X,Y is illustrated in Figure 5.1. We saw this example in
the previous chapter, as Example 4.11. Are X,Y independent? Are X,Y
uncorrelated? What are the means, variances and covariances of X,Y ?

y

x

radius = 1
area = π

Figure 5.1: Example 5.6.

With respect to independence, consider the point (x, y) = (0.9, 0.9). This point is outside the unit circle, so fX,Y (0.9, 0.9) =
0. However, it is clear that a vertical line through that point intersects the unit circle, and so does a horizontal line. This
means that fX(0.9) > 0, fY (0.9) > 0, and therefore, fX,Y (0.9, 0.9) = 0 6= fX(0.9)fY (0.9). Hence, X,Y are not
independent.

By symmetry, we note that E[X] = E[Y ] = 0. We can also verify these using the results of Example 4.11, where we

showed that fX(x) =
2
p

1�x2

⇡ , fY (y) =
2
p

1�y2

⇡ . Both of these functions are even functions, so E[X] = E[Y ] = 0. By
symmetry, we can also show that E[XY ] = 0. We will show that directly by computation:

E[XY ] =

Z 1

�1

Z 1

�1
xyfX,Y (x, y) dx dy =

Z 1

�1

⇣Z p
1�x2

�
p

1�x2
y dy

⌘x
⇡
dx

The inner integral evaluates as

Z p
1�x2

�
p

1�x2
y dy =

y2

2
|
p

1�x2

�
p

1�x2
= 0.

Thus, E[XY ] = 0, and Cov[X,Y ] = E[XY ] � E[X]E[Y ] = 0, so X and Y are uncorrelated. In this case, X, Y are also
orthogonal.

It is also clear that Var[X] = Var[Y ] by symmetry. To compute Var[X], since X has zero mean, we get

Var[X] = E[X2] =

Z 1

�1

x2 2
p
1� x2

⇡
dx =

1
4
= Var[Y ],

where the integral can be evaluated using a trigonometric substitution x = sin(✓).
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5.3 Algebra of Covariances

Assume we have two random variables X,Y , for which we know their means E[X],E[Y ], their variances
Var[X],Var[Y ], and their covariance Cov[X, Y ]. Define new random variables, linearly related to these, as

U = aX + bY + e; V = cX + dY + f

We want to compute the means and variances of U, V and their covariance. To answer this, we exploit
the properties of the linearity of the expectation operation, as

E[U ] = E[aX + bY + e] = aE[X] + bE[Y ] + eE[1] = aE[X] + bE[Y ] + e.

E[V ] = E[cX + dY + f ] = cE[X] + dE[Y ] + f.

What about the variance of U? Since variance is a quadratic statistic, we have to expand a quadratic to
compute this. Suppose we compute this as Var[U ] = E[U2] � (E[U ])2. Then,

E[U2] = E[(aX + bY + e)2] = E[a2X2 + 2abXY + b2Y 2 + 2aeX + 2beY + e2]

= a2 Var[X] + a2(E[X])2 + 2ab Cov[X, Y ] + 2ab E[X]E[Y ] + b2 Var[Y ] + b2(E[Y ])2

+ 2ae E[X] + 2be E[Y ] + e2

=
⇣
a2 Var[X] + 2ab Cov[X, Y ] + b2 Var[Y ]

⌘
+

⇣
a2(E[X])2 + 2ab E[X]E[Y ] + b2(E[Y ])2

+ 2ae E[X] + 2be E[Y ] + e2
⌘

=
⇣
a2 Var[X] + 2ab Cov[X, Y ] + b2 Var[Y ]

⌘
+ (E[U ])2

Var[U ] = E[U2) � (E[U ])2 = a2 Var[X] + 2ab Cov[X, Y ] + b2 Var[Y ]

However, we know that variances do not depend on the mean of the variables. That is, Var[U ] =

Var
h
U �E[U ]

i
. Indeed, we should have been able to compute the variance of U by assuming all the variables

had zero mean. This leads to a much simple computation, as

Var[U ] = Var[U � aE[X] � bE[Y ] � e] = E
h
(aX̃ + bỸ )2

i

= E[a2(X̃)2] + 2E[abX̃Ỹ ] + E[b2(Ỹ )2]

= a2 Var[X] + 2ab Cov[X, Y ] + b2 Var[Y ].

where X̃ = X �E[X], Ỹ = Y �E[Y ], and thus Var[X] = E[(X̃)2],Var[Y ] = E[(Ỹ )2], and Cov[X, Y ] = E[X̃Ỹ ].
By considering only the zero-mean random variables, we are able to get to a simpler formula for variances
without having to consider the extra terms associated with the means. This avoids unnecessary algebraic
errors that arise when including all the terms involving the means of the random variables.

Similarly, we compute the variance of V as

Var[V ] = Var
h
V � E[V ]

i
= E

h
(cX̃ + dỸ )2

i
= c2 Var[X] + 2cd Cov[X, Y ] + d2 Var[Y ].

Furthermore, the covariance of U, V is given by

Cov[U, V ] = Cov
h
U � E[U ], V � E[V ]

i
= E

h
(aX̃ + bỸ )(cX̃ + dỸ )

i

= ac Var[X] + (ad + bc) Cov[X, Y ] + bd Var[Y ].

