
Chapter 6

Detection Theory

In this chapter we start our investigation of statistical detection theory, also referred to as hypothesis testing
or sometimes decision theory. The fundamental problem in statistical detection theory is summarized as
follows: In a probability experiment, one and only one of several possible events has happened. After
collecting observations with distributions that depend on which event happened, make a decision as to
which one of the events actually happened. To illustrate this, consider the following example:

Example 6.1
A sonar system transmits pressure pulses into the water in a given direction, hoping to determine whether a submarine is
present in that direction or not. The pulses propagate through the water, and interact with background as well as with
a submarine if it is present. The sonar receiver listens for echoes, which may come from the submarine, as well as from
background such as ocean floor features, large sea mammals, school of fish, etc. The receiver collects the echoes, and
must decide whether there is a submarine present or not based on the received signal.

Note the key components of this problem. There are two possible events, corresponding to many di↵erent
outcomes in the sample space: the event where a submarine is present in the direction of the sonar pulses,
and the event where the submarine is absent. These events are disjoint, and in the terminology of probability
events, collectively exhaustive: one of the two events must happen. We collect a measurement, which is a
random variable that is a function of the outcome in the experiment. Based on the observed measurement,
we must make a decision as to which one of the two possible events is “best to choose.”
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Figure 6.1: Detection problem components.

A general model of this process is shown in Figure 6.1. There are two possible events in the sample
space ⌦, each of which represents many outcomes. Each of these events is called a hypothesis. We use a
measurement instrument that collects a random variable Y . Based on the measurement observation Y = y,
we must design a rule to decide which is the correct hypothesis.

From Figure 6.1 we see that we will need three components in our model:

1. A model of generation processes that creates H0, H1.

2. A model of the observation process that generates the observation Y = y.

3. A decision rule D(y) that maps each possible observation value y to an associated decision.
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In general, the first two elements are set by the experiment or the restrictions of the physical data
gathering situation, and we need to model them, but we don’t control their design. For example, if we are
trying to decide whether an area in a breast cancer mammogram is cancerous or not, the true state of that
area (cancerous or not) is selected by processes outside of our control. The measurement instrument (the
X-Ray imager) is a physical sensor that generates noisy images depending on whether the area is cancerous
or not.

We want to avoid generating a complete description of the probability space (⌦, E ,P) to model the
relationship of the observations Y and the event hypotheses H0, H1. Assume Y is a discrete random variable.
Using the Law of Total Probability yields

P[{Y = y}] = P[{Y = y} \ H0] + P[{Y = y} \ H1] = P[{Y = y}|H0]P[H0] + P[{Y = y}|H1]P[H1]

= PY |H0
(y)P[H0] + PY |H1

(y)P[H1]

This indicates the components of how we model the detection problem:

1. A model of generation processes that creates H0, H1: P[H1],P[H0].

2. A model of the observation process that generates the observation Y = y: P[{Y = y}|H0],P[{Y =
y}|H1].

This is a compact, probabilistic description that represents the detection problem. Based on this model,
we design a decision rule that maps the possible measurement values into a decision. When there are only two
possible hypotheses H0, H1, this decision rule corresponds to a partition of the space of possible observations
into two regions: the region where the decision will be H1, and the region where the decision will be H0, as
illustrated in Figure 6.2.
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Figure 6.2: Illustration of a decision rule as a partition of the observation space into disjoint regions, illus-
trated here for the case of two possibilities.

We first discuss in detail the case that arises when there are only two possible hypotheses, termed binary
hypothesis testing. Subsequently, we discuss the more general case of M hypotheses, for M > 2.

6.1 Binary Hypothesis Testing

In this section we consider the simplest case when there are only two possible states of nature or hypotheses,
which by convention we label as H0 and H1. This situation is termed “binary hypothesis testing” and the
H0 hypothesis is usually termed the “null hypothesis,” due to its typical association with the absence of
some quantity of interest.

The binary case is of considerable practical importance, as well as having a long and rich history. Let’s
examine a few motivating applications before proceeding to more detailed developments.
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Example 6.2 (Communications)
Consider the following simplified version of a communication system, where a source broadcasts one bit, (either 0 or 1)
The transmitter encodes this bit by a voltage, which is either 0 or E, depending on the bit. The receiver observes a noisy
version of the transmitted signal, where the noise is additive, and is represented by a random variable w with zero-mean,
variance �2, and Gaussian distribution. The receiver knows the nature of the signal E, the statistics of the noise �2, and
the apriori probability p(k) that the bit sent was k, where k = 0, 1. The receiver must take the received signal, y, and map
this using a rule D(y) into either 0 or 1, depending on the value of r. The problem is to determine the decision rule for
which the probability of receiver error is minimized.

Example 6.3 (Radar)
A simple radar system makes a scalar observation y to determine the absence or presence of a target at a given range
and heading. If a target is present (hypothesis H1), the observed signal is y = E + w, where E is a known signal level,
and w ⇠ N(0,�2). If no target is present (hypothesis H0), then only noise is received y = w. Find the decision rule for
maximizing the probability of detecting the target, given a bound on the probability of false alarm.

Example 6.4 (Quality Control)
At a factory, an automatic quality control device is used to determine whether a manufactured unit is satisfactory (hypothesis
H0) or defective (hypothesis H1), by measuring a simple quality factor q. Past statistics indicate that one out of every
10 units is defective. For satisfactory units, q ⇠ N(2,�2), whereas for defective units, q ⇠ N(1,�2). The quality control
device is set to remove all units for which q < t, where t is a threshold to be designed. The problem is to determine
the optimal threshold setting in order to maximize the probability of detecting a defect, subject to the constraint that the
probability of removing a satisfactory unit is at most 0.005.

All of the above examples illustrate the problem of binary hypothesis testing. We will develop the relevant
theory next.

6.1.1 Detection model

The detection problem is set in a probability space (⌦, E ,P), which we
model in a very abbreviated way. Assume there are only two hypoth-
esis, denoted as H0 and H1, which are events in E are events in the
which are mutually disjoint, and collectively exhaustive (H0[H1 = ⌦).
We know P[H0],P[H1]. The figure on the right illustrates the events
H0, H1 in the sample space, representing a partition of ⌦.
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Figure 6.3: Events H0, H1.

Observation model: The measurement is a random variable Y defined on (⌦, E ,P). Y can be either
discrete or continuous. For discrete Y , we model the measurement using a pair of conditional probability mass
functions PY |H1

(y), PY |H0
(y). For continuous Y , we model the measurement in terms of a pair of conditional

probability density functions fY |H1
(y), fY |H0

(y). These conditional probability functions are known, and are
referred to as the likelihoods of the measurement Y = y given the di↵erent hypotheses.

The figure on the right illustrates the observation model. Note that
outcomes in H0 and outcomes in H1 can map to the same observation
Y = y. However, it may be more likely to occur under one of those
two hypotheses, as determined by the likelihoods PY |H1

(y), PY |H0
(y)

or fY |H1
(y), fY |H0

(y). These likelihoods will influence which decisions
to make.
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Figure 6.4: Likelihoods
PY |H1

(y), PY |H0
(y).

Decision rule: A decision rule is a function U = D(Y ) of the random variable Y , that maps Y into a
decision U 2 {0, 1}. The decision D(y) = 0 corresponds to deciding that H0 is the selected hypothesis when
the observation is Y = y, and D(y) = 1 indicates that H1 is the selected hypothesis for Y = y. U = D(Y ) is
a discrete random variable, mapping the range RY into two possible values. The sets {y 2 RY : D(y) = 0}
and {y 2 RY : D(y) = 1} form a partition of RY , because D(·) is a function defined everywhere on RY .
This is illustrated in Figure 6.2.
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The decision rule is the solution we design for the detection problem. To do proper design, we select the
decision rule on the basis of how good its performance will be.

One way to measure performance is in terms of the errors made by
the decision rule. Specifically, when H0 is true, and generates a mea-
surement Y = y such that D(y) = 1, the decision rule has made an
error. The figure on the right illustrates the two types of error that the
decision rule can make. When H0 is the event that generates. mea-
surement Y = y, and the decision rule selects D(y) = 1, we call this a
false alarm. This terminology dates back to early detection problems
such as detecting aircraft using radar, where H0 was the hypothesis
that no airplanes were present. Similarly, when the measurement y is
generated by H1, and D(y) is such that D(y) = 0, we refer to this as
a missed detection.

10

1
2

Decision Errors
1) System selects H1 when H0 is true 
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Errors.

Given a detection rule U = D(Y ), we can compute the probability of a missed detection using the
likelihood PY |H1

(y) if Y is discrete or fY |H1
(h) if Y is continuous. Denote by A0 the subset of the range of

Y where D(y) = 0: A0 = {y 2 RY : D(y) = 0}. Then, the probability of a missed detection is

PMD ⌘ P[y 2 A0|H1] =

(P
y2A0

PY |H1
(y) Y is a discrete random variable,R

y2A0
fY |H1

(y) dy Y is a continuous random variable.

Thus, PMD is the probability of making an erroneous decision when H0 is true.

Similarly, let A1 = {y 2 RY : D(y) = 1}. Then, A0 [ A1 = RY , the range of possible values of Y . The
probability of a false alarm is computed using the likelihood PY |H0

(y) if Y is discrete or fY |H0
(h) if Y is

continuous as follows:

PFA ⌘ P[y 2 A1|H0] =

(P
y2A1

PY |H0
(y) Y is a discrete random variable,R

y2A1
fY |H0

(y) dy Y is a continuous random variable.

PFA is the probability of making an erroneous decision when H1 is true.

Note that PFA, PMD are conditional statistics. If we know P[H0],P[H1], we can compute unconditional
statistics such as the average probability of error using the Law of Total Probability, as:

Pe ⌘ P[Error] = P[Error|H0]P[H0] + P[Error|H1]P[H1] = PFAP[H0] + PMDP[H1].

We can now use these performance measures to define criteria for selecting a decision rule. We describe
di↵erent approaches for designing decision rules next.