Example 5.7
Consider X,Y as defined in Example 5.6. We know that E[X] = E[Y ] = 0,Var[X] = Var[Y ] = 1

4 ,Cov[X,Y ] = 0. Thus,
X,Y are uncorrelated and orthogonal.
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Let U = 3X + 2Y + 1, V = 2X � 3Y � 1. Compute the means, variances and covariance of U, V .

The means are easy: Using linearity of expectation, we get

E[U ] = 3E[X] + 2E[Y ] + 1 = 1; E[V ] = 2E[X]� 3E[Y ]� 1 = �1.

For variances, using the approach that we deal only with zero-mean variables, we get

Var[U ] = 9Var[X] + 12Cov[X,Y ] + 4Var[Y ] = 13Var[X] =
13
4
.

Var[V ] = 4Var[X]� 12Cov[X,Y ] + 9Var[Y ] = 13Var[X] =
13
4
.

Cov[U, V ] = 6Var[X]� 9Cov[X,Y ] + 4Cov[X,Y ]� 6Var[Y ] = 0.

Our transformations resulted in U, V that are also uncorrelated, but no longer orthogonal, because neither has zero-
mean. Why? If we write the transformation as a matrix:


U
V

�
=


3 2
2 �3

� 
X
Y

�
+


1
�1

�
,

you will notice that the first and second rows of the transformation matrix for X,Y are perpendicular vectors. We will
explore this further when we discuss random vectors.

5.4 Jointly Gaussian Random Variables:

There is a class of jointly continuous random variables whose joint PDF is entirely specified by its second
order statistics. Recall that Gaussian random variables had PDFs specified entirely in terms of their means
and variances. In this section, we define the concept of pairs of jointly Gaussian random variables, where
the joint PDFs are specified entirely by first- and second-order statistics, and explore their properties.

We begin by constructing a pair of independent, standard Gaussian random variables. Let U , V be
standard Gaussian random variables defined on the same probability space. That is, U ⇠ N(0, 1), V ⇠
N(0, 1) both have zero mean and unit variance. To merge them into joint random variables, we assume that
U, V are independent, resulting in a pair of independent unit Gaussian random variables. In this case,
the joint PDF is

fU,V (u, v) =
1p
2⇡

e�u
2

2
1p
2⇡

e� v
2

2 =
1

2⇡
e�u

2+v
2

2 .

The joint probability density of a pair of unit Gaussian random variables is shown in Figure 5.2. The
density is centered at (0,0), and has a circular symmetry, decaying to 0 as u2 + v2 approaches infinity.
Consider now a pair of random variables X, Y defined in terms of U, V as

X = �XU + µX ; Y = �Y U + µY

where �X , �Y > 0, and µX , µY are constants. Since X depends only on U and Y depends only on V , X and
Y are also independent random variables.

Note that E[X] = �XE[U ] + µX = µX , Var[X] = �2
X
Var[U ] = �2

X
. Similarly, E[Y ] = µY ,Var[Y ] = �2

Y
.

Since X is a linear transformation of the variable U , we can obtain the density of X using the methods of
Chapter 3 as

fX(x) =
1

|�X |fU (
X � µX

�X

) =
1p

2⇡�2
X

e
� (X�µX )2

2�2
X .

which also follows because a linear transformation of a Gaussian random variable results in another Gaussian
random variable. Similarly,

fY (y) =
1p

2⇡�2
Y

e
� (Y �µY )2

2�2
Y .
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u

v

, ( , )U Vf u v

X = linspace(-4,4);
Y = normpdf(X,0,1);
surf(X,X,Y�*Y);

v

u1

1

, ( , )U Vf u v , ( , )U Vf u v

Figure 5.2: Illustration of the density of a pair of independent unit Gaussian random variables.

and, because X, Y are independent, their joint PDF is given by

fX,Y (x, y) =
1p

2⇡�2
X

e
� (X�µX )2

2�2
X

1p
2⇡�2

Y

e
� (Y �µY )2

2�2
Y =

1

2⇡�X�Y

e
� (X�µX )2

2�2
X

+
(Y �µY )2

2�2
Y

An illustration of the joint PDF of X, Y is shown in the figure on
the right. Note that the level sets of the probability density function
(curves where fX,Y (x, y) = K for some constant K) are now ellipses,
and the center of the PDF has shifted to the mean (µX , µY ). The
individual standard deviations are measures of the relative elongation
of the ellipses along each axis. The major axes of the ellipses are
aligned with the x and y axes, because X and Y are still independent.

x

y

µX

µY
sY

sX

X = linspace(-4,4);
Y1 = normpdf(X,1,sqrt(2));
Y2 = normpdf(X,-1,2);
surf(X,X,Y1�*Y2);

Figure 5.3: Gaussian PDF with
unequal variances.

Consider now Z = X + Y to be the sum of two independent jointly Gaussian random variables. We
want to show that this is also a Gaussian random variable. If we know this, then the PDF of Z can be
computed trivially by knowing E[Z] = µX + µY , and Var[Z] = �2

X
+ �2

Y
, since the variances add when X, Y

are uncorrelated and hence independent. We show this for the case where the means µX = µY = 0, as we
can always add a constant to shift the means. We refer to Section 4.7.1 for determining the density of a sum
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of two jointly continuous random variables, as

fZ(z) =

Z 1
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where the constant is chosen C1 to satisfy the normalization property
R 1

�1 fZ(z) dz = 1. The result shows

that Z is a Gaussian random variable with zero mean, and variance �2
X

+ �2
Y

.