6.2 Maximum Likelihood Detection

The most common approach for designing a decision rule is known as maximum likelihood detection.
Assume that Y is a discrete random variable. Given a measurement y, we compute the likelihood of this
measurement under each hypothesis, using PY |H0

(y) and PY |H1
(y). The maximum likelihood (ML) decision

selects the hypothesis that has the largest likelihood for that measurement. That is,

DML(y) =

(
1, PY |H1

(y) � PY |H0
(y),

0, PY |H1
(y) < PY |H0

(y).

We break ties arbitrarily, so we assign a tie to 1.

The maximum likelihood method for detection and estimation was developed by the statistician R. A.
Fisher in the early 20th century, although some limited results appeared earlier.
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Example 6.5
Assume we have a coin, which may be biased so that the probability of obtaining heads is 0.6. Hypothesis H1 is that the
coin has probability of heads = 0.6. Hypothesis H0 is that the coin is unbiased, so the probability of heads = 0.5. To
detect whether the coin is biased or not, we conduct an experiment, where we flip the coin independently 5 times, and
count the number of heads that appear in the experiment. Thus, the measurement in the experiment, Y , is the number
of heads in five coin flips.

Y is a discrete random variable, with RY = {0, 1, 2, 3, 4, 5}. The above description lets us describe the likelihood
functions: PY |H0(y) is the probability mass function of a Binomial(5,0.5) random variable, and PY |H1(y) is the probability
mass function of a Binomial(5,0.6) random variable. In this case, the range RY is small, so we can enumerate the two
probability mass functions, and compare their values for each y 2 RY , as shown in the table below.

Y : 0 1 2 3 4 5

PY |H1 0.01024 0.0768 0.2304 0.3456 0.2592 0.07776
PY |H0 0.03125 0.15625 0.3125 0.3125 0.15625 0.03125

To compute the maximum likelihood decision, we compare the numbers in each column, and pick the larger of the two
numbers. In the table above, we have highlighted the larger number in bold and magenta color. Thus we see that the
maximum likelihood decision rule becomes:

DML(y) =

(
1, y = 3, 4, 5,

0, y = 0, 1, 2.

The decision agrees with intuition: a larger count of heads suggests the coin is more likely to be unbalanced, whereas a
smaller count of heads indicates the coin is more likely to be balanced.

What is the performance of the maximum likelihood decision rule? Let’s compute the probability of missed detection.
As discussed above, this is the probability that, when H1 is the correct hypothesis, we get a value y where the decision
DML(y) is 0. Therefore,

PMD = P[{y = 0, 1, 2}|H1] = PY |H1(0) + PY |H1(1) + PY |H1(2) = 0.31744.

Similarly, the probability of false alarm is the probability that, when H0 is the correct hypothesis, we get a measurement
Y = y where DML(y) = 1. Then,

PFA = P[{y = 3, 4, 5}|H0] = PY |H0(3) + PY |H0(4) + PY |H0(5) = 0.5

Assuming that P[H0] = P[H1] = 0.5, we can compute the probability of error as

Pe = P[H0]PFA + P[H1]PMD = 0.40872.

We can rewrite the maximum likelihood decision rule in terms of a ratio. Define the likelihood ratio
as a function of the measurement value Y = y, as

L(y) =
PY |H1

(y)

PY |H0
(y)

.

The maximum likelihood decision rule can be written in terms of the likelihood ratio as

DML(y) =

(
1, L(y) � 1,

0, L(y) < 1.

We abbreviate this decision using this notation: DML(y) = {L(y) =
PY |H1

(y)

PY |H0
(y)

H1

?
H0

1}. This indicates that,

when the inequality is in the “greater than” direction, the decision selected is that of hypothesis H1, and
when the inequality is reversed, the decision selected is that of hypothesis H0.

We can often compute the maximum likelihood decision rule analytically using the expressions for the
probability mass functions and the likelihood ratio. For Example 6.5, the likelihood ratio is

L(y) =

�5
y

�
(0.4)5�y(0.6)y

�5
y

�
(0.5)5�y(0.5)y

=
(0.4)5�y(0.6)y

(0.5)5
= 25(0.4)5�y(0.6)y = (0.8)5(1.5)y
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We want to compare L(y) to 1. Therefore, the maximum likelihood detection rule is L(y) =
PY |H1

(y)

PY |H0
(y)

H1

?
H0

1.

To compute the performance of the maximum likelihood detector, we need to identify the values of Y = y
for which DML(y) = 0 and for which DML(y) = 1. When we enumerate the likelihoods for all values of
Y = y as in Example 6.5, this is straightforward. For larger RY , enumeration is impractical, so we need to
further simplify the maximum likelihood decision rule to determine these regions.

To simplify this, we make the following observation: L(y) > 1 () ln
�
L(y)

�
> 0. Computing the

logarithm of the likelihood ratio L(y) yields ln
�
L(y)

�
= 5 ln(0.8) + y ln(1.5). Then,

ln
�
L(y)

�
> 0 () y >

5 ln(1.25)

ln(1.5)
⇡ 2.751.