Using the above argument, we can show that a random variable X = aU +bV +µX will be Gaussian, with
mean E[X] = E[aU + bV + µX ] = µX , and variance Var[X] = Var[aU + bV ] = a2Var[U ] + b2Var[V ] = a2 + b2.
Similarly, a random variable Y = cU + dV + µY will be Gaussian, with mean E[Y ] = µY , and variance
Var[Y ] = c2 + d2.

We formally define jointly Gaussian random variables as follows: A pair of random variables X and Y
are jointly Gaussian random variables if they are linear functions of independent unit Gaussian random
variables U and V :

X = aU + bV + µX Y = cU + dV + µY .

We now compute the covariance of X, Y as

Cov[X, Y ] = E[(aU + bV )(cU + dV ])] = acE[U2] + (ad + bc)E[UV ] + bdE[V 2] = ac + bd,

since U, V are zero-mean, independent, unit variance random variables. The resulting correlation coe�cient
is

⇢X,Y =
ac + bdp

(a2 + b2)(c2 + d2)
.

When the correlation coe�cient of X, Y has magnitude less than 1, we can write the joint PDF of X, Y
as

fX,Y (x, y) =
1

2⇡�X�Y

q
1 � ⇢2

X,Y

e
� 1

2(1�⇢
2
X,Y

)

✓
(x�µX )2

�
2
X

� 2⇢X,Y

(x�µX )(y�µY )
�X�Y

+
(y�µY )2

�
2
Y

◆

Thus, the joint PDF is fully specified by the first- and second-order statistics: the means µX , µY , the
variances �2

X
, �2

Y
, and the correlation coe�cient ⇢X,Y .

This is a di�cult formula to remember, and it does not generalize to more than two Gaussian random
variables. However, we can write this in terms of vectors and matrices as follows:

fX,Y (x, y) =
1s

det
⇣
2⇡


�2

X
Cov[X, Y ]

Cov[X, Y ] �2
Y

� ⌘e
� 1

2

h
x � µx y � µy

i
2

4 �2
X

Cov[X, Y ]
Cov[X,Y ] �2

Y

3

5
�12

4x � µx

y � µy

3

5

.
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This form that uses the inverse of a matrix formed from the individual covariances generalizes well to three
or more Gaussian random variables.

An illustration of the joint PDF of X, Y in this general case is
shown in the figure on the right. Note that the level sets of the
probability density function (curves where fX,Y (x, y) = K for
some constant K) are still ellipses, and the center of the PDF has
shifted to the mean (µX , µY ). The individual standard deviations
are measures of the relative elongation of the ellipses along each
axis. However, note that the major axes of the ellipses are no
longer aligned with the x and y axes, because X and Y are now
correlated and not independent. That is seen in the joint PDF
by the presence of xy terms in the exponent of the density. Note
that, if ⇢X,Y = 0, these terms vanish.

x

y

µX

µY
sY

sX

Figure 5.4: Correlated Gaussian PDF.

Jointly Gaussian random variables satisfy the following properties:

• Any linear function of X and Y plus a constant is Gaussian: If Z = ↵X + �Y + �, then Z is
Gaussian with E[Z] = µZ ,Var[Z] = �2

Z
where

µZ = ↵µX + �µY + �, �2
Z

= ↵2�2
X

+ �2�2
Y

+ 2↵�Cov[X, Y ]

The reason for this is that, since X, Y are linear combinations of independent, unit Gaussian random
variables U, V plus a constant, we can substitute for X, Y and write Z as a linear combination of U, V
plus a constant. We have already shown this is a Gaussian random variable.

• Marginal PDFs are Gaussian: X is Gaussian with E[X] = µX ,Var[X] = �2
X

and Y is Gaussian
with E[Y ] = µY ,Var[Y ] = �2

Y
.

The function Z = 1 · X + 0 · Y is a linear combination, and hence it is Gaussian. We know its mean
and variance by computation as above.

• Uncorrelated =) Independence: X and Y are uncorrelated (Cov[X, Y ] = 0 or ⇢X,Y = 0) if and
only if X and Y are independent.

This follows by examining the form of the joint density function described above. If ⇢X,Y = 0, then we
can separate FX,Y = fX(x)fY (y). In general, uncorrelated random variables are not independent. How-
ever, for jointly Gaussian random variables, uncorrelated Gaussian random variables are independent.
This means we can verify independence strictly using second-order statistics.

•
��⇢X,Y

�� = 1 if and only if Y is a deterministic linear function of X (and vice versa). In this case, we

can write Y as Y = ⇢X,Y

�Y

�X

(X � µX) + µY .

• Conditional PDF of X given Y = y is Gaussian: The conditional PDF fX|Y (x|y) of X given
Y = y is Gaussian with mean E[X|Y = y] and variance Var[X|Y = y] to be computed as:

E[X|Y = y] = µX + ⇢X,Y

�X

�Y

(y � µY ) = µX +
Cov[X, Y ]

Var[Y ]
(y � µY )

Var[X|Y = y] = (1 � ⇢2
X,Y

)�2
X

= Var[X] � Cov[X, Y ]2

Var[Y ]
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Let’s derive this result. We know the following:
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We recognize the above expression as a Gaussian density, with statistics

E[X|Y = y] = µX + ⇢X,Y

�X

�Y

(y � µY ) = µX +
Cov[X, Y ]

Var[Y ]
(y � µY )

Var[X|Y = y] = (1 � ⇢2
X,Y

)�2
X

= Var[X] � Cov[X, Y ]2

Var[Y ]

Notice that the conditional covariance does not depend on the actual observed value Y = y; it only
depends on the second order statistics of X, Y . Notice also that the conditional covariance Var[X|Y = y]
is no larger than the unconditional covariance Var[X], as we are subtracting a nonnegative term.

The above formulas for the conditional mean and variance are very important in estimation, as we will
illustrate in a subsequent chapter. Specifically, E[X|Y = y] is an estimate of the random variable X based
on measuring that the random variable Y has value y. Define

e = X � E[X|Y ] = X � µX � Cov[X, Y ]

Var[Y ]
(Y � µY ).

Then, this is the error in the estimate of X given observation Y . In this case, e is a linear function of X and
Y plus a constant.

Note some important properties of the estimation error:

• E[e(y)] = 0. This follows directly by noting that e = X̃ � Cov[X,Y ]
Var[Y ] Ỹ , and thus it is a linear combination

of zero-mean random variables.
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• E[e2] = Var[X|Y = y]. Note that Var[X|Y = y] is a constant that does not depend on y. This follows
because

E[e2] = E[X̃2] � 2
Cov[X, Y ]

Var[Y ]
E[X̃Ỹ ] + (

Cov[X,Y ]

Var[Y ]
)2E[Ỹ 2]

= Var[X] � 2
Cov[X, Y ]

Var[Y ]
Cov[X, Y ] + (

Cov[X, Y ]

Var[Y ]
)2Var[Y ]

= Var[X] � Cov[X, Y ]2

Var[Y ]

A more subtle proof of the above uses iterated expectations, as

E[e2] = E

E[e2|Y ]

�
= E


Var[X|Y ]

�
= Var[X|Y ],

which follows because
Var[X|Y ]

is a constant that does not depend on
Y

.

• Cov[e, Y ] = 0. This states that the estimation error is uncorrelated with the measurement Y . We
compute this directly as

Cov[e, Y ] = E[(X̃ � Cov[X,Y ]

Var[Y ]
Ỹ )Ỹ ] = Cov[X, Y ] � Cov[X, Y ]

Var[Y ]
Var[Y ] = 0.

• E[eY ] = 0, so that the estimation error is orthogonal to the measurement Y . This is because E[eY ] =
Cov[e, Y ] + E[e]E[Y ] = 0 because E[e] = 0 and Cov[e, Y ] = 0.

• e, Y are jointly Gaussian, since e is a linear transformation of X, Y , and Cov[e, Y ] = 0, then e, Y are
independent!

Example 5.8
Let X,Y be zero-mean, unit variance Gaussian random variables with correlation coe�cient ⇢X,Y = 0.5. Compute the
covariance of X and Y . Compute the conditional probability density of X given Y = 2.

From the correlation coe�cient definition,

⇢X,Y =
Cov[X,Y ]p
Var[X]Var[Y ]

= Cov[X,Y ] = 0.5.

For the conditional density, we know it is Gaussian, so we compute the conditional mean and the conditional covariance.

E[X|Y = 2] = E[X] +
Cov[X,Y ]
Var[Y ]

(2� E[Y ]) = 0.5 · 2 = 1.

Var[X|Y = 2] = Var[X]� cov[X,Y ]2

Var[Y ]
= 1� 0.25 = 0.75.

The conditional density is Gaussian with mean 1, variance 0.75.

Example 5.9
Assume that X, Y are correlated, jointly Gaussian random variables, such that E[X] = E[Y ] = 1,Var[X] = 1,Var[Y ] = 1
and Cov[X,Y ] = 0.5. Define derived random variables A = 2X � 3, B = X � 2Y .

1. Are A, B Gaussian?

Yes. Linear combinations of joint Gaussians are Gaussian.
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2. What are E[A],E[B]?

Using the linearity of expectations, E[A] = 2E[X]� 3 = �1. E[B] = E[X]� 2E[Y ] = �1.

3. Compute Var[A],Var[B].

Since A is a scaled version of X, translated, we have Var[A] = (2)2Var[X] = 4. For B, we use the method for
representing the zero-mean random variables B̃, X̃, Ỹ , so that

Var[B] = E[B̃2] = E[(X̃ � 2Ỹ )2] = E[X̃2]� 4E[X̃Ỹ ] + 4E[Ỹ 2] = Var[X]� 4Cov[X,Y ] + 4Var[Y ] = 3.

4. Compute Cov(A,B).

Proceeding as before with the zero-mean representations,

Cov[A,B] = 2E[X̃2]� 4E[X̃Ỹ ] = 2Var[X]� 4Cov[X,Y ] = 2� 2 = 0.