Thus, for y = 3, 4, 5, the likelihood ratio L(y) is greater than 1, and for y = 0, 1, 2, the likelihood ratio is less
than 1. This is the same maximum likelihood decision rule derived in Example 6.5.

Using logarithms often makes it easier to identify the decision rule in terms of a region of values of y, as
we saw above. We can write the maximum likelihood decision rule in terms of the log-likelihood ratio,

the logarithm of the likelihood ratio, as DML(y) = {ln

✓
PY |H1

(y)

PY |H0
(y)

◆
H1

?
H0

0}.

Example 6.6
Radar systems usually send trains of pulses to detect the presence of aircraft in the direction the radar is aimed at. Each
of these pulses potentially generates a reflection; for each pulse, a decision as to whether an aircraft is present or not can
be made based on the received pulse signal strength, comparing it to a threshold. The final decision for detecting the
presence of aircraft is based on the total number of pulses received that had su�cient signal strength. The detections on
each pulse are assumed to be independent, conditioned on whether an aircraft is present or not.

Assume that the probability of detecting an aircraft in a single pulse, assuming the aircraft is present, is p1. If the aircraft
is not present, the probability of having enough background signal strength to generate a detection is p0. Assume that n
pulses get transmitted, and p1 > p0. What is the maximum likelihood detector?

The problem is stated in terms of two hypotheses: H1 is where the aircraft is present, and H0 is where there is no aircraft
present. From the problem description, the observation Y consists of the number of pulses that generate a detection, which
can take values in {0, 1, . . . , n}. The likelihood PY |H1(y) is a Binomial(n, p1) distribution, and the likelihood PY |H0(y) is
a Binomial(n, p0) distribution.

Since n, p1, p0 are left as variables, we cannot simply enumerate the possible values of Y in a table and find the best
decision for each value of y. Nevertheless, we can analyze this using log-likelihood ratios, as:

L(y) =
PY |H1(y)

PY |H0(y)
=

�
n
y

�
py1(1� p1)

n�y

�
n
y

�
py0(1� p0)n�y

=
⇣1� p1
1� p0

⌘n⇣ (p1(1� p0)
p0(1� p1)

⌘y

ln(L(y)) = n ln(
1� p1
1� p0

) + y ln(
(p1(1� p0)
p0(1� p1)

)

We see that the log-likelihood ratio is increasing in y (because p1 > p0, so 1� p1 < 1� p0.) Furthermore for y = 0, the
log-likelihood ratio is negative. Hence, there is a value of y for which the log-likelihood ratio equals 1. That value is

y⇤ =
n ln(1� p0)� n ln(1� p1)

ln(p1(1� p0))� ln(p0(1� p1))

For instance, if p1 = 0.7, p2 = 0.2, n = 20, we get y⇤ ⇡ 8.78, so the maximum likelihood detector declares a detection if

9 or more pulses are detected. Hence, DML(y) = {y
H1

?
H0

8.78}, which is a simple detector to implement.

We can now compute the probabilities of missed detection and false alarm as sums, as

PMD = P[{Y < y⇤}|H1] =
X

y<y⇤

 
n
y

!
(p1)

y(1� p1)
n�y.
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PFA = P[{Y > y⇤}|H0] =
X

y>y⇤

 
n
y

!
(p0)

y(1� p0)
n�y.

For the values p1 = 0.7, p2 = 0.2, n = 20, we get PMD] ⇡ 0.005, PFA ⇡ 0.010, which shows that, even though single
pulse detection is not very accurate, by sending 20 pulses we increase our performance to near-perfect detection.

For continuous observations Y , the maximum likelihood rule is expressed in terms of the likelihood

ratio using the conditional probability densities fY |H1
(y), fY |H0

(y). In this case, L(y) =
fY |H1

(y)

fY |H0
(y) , and the

maximum likelihood decision rule is given as DML(y) = {PY |H1
(y)

PY |H0
(y)

H1

?
H0

1}. For continuous random variables,

enumerating the likelihood values for each y is no longer possible; to find the regions A1 = {y 2 RY :
DML(y) = 1} and A0 = {y 2 RY : DML(y) = 0}, we use the log-likelihood ratio to solve for the region.

Example 6.7
You are interested in diagnosing whether a person has a fever associated with a particular disease based on measuring
their temperature. If the person does not have a disease, the measured temperature is expected to be a Gaussian random
variable with mean 98.1 degrees Fahrenheit and standard deviation 1 degree Fahrenheit. If the person has the disease,
the average temperature is 101 degrees Fahrenheit and standard deviation 1 degree Fahrenheit. What is the maximum
likelihood detector? For the maximum likelihood detector, what are the probabilities of missed detection and false alarm?

Let H1 be the event where the person has the disease, and H0 the event where the person does not have the disease. The
maximum likelihood detector is readily written in terms of the likelihood ratio as:

DML(y) =

(
1p
2⇡

e�
(y�101)2

2

1p
2⇡

e�
(y�98.1)2

2

H1

?
H0

1.