5. Are X,Y independent? Explain.

They are clearly not independent, since the covariance is non-zero.

6. Are A,B independent? Explain.

Yes, they are independent, because they are uncorrelated and Gaussian.

7. Compute E[Y |A = a].

We know E[Y |A = a] = E[Y ] + Cov[A,Y ]
Var[A] (a� E[A]). We have most of those terms computed, except for Cov[A, Y ],

which is Cov[A, Y ] = E[ÃỸ ] = E[2X̃Ỹ ] = 1. Hence, E[Y |A = a] = 1 + 1
4 (a+ 1).

8. Let e = Y � E[Y |A = a]. Compute E[e2].
Since e is the conditional estimation error, this is asking for the conditional variance Var[Y |A = a] = Var[Y ] �
Cov[Y,A]2

Var[A] = 1� 1
4 = 3

4 .

9. Compute the covariance between B and Y .

By now, we know how to do this with the zero-mean versions:

Cov[B, Y ] = E[B̃Ỹ ] = E[(X̃ � 2Ỹ )Ỹ ] = Cov[X,Y ]� 2Var[Y ] = �3
2
.

Example 5.10
Suppose we have two jointly continuous random variables X,Y , with marginal
probability densities fX(x), fY (y) that are Gaussian. Must the pair X,Y be
jointly Gaussian random variables?
Surprisingly, the answer to this is no. Consider the following jointly continuous
random variables X,Y with joint PDF given by

fX,Y (x, y) =

(
1
⇡ e

� x
2+y

2

2 0  xy,

0 otherwise.

This density is illustrated in the figure on the right. As you can see, it is definitely
not a Gaussian, since the range of (X,Y ) is not all of <2. The marginal density
of X is:

fX(x) =

Z 1

�1
fX,Y (x, y) dy =

8
<

:

1
⇡ e

� x
2

2
R1
0

e�
y
2

2 dy = 1p
2⇡

e�
x
2

2 x � 0,

1
⇡ e

� x
2

2
R 0

�1 e�
y
2

2 dy = 1p
2⇡

e�
x
2

2 x < 0.

y

x

Figure 5.5: Non Gaussian PDF
with Gaussian marginals.

which is Gaussian. Similarly, the marginal density of Y is Gaussian. This shows that having Gaussian marginal densities
does not guarantee that the joint density is Gaussian.

5.5 Random Vectors

So far, we have focused our analysis on pairs of random variables X, Y . Nevertheless, the theory that we
introduced for pairs of random variables extends easily to higher dimensional vectors. Given a probability
space (⌦, E ,P), we can define a random vector as a function that maps outcomes ! 2 ⌦ to vectors x(!) that
take values in <n, an n-dimensional Euclidean space. The theory of random vectors parallels the development
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we have presented for pairs of random variables. We can define the cumulative distribution function FX(x)
for general random vectors. If the random vectors are discrete, one defines the joint Probability Mass
Function PX(x) in a similar manner as we did for pairs of random variables. Random vectors are jointly
continuous if there is a density fX(x) such that the joint CDF can be written as

FX(x) =

Z
· · ·

Z

ax

fX(a1, · · · , an) da1 · · · dan.

While all of this is formally interesting, one seldom has enough information to compute the full multidi-
mensional joint probability density of random vectors, unless one has extra structure. For instance, if the

components of the random vector X =
⇥
X1 X2 · · · Xn

⇤T

are independent, then fX(x) =
nQ

k=1
fXk

(xk).

However, it is much easier to compute statistics such as means, variances and covariances.

In this section, we focus on defining first- and second-order statistics for random vectors, and describe
how they change as the random vectors undergo linear transformations. We show subsequently how to
extend our analysis of pairs of jointly Gaussian random variables to Gaussian random vectors, where the full
joint PDF can be defined in terms of first- and second order statistics.

Let X be a random vector with values in <n. We assume random vectors are column vectors, so

X =

2

6664

X1

X2
...

Xn

3

7775
. We define the mean of X, or its expected value, as E[X] =

2

6664

E[X1]
E[X2]

...
E[Xn]

3

7775
.

Since expectation is a linear operation, this is simply the vector of expected values, one for each random
variable in the random vector X. For pairs of random variables X,Y , this corresponds to stacking the
individual expected values into a vector, as

X =


X
Y

�
; E[X] =


E[X]
E[Y ]

�
.

For pairs of random variables X, we define the covariance matrix ⌃X as

⌃X =


Var[X] Cov[X,Y ]

Cov[X, Y ] Var[Y ]

�
.

Note that this is a symmetric matrix. We can write this covariance matrix as:

⌃X =


E[(X � E[X])2] E[(X � E[X])(Y � E[Y ])]

E[(X � E[X])(Y � E[Y ])] E[(Y � E[Y ])2]

�

= E
h 

(X � E[X])2 (X � E[X])(Y � E[Y ])]
(X � E[X])(Y � E[Y ]) (Y � E[Y ])2

� i
,

= E
h
(X � E[X])(X � E[X])T

i

where XT is the transpose of the column vector, resulting in a row vector. Hence, the covariance matrix is the
expected value of the outer product between a column vector of dimension 2, and a row vector of dimension
2, resulting in a 2⇥2 matrix. Note that this is simply arranging the scalar statistics Var[X],Var[Y ],Cov[X, Y ]
in a matrix form. We can generalize this to n-dimensional random vectors.