)

To evaluate the performance, we use the log-likelihood ratio, which is

lnL(y) = ln

 
e�

(y�101)2

2

e�
(y�98.1)2

2

!
= � (y � 101)2

2
+

(y � 98.1)2

2

= (101� 98.1)y � 1012

2
+

98.12

2
= (101� 98.1)y � (101� 98.1)(101 + 98.1)

2
.

Equating this to 0, we get that y⇤ = (101+98.1)
2 = 99.55, the average of the

two expected values. If y > y⇤, then DML(y) = 1, and if y < y⇤, DML = 0.
This is illustrated in the figure on the right, where the vertical blue line shows
the value of y⇤. To the right of that blue line, we have fY |H1(y) > fY |H0(y).
To the left, the inequality is reversed. We can now compute the performance as
follows:

PFA = P[{y � 99.55}|H0] = 1� �(1.45) = Q(1.45).

where the threshold y⇤ = 99.55 is 1.45 standard deviations higher than the
average 98.1. Similarly,

PMD = P[{y � 99.55}|H1] = �(�1.45) = Q(1.45).

y
Figure 6.6: Example 6.7.

6.3 Maximum A Posteriori (MAP) Detection

In maximum likelihood detection, we designed the detection rule independent of the prior probabilities of
each event hypothesis, P[H0] and P[H1]. However, in many cases, the probabilities P[H0] and P[H1] can be
very di↵erent. For instance, when testing for the presence of measles in a college-age student, the probability
that the observed symptoms actually come from measles is small, as most college-age students have received
an immunization vaccine. In this section, we show how to design detection algorithms that integrate this
type of information.
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Assume the measurements Y are discrete-valued, and we know P[H0],P[H1]. We refer to P[H0],P[H1]
as the prior probabilities, as they are known before measuring Y . After measuring Y , we compute the a
posteriori or conditional probabilities of H0 and H1 given Y = y using Bayes’ Rule, as

P[H0|{Y = y}] =
P[H0 \ {Y = y}]

P[{Y = y}]
=

P[{Y = y}|H0]P[H0]

P[{Y = y}]
=

PY |H0
(y)P[H0]

P[{Y = y}]
,

where the denominator is computed using the Law of Total Probability, as

P[{Y = y}] = P[{Y = y}|H0]P[H0] + P[{Y = y}|H1]P[H1] = PY |H0
(y)P[H0] + PY |H1

(y)P[H1].

Similarly,

P[H1|{Y = y}] =
P[{Y = y}|H1]P[H1]

P[{Y = y}]
=

PY |H1
(y)P[H1]

P[{Y = y}]
.

The maximum a posteriori (MAP) decision rule is defined as follows:

DMAP (y) =

(
1, P[H1|{Y = y}] � P[H0|{Y = y}],

0, P[H0|{Y = y}] > P[H1|{Y = y}].

where we arbitrarily assign ties to 1. Since the denominator in Bayes’ Rule is the same for P[H1|{Y = y}]
and P[H0|{Y = y}], this rule is the same as

DMAP (y) =

(
1, PY |H1

(y)P[H1] � PY |H0
(y)P[H0],

0, PY |H0
(y)P[H0]] > PY |H1

(y)P[H1].

This allows us to rewrite the MAP decision rule in terms of the likelihood ratio, as

DMAP (y) =

(
L(y) =

PY |H1
(y)

PY |H0
(y)

H1

?
H0

P[H0]

P[H1]

)
.

Note that the data-dependent computation in the MAP decision rule is to compute the likelihood ratio,
just as in the ML decision rule. What changes is the threshold that one compares the maximum likelihood
to. In the ML case, the threshold is 1. This is also true in the MAP case if P[H0] = P[H1]. However, if
P[H1] > P[H0], the threshold is lower than 1, and the number of y for which the decision equals 1 is possibly
increased. If P[H0] is larger, then the threshold is larger than 1, and the number of y for which the decision
equals 1 may be decreased.

Example 6.8
Assume we have the same problem as Example 6.5, but the prior probability that the coin is biased is only P[H1] = 0.4,
so P[H0] = 0.6 because H0, H1 form a partition of ⌦. From Example 6.5, we know the likelihoods of Y , the number of
heads observed in 6 trials, are shown in the table below.

Y : 0 1 2 3 4 5

PY |H1 0.01024 0.0768 0.2304 0.3456 0.2592 0.07776
PY |H0 0.03125 0.15625 0.3125 0.3125 0.15625 0.03125
L(y) 0.3277 0.4915 0.7373 1.1059 1.6589 2.4883

We have added to the table a row computing the likelihood ratio for each value of Y . The threshold in the MAP decision
rule is P[H0]

P[H1]
= 1.5. The values of Y = y for which the likelihood ratio exceeds the threshold are highlighted in bold

magenta above. We see that increasing the threshold has decreased the number of y for which the MAP decision is 1.
The MAP decision rule and the ML decision rule from Example 6.5 are shown below:

To compute the maximum likelihood decision, we compare the numbers in each column, and pick the larger of the two
numbers. In the table above, we have highlighted the larger number in bold and magenta color. Thus we see that the
maximum likelihood decision rule becomes:

DMAP (y) =

(
1, y = 4, 5,

0, y = 0, 1, 2, 3.
DML(y) =

(
1, y = 3, 4, 5,

0, y = 0, 1, 2.
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The decision agrees with intuition: a larger count of heads suggests the coin is more likely to be unbalanced, whereas a
smaller count of heads indicates the coin is more likely to be balanced.