For an n-dimensional random vector X, the covariance matrix is an n ⇥ n matrix defined as

⌃X = E
h
(X � E[X])(X � E[X])T

i
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Using the linearity property of expectations, and multiplying the matrix, we get

⌃X = E
h
XXT � E[X]XT � XE[X]T + E[X]E[X]T

i

= E
h
XXT

i
� E

h
E[X]XT

i
� E

h
XE[X]T

i
+ E

h
E[X]E[X]T

i

= E
h
XXT

i
� E[X]E

h
XT

i
� E

h
X

i
E[X]T + E[X]E[X]T (Take out constants from expectations)

= E
h
XXT

i
� E[X]E[X]T (add the last 3 terms, which are the same.)

This is the generalization of the scalar identity Cov[X] = E[X2]�(E[X])2 to the vector case. As in the scalar

case, the covariance matrix can be computed as the di↵erence between the second moment matrix E
h
XXT

i

and the outer product of the mean vectors E[X]E[X]T .

Note that every element in the covariance matrix is either a variance of a random variable, or a covariance
between two random variables. Specifically,

⌃X = .

2

6664

Var[X1] Cov[X1, X2] · · · Cov[X1, Xn]
Cov[X1, X2] Var[X2] · · · Cov[X2, Xn]

...
...

. . .
...

Cov[X1, Xn] Cov[X2, Xn] · · · Var[Xn]

3

7775

Thus, the covariance matrix is a compilation of the second order statistics for the scalar components of the
random vector X.

The covariance matrix ⌃X has the following properties:

• It is a symmetric matrix.

• It is a positive semidefinite matrix: for any non-zero n-dimensional vector a, the scalar defined by the
matrix vector product aT⌃Xa � 0. See the appendix on linear algebra for details on what positive
semi-definite means.

• The matrix ⌃X has all of its eigenvalues on the real line, and they are non-negative.

• The matrix ⌃X has n distinct eigenvectors, and each eigenvector is perpendicular to the others.

These properties will be useful in later chapters when we discuss problems of feature aggregation in data
science problems. We briefly justify the most important property, that states that the covariance matrix must
be positive semidefinite. Note the following: Given a random n-dimensional vector X and an n-dimensional
constant vector a, the random variable Z = aT X is a linear combination of the elements of X. If X were
zero-mean, then E[Z] = E[aT X] = aTE[X] = 0. Thus, Z is also zero mean, with variance

Var[Z] = E[Z2] = E[aT XXT a] since aT X = XT a,

= aTE[XXT ]a = aT⌃Xa � 0

Thus, the positive semidefinite property follows because covariances of random variables are non-negative.
Note how we carefully moved the constants a from the correct side of the expectation to keep the dimensions
matching for the vector-matrix products.

Example 5.11
Suppose we have jointly continuous random variables X = [X1, X2, X3]

T , with joint probability density function

fX(x) =

(
6 0  x1  x2  x3  1,

0 elsewhere.

Compute the covariance matrix ⌃X .
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The range RX of the density is shown on the right. We can see that it is an inverted
triangular pyramid with base area 0.5 and height 1, so its volume is 1

6 , hence we use
the constant 6 as the density in the range.

We begin by computed the expected values:

E[X1] =

ZZZ

x2RX

x1fX(x) dx =

Z 1

0

⇣Z x3

0

(

Z x2

0

6x1 dx1) dx2

⌘
dx3 =

Z 1

0

x3
3 dx3 =

1
4

E[X2] =

ZZZ

x2RX

x2fX(x) dx =

Z 1

0

⇣Z x3

0

(

Z x2

0

6x2 dx1) dx2

⌘
dx3 =

Z 1

0

2x3
3 dx3 =

1
2

E[X3] =

ZZZ

x2RX

x3fX(x) dx =

Z 1

0

⇣Z x3

0

(

Z x2

0

6x3 dx1) dx2

⌘
dx3 =

Z 1

0

3x3
3 dx3 =

3
4

Example
• X with PDF 

x1
x2

x3

Figure 5.6: Range for Exam-
ple.

Next, we compute the second moments:

E[X2
1 ] =

ZZZ

x2RX

x2
1fX(x) dx =

Z 1

0

✓Z x3

0

(

Z x2

0

6x2
1 dx1) dx2

◆
dx3 =

Z 1

0

x4
3

2
dx3 =

1
10

E[X2
2 ] =

ZZZ

x2RX

x2
2fX(x) dx =

Z 1

0

✓Z x3

0

(

Z x2

0

6x2
2 dx1) dx2

◆
dx3 =

Z 1

0

3x4
3

2
dx3 =

3
10

E[X2
3 ] =

ZZZ

x2RX

x2
3fX(x) dx =

Z 1

0

✓Z x3

0

(

Z x2

0

6x2
3 dx1) dx2

◆
dx3 =

Z 1

0

3x4
3 dx3 =

3
5

Finally, we compute the covariances between the components of X as

E[X1X2] =

ZZZ

x2RX

x1x2fX(x) dx =

Z 1

0

✓Z x3

0

(

Z x2

0

6x1x2 dx1) dx2

◆
dx3 =

Z 1

0

3x4
3

4
dx3 =

3
20

E[X1X3] =

ZZZ

x2RX

x1x3fX(x) dx =

Z 1

0

✓Z x3

0

(

Z x2

0

6x1x3 dx1) dx2

◆
dx3 =

Z 1

0

x4
3 dx3 =

1
5

E[X2X3] =

ZZZ

x2RX

x2x3fX(x) dx =

Z 1

0

✓Z x3

0

(

Z x2

0

6x2x3 dx1) dx2

◆
dx3 =

Z 1

0

2x4
3 dx3 =

2
5

Thus, the variances and covariances are given by:

Var[X1] = E[X2
1 ]� (E[X1])

2 =
1
10

� 1
16

=
3
80

Var[X2] = E[X2
2 ]� (E[X2])

2 =
3
10

� 1
4
=

1
20

Var[X3] = E[X2
3 ]� (E[X3])

2 =
3
5
� 9

16
=

3
80

Cov[X1, X2] = E[X1X2]� E[X1]E[X2] =
3
20

� 1
8
=

1
40

Cov[X1, X3] = E[X1X3]� E[X1]E[X3] =
1
5
� 3

16
=

1
80

Cov[X2, X3] = E[X2X3]� E[X2]E[X3] =
2
5
� 3

8
=

1
40

The full covariance matrix is

⌃X =

2

4
0.1 0.15 0.2
0.15 0.3 0.4
0.2 0.3 0.6

3

5�

2

4
0.25
0.5
0.75

3

5 ⇥
0.25 0.5 0.75

⇤
=

2

4
0.0375 0.0250 0.0125
0.0250 0.0500 0.0125
0.0125 0.0125 0.0375

3

5
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Assume we have a random n-dimensional vector X with mean m
X

and covariance ⌃X . Define an a�ne
transformation of X as follows: Let A be an m ⇥ n matrix, and d be an m-dimensional vector. The
m-dimensional random vector Y is given by:

Y = AX + d.

We want to compute the first- and second-order statistics of Y based on knowing the statistics of X.

It is easy to compute the mean using linearity of expectation:

E[Y ] = E[AX + d] = E[AX] + E[d] = AE[X] + d = Am
X

+ d

where we have pulled out constants from the expectations. Note that, since we are dealing with matrices
and vectors, we move the constant matrix A out on the left side of the expectation, so that the dimensions
of the matrices agree when doing matrix-vector multiplication.

To compute the covariance matrix of Y , we subtract the mean from both sides, to get:

Y � E[Y ] = AX + d � Am
X

� d = A(X � m
X

)

Using the definition of covariance, we compute it as follows:

⌃Y = E

(Y � E[Y ])(Y � E[Y ])T

�
= E


A(X � m

X
)

✓
A(X � m

X
)

◆T �

= E

A(X � m

X
)(X � m

X
)TAT

�

= AE

(X � m

X
)(X � m

X
)T

�
AT

= A⌃XAT

This is the generalization of the scalar scaling law for covariances, where if Y = aX, then Var[Y ] =
a2Var[X]. The extension to vectors is careful to keep the order of the scaling by A and AT to keep the
dimensions of the resulting matrix correct.

Example 5.12
Let’s revisit the example of 5.7. We have a pair of random variables X,Y with first- and second-order statistics E[X] =
E[Y ] = 0,Var[X] = Var[Y ] = 1

4 ,Cov[X,Y ] = 0.

Let’s form this into a vector X =


X
Y

�
. The mean vector mX =


0
0

�
, and the resulting covariance matrix is

⌃X =


1
4 0
0 1

4

�
.

Define two new variables defined as U = 3X +2Y +1, V = 2X � 3Y � 1. Define the vector W =


U
V

�
. We can write

the transformation from X to W as:

W =


3 2
2 �3

�
X +


1
�1

�
.

Then, the first- and second-order statistics of W are:

E[W ] =


3 2
2 �3

�
E[X] +


1
�1

�
=


1
�1

�
.

⌃W =


3 2
2 �3

�
⌃X


3 2
2 �3

�T

=


3 2
2 �3

� 
1
4 0
0 1

4

� 
3 2
2 �3

�

=


3 2
2 �3

� 
3
4

1
2

1
2 � 3

4

�
=


13
4 0
0 13

4

�

which says that Var[U ] = 13
4 ,Var[V ] = 13

4 ,Cov[U, V ] = 0. These are the same answers we saw in Example 5.7.
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Example 5.13
Let’s revisit Example 5.9. Assume that X, Y are correlated random variables, such that E[X] = E[Y ] = 1,Var[X] =

1,Var[Y ] = 1 and Cov[X,Y ] = 0.5. Let X =


X
Y

�
. Then,

E[X] =


1
1

�
; ⌃X =


1 0.5
0.5 1

�
.

Define derived random variables A = 2X � 3, B = X � 2Y . Let W =


A
B

�
. Then,

W =


2 0
1 �2

�
X +

⇥
�3 0

⇤
.