Since the ML and MAP decision rules are di↵erent, they have di↵erent performance. The probability of false alarm for the
MAP decision rule is

PMAP
FA = P[{Y = 4, 5}|H0] = PY |H0(4) + PY |H0(4) = 0.1875.

The probability of missed detection for the MAP decision rule is

PMAP
MD = P[{Y = 0, 1, 2, 3}|H1] = PY |H1(0) + PY |H1(1) + PY |H1(2) + PY |H1(3) = 0.633.

In contrast, for the ML decision rule, PML
FA = 0.5, PML

MD = 0.3174. Thus, increasing the threshold reduced the probability
of false alarm, and increased the probability of missed detection. The probability of error for each of the detectors is

PMAP
e = P[H0]P

MAP
FA + P[H1]P

MAP
MD = 0.6 · 0.1875 + 0.4 · 0.633 ⇡ 0.3777.

PML
e = P[H0]P

ML
FA + P[H1]P

ML
MD = 0.6 · 0.5 + 0.4 · 0.3174 ⇡ 0.4270.

We will show later that the MAP decision rule achieves the minimum probability of error among all possible decision rules.

The MAP decision rule for continuous-valued measurements Y is a straightforward extension of the MAP
decision rule for discrete-valued measurements Y . We have to be a bit careful to define P[H0|{Y = y}] and
P[H1|{Y = y}] using a limiting argument, as in Chapter 4.4.3, because P[{Y = y}] = 0. Specifically,

P[H0|{Y 2 (y, y + �]}] =
P[H0 \ {Y 2 (y, y + �]}]

P[{Y 2 (y, y + �)}]
=

P[{Y 2 (y, y + �]}|H0]P[H0]

P[{Y 2 (y, y + �)}]

=
(FY |H0

(y + �) � FY |H0
(y))P[H0]

FY (y + �) � FY (y)

As � ! 0, both numerator and denominator approach 0. We use L’Hopital’s rule to evaluate the limit, as

lim
�!0

P[H0|{Y 2 (y, y + �]}] = lim
�!0

d

d� (FY |H0
(y + �) � FY |H0

(y))P[H0]
d

d� (FY (y + �) � FY (y))
=

fY |H0
(y)P[H0]

fY (y)
= P[H0|Y = y].

Similarly, P[H1|Y = y] =
fY |H1

(y)P[H1]

fY (y) , and the marginal density is obtained by the Law of Total Probability
as

fY (y) = fY |H0
(y)P[H0] + fY |H1

(y)P[H1].

This leads to the MAP decision rule in terms of the likelihood ratio

DMAP (y) =

(
L(y) =

fY |H1
(y)

fY |H0
(y)

H1

?
H0

P[H0]

P[H1]

)
.

Example 6.9
The delay Y in arrival of an on-line order is modeled as an exponential random variable, but the rate of that random
variable iis one of two possible rates. Under hypothesis H1, the rate is 0.2/day, and under hypothesis H0, the rate is
0.1/day. The prior probability that hypothesis H0 is correct is P[H0] = 0.6. Assume we observe Y = y. What is the MAP
decision rule, and what is its probability of error?

The threshold for the MAP decision rule for the probability of error is T = P[H0]
P[H1]

= 3
2 . The likelihood ratio for the

exponential random variables is

L(y) = 0.2e�0.2y

0.1e�0.1y
= 2e�0.1y,

which is decreasing as y increases. Thus, longer observed delays y make hypothesis H0 more likely, as its rate of arrival is
smaller.

The boundary for the decision region in terms of y can be found by solving L(y) = 2e�0.1y = 3
2 . Taking logarithms,

�0.1y = ln(3)� ln(4) ) y = 10(ln(4)� ln(3)) ⇡ 2.877.

Thus, if y < 2.877, select DMAP (y) = 1; else, select DMAP (y) = 0. With these regions, we have

PFA =

Z 2.877

0

fY |H0(y) dy = FY |H0(2.877) = 1� e�0.2877 = 0.25,
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PMD =

Z 1

2.877

fY |H1(y) dy = e�0.2⇤2.877 =
9
16

= 0.5625.

The probability of error is

Pe = P[H0]PFA + P[H1]PMD = 0.6 ⇤ 0.25 + 0.4 ⇤ 0.5625 = 0.375.

We conclude this section by showing that the MAP decision rule minimizes the probability of error
among all decision rules. For any decision rule D(y), the probability of error conditioned on Y = y is given
as follows: Since H0, H1 are a partition of ⌦,

P[Error|Y = y] = P[Error \ H1|Y = y] + P[Error \ H0|Y = y].