Using this equation, we obtain

E[W ] =


2 0
1 �2

�
E[X] +


�3
0

�
=


2 0
1 �2

� 
1
1

�
+


�3
0

�
=


�1
�2

�

⌃W =


2 0
1 �2

� 
1 0.5
0.5 1

� 
2 0
1 �2

�T

=


2 0
1 �2

� 
1 0.5
0.5 1

� 
2 1
0 �2

�

=


2 0
1 �2

� 
2 0
1 �1.5

�
=


4 0
0 3

�

and thus Var[A] = 4,Var[B] = 3, and Cov[A,B] = 0, agreeing with the results from Example 5.9.

As the examples illustrate, the use of random vectors enables us to recover the same first- and second-
order statistics for the random variables when we analyze them individually as pairs of random variables.
The advantage of the vector notation is that it scales nicely to compute statistics for random vectors of
dimension greater than 2, exploiting simple results from linear algebra.

5.5.1 Gaussian random vectors

A special case of random vectors is what are termed Gaussian random vectors. For pairs of jointly
Gaussian random variables X, Y , their joint PDF is completely characterized by the first- and second-order
statistics. Extending this to random vectors of dimension greater than two is straightforward, as we will
show below.

We define a jointly Gaussian random vector as a generalization of what we did with pairs of random
variables. First, we define n independent standard Gaussian random variables Zi ⇠ N (0, 1). We define the
vector

Z =

2

6664

X1

X2
...

Xn

3

7775
.

Then, an n-dimensional random vector X =

2

6664

X1

X2
...

Xn

3

7775
is defined to be a Gaussian random vector (or

equivalently, {X1, . . . , Xn} are defined to be a set of jointly Gaussian random variables) if

X = AZ + b

for some n ⇥ n matrix A and some n-dimensional vector b.
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Note that Z has mean 0, with covariance matrix as the n⇥n identity matrix In. Hence, E[X] = A0+b = b.
Furthermore, the covariance matrix of X is

⌃X = A⌃ZA
T = AAT .

For a Gaussian random vector Z to be jointly continuous, the transformation A must be invertible. This
means that the resulting covariance ⌃X is invertible. We focus only on jointly continuous random Gaussian
random variables in this text.

An equivalent definition is that X =

2

6664

X1

X2
...

Xn

3

7775
is a Gaussian random vector if, for all constant vectors

a =

2

6664

a1

a2
...

an

3

7775
, the random variable Z =

P
n

k=1 akXk is a Gaussian random variable. Note that Z = aT X in

vector notation. As noted before, it is not enough that each entry Xi is marginally a Gaussian random
variable for the vector to be a Gaussian random vector! All linear combinations of the entries must also be
Gaussian. The converse, however is true: the entries of a Gaussian random vector are individually Gaussian
random variables.

If X had mean m
X

and covariance ⌃X , then Z = aT X is a scalar Gaussian random variable with mean

E[Z] = aT m
X

and variance aT⌃Xa.

A jointly continuous Gaussian random vector X have a probability density function that is completely
described by its mean m

X
and covariance ⌃X . We use the notation X ⇠ N(m

X
,⌃X) to denote this density.

We can write the joint PDF of X as

fX(x) =
1p

(2⇡)ndet(⌃X)
e� 1

2 (x�m
X

)T (⌃X)�1(x�m
X

).

An important property of pairs of jointly Gaussian random variables X, Y is that they are independent
if and only if Cov[X, Y ] = 0. For Gaussian random vectors, the components X1, X2, . . . , Xn are mutually
independent if and only if Cov[Xi, Xj ] = 0 for all i, j 2 1, . . . , n, i 6= j. What this means is that the
covariance matrix ⌃X is diagonal, with zeros in all the non-diagonal entries. For independent random
vectors, the covariance matrix is

⌃X =

2

6664

Var[X1] 0 · · · 0
0 Var[X2] · · · 0
...

...
. . .

...
0 0 · · · Var[Xn]

3

7775

In this special case,

⌃�1
X

=

2

66664

1
Var[X1]

0 · · · 0

0 1
Var[X2]

· · · 0
...

...
. . .

...
0 0 · · · 1

Var[Xn]

3

77775

and the joint probability density factors as

fX(x) =
nY

k=1

1p
2⇡Var[Xk]

e
� (x

k
�m

k
)2

2Var[X
k
] ,

which shows the equivalence between independence and having a diagonal covariance matrix.
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Example 5.14
Let’s revisit Example 5.12 where X,Y are jointly Gaussian random variables with first- and second-order statistics E[X] =

E[Y ] = 1,Var[X] = 1,Var[Y ] = 1 and Cov[X,Y ] = 0.5. Let X =


X
Y

�
. Then,

E[X] =


1
1

�
; ⌃X =


1 0.5
0.5 1

�
.

Define W as

W =


2 0
1 �2

�
X +

⇥
�3 0

⇤
.

Then, from Example 5.12, we know

E[W ] = mW =


�1
�2

�
; ⌃W =


4 0
0 3

�
.

which implies that the two components of W are uncorrelated, and hence, mutually independent. The joint density of W
is Gaussian, and given by

fW (w) =

✓
1p
8⇡

e�
(w1+1)2

8

◆✓
1p
6⇡

e�
(w2+2)2

6

◆
,

which shows the factored form.