P[Error \ H1|Y = y] = P[Error|Y = y, H1]P[H1|Y = y];

P[Error \ H0|Y = y] = P[Error|Y = y, H0]P[H0|Y = y],

which follows from the definition of conditional probability. Note that P[Error|Y = y, H0] = ID(y)=1, where
IA is the indicator function that is 1 if A is true, and 0 elsewhere. Similarly, P[Error|Y = y, H1] = ID(y)=0.
Therefore,

P[Error|Y = y] = ID(y)=1P[H0|Y = y] + ID(y)=0P[H1|Y = y].

Note that DMAP (y) selects the smallest of the two terms for each Y = y, and hence has the smallest
probability of error for each Y = y. The unconditional probability of error is, assuming Y is discrete, as

Pe =
X

y2RY

✓
ID(y)=1P[H0|Y = y] + ID(y)=0P[H1|Y = y]

◆
PY (y),

which DMAP (y) will minimize because it minimizes each term in the sum.

For continuous Y , we get

Pe =

Z

y2RY

✓
ID(y)=1P[H0|Y = y] + ID(y)=0P[H1|Y = y]

◆
fY (y) dy,

which is minimized by DMAP (y) because DMAP (y) minimizes the integrand for every value of y, and hence
it minimizes the integral.

6.4 Minimum Bayes Risk Detection

In many important situations, there is a di↵erent cost associated with the di↵erent types of errors. For
instance, in luggage inspection, a false alarm can result in an unnecessary opening of a suitcase to check
its contents. However, a missed detection can result in an explosive entering the airplane. In breast cancer
diagnosis, a false alarm can lead to an unneeded biopsy, whereas a missed detection can be life-threatening.

To properly evaluate this tradeo↵, we assign di↵erent costs to the dif-
ferent types of errors, and design a decision rule to minimize the total
expected cost. Formally, let Cij denote the cost of deciding Ui when
Hj is true. We typically select C11 = 0, C00 = 0, so that correct de-
cisions involve no cost; while this is not essential, it is wasted space
to consider the full generality, as it is never used in practice. The key
tradeo↵ is the relative cost of a missed detection C01 and a false alarm
C10. The Figure on the right illustrates the indexing as to what the
costs mean for di↵erent values of decision and true hypothesis.

32

• General risk function R = C(U,H)
– C10 ≡ C(U=1|H0) is cost of a false alarm
– C01 ≡ C(U=0|H1) is cost of missed detection
– Usually assume C00 = C11 = 0  (not essential)

• Given decision rule, U is derived RV and

R = C(U,H) is also derived RV!

• Bayesian Hypothesis Test:
– Select decision rule U(y) so as to minimize the Expected cost 
E[C(U(Y),H)]

Minimum Bayes Risk Decision Rule

Optimal decision rule:
–Choose H1 if C01P [H1|Y=y] > C10P [H0|Y=y]
–Choose H0 otherwise!

H1H0

Truth

D
ec

is
io

n U=0

U=1

C00

C11C10

C01

Figure 6.7: Bayes’ Costs.

We follow closely the development in the previous section where we showed the MAP decision rule
minimized Pe, the probability of making an error. For an arbitrary decision rule D(y), let R denote the cost
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of the decision rule. R is a random variable defined on the experiment, which depends on the outcome s
and the observation y, as R(s, y) = C01I{!2H1}\{D(y(!))=0} +C10I{!2H0}\{D(y(!))=1}. Then, the conditional
probability mass function of R given Y = y and D(y) = 0 is

PR|Y,{D=0}(r|y) =

(
P[H1|Y = y], r = C01

P[H0|Y = y], r = 0.
PR|Y,{D=1}(r|y) =

(
P[H0|Y = y], r = C10

P[H1|Y = y], r = 0.

Then,
E[R|Y = y] = C01P[H1|Y = y]ID(y)=0 + C10P[H0|Y = y]ID(y)=1.

The decision that minimizes this conditional expected risk given measurement Y = y is

DMBR(y) =

(
1, C01P[H1|Y = y] � C10P[H0|Y = y]

0, C01P[H1|Y = y] < C10P[H0|Y = y].

For discrete random variables Y , the expected risk for any decision D(y) is written as:

E[R] =
X

y2RY

E[R|Y = y]PY (y).

Since the minimum Bayes risk (MBR) minimizes each term of the sum among all decision rules, it is the
optimal decision rule for minimizing the expected Bayes risk. For continuous random variables Y , the
expected Bayes risk of any decision rule is

E[R] =

Z

y2RY

E[R|Y = y]fY (y) dy.

The MBR decision rule DMBR(y) minimizes the integrand for each y, and hence minimizes the expectation.

We can write DMBR in terms of the likelihood ratio L(y) using Bayes’ Rule: for discrete Y ,

P[H1|Y = y] =
PY |H1

(y)P[H1]

PY (y)
; P[H0|Y = y] =

PY |H0
(y)P[H0]

PY (y)
.

Recall that () means “if and only if”; then,

C01P[H1|Y = y] � C10P[H0|Y = y] () C01PY |H1
(y)P[H1] � C10PY |H0

(y)P[H0]

()
PY |H1

(y)

PY |H0
(y)

� C10P[H0]

C01P[H1]

Thus, the minimum Bayes risk decision rule is

DMBR(y) =
nPY |H1

(y)

PY |H0
(y)

H1

?
H0

C10P[H0]

C01P[H1]

o
.

For continuous measurements Y = y, the minimum Bayes risk decision rule is

DMBR(y) =
nfY |H1

(y)

fY |H0
(y)

H1

?
H0

C10P[H0]

C01P[H1]

o
.

Note the following: The MAP decision rule is a special case of the MBR decision rule when C10 = C01.
The ML decision rule is another case of the MBR decision rule when C10 = C01,P[H1] = P[H0]. In general,
all MBR decision rules are based on comparing the likelihood ratio value for Y = y to a threshold, where
the threshold is computed from the relative costs and the prior probabilities of H0, H1.

The threshold varies with the relative cost of false alarms and missed detections in an intuitive manner.
If missed detection are more expensive than false alarms, then the threshold for the likelihood ratio is set
lower, so that one is more likely to decide that H1 is the correct hypothesis.
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Example 6.10
Consider Example 6.7, which sought to diagnose the presence of a disease by measuring the temperature. Assume a priori
that the probability of having the disease (P[H1]) is 0.4, and thus the probability of not having the disease (P[H0]) is 0.6.
However, the cost of a missed detection is 10 (C01), whereas the cost of a false alarm (C10) is 1. What is the minimum
Bayes risk decision rule, and what are the resulting probabilities of false alarm and missed detection?

The MBR decision rule is

DMBR(y) =
n
L(y)

H1

?
H0

C10P[H0]
C01P[H1]

=
3
20

o
.

From the results of Example 6.7, the likelihood ratio is

L(y) = e�
(y�101)2

2

e�
(y�98.1)2

2

Then,

L(y)  3
20

() ln
⇣
L(y)

⌘
 ln(3)� ln(20)

ln
⇣
L(y)

⌘
= (101� 98.1)y � (101� 98.1)(101 + 98.1)

2
= 2.9y � (2.9) · (99.55)

DMBR(y) =
n
y

H1

?
H0

99.55 +
1
2.9

(ln(3)� ln(20)) = 99.2159
o
.

Thus, we see that the threshold for the decision rule has been lowered as compared to the ML decision rule of Example 6.7.
This means that the probability of missed detection decreases, and the probability of false alarm increases. Since the mean
under H0 is 98.1, the threshold is 1.1159 standard deviations higher than the mean, so PFA = Q(1.1159). Since the mean
under H0 is 101, the threshold is 1.7841 standard deviations lower than the mean, so PMD = �(�1.7841) = Q(1.7841).

The minimum expected Bayes risk is given in terms of these measures, as

E[R] = P[H0]C10PFA + P[H1]C01PMD = 0.6PFA + 4PMD = 0.6Q(1.1159) + 4Q(1.841)

for the MBR decision rule, and
E[R] = 0.6Q(1.45) + 4Q(1.45)

for the ML decision rule, which is higher than the MBR expected Bayes risk.

6.5 Performance and the Receiver Operating Characteristic

In the discussion so far, we have found that the optimal decision rule for binary hypotheses is a likelihood
ratio test, where we compute a function of the measured data (the likelihood ratio) and compare it to a
threshold. The choice of threshold depends on the prior probabilities of each hypotheses, plus the costs of
making a missed detection. These four parameters are summarized in a single threshold T ; to design an
optimal decision rule, we simply select this threshold T , and the decision rule is

D(y) =
n

L(y)
H1

?
H0

T
o

.

The choice of threshold T controls the tradeo↵ between the conditional performance statistics PMD and
PFA. As T increases, the decision rule selects H1 less often, which increases PMD and decreases PFA.

Define the probability of detection PD = 1 � PMD. As the threshold T decreases to 0, the region of
measurements Y = y for which the decision is 1 increases, eventually becoming the entire range RY . When
the threshold is 0, the performance statistics are PD = 1, PFA = 1, since the decision is always 1. Similarly,
as the threshold increases to 1, the region of measurements Y = y for which the decision is 1 decreases,
eventually becoming empty. For a threshold of 1, the performance statistics are PD = 0, PFA = 0. As the
threshold T is varied from 0 to 1, we can trace a locus of performance of PD(T ) versus PFA(T ), which
is called the Receiver Operating Characteristic or ROC for the detection problem. The design of an
optimal decision rule based on likelihood ratios reduces to selecting a point on the ROC that trades o↵ PD

versus PFA. An illustration of a ROC is given in Figure 6.8.
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Figure 6.8: Illustration of ROC for detection involving two Gaussian Distributions.

Let us emphasize some features of the ROC. First, note that the threshold T is a parameter along the
curve. Thus any one point on the ROC corresponds to a particular choice of threshold (and vice versa). The
ROC itself does not depend on the costs Cij or the apriori probabilities P[Hi]. These terms can be used to
determine a particular threshold, and thus a particular operating point corresponding to the optimal Bayes
risk detector. A couple of important properties of the ROC are:

• The ROC is monotone non-decreasing. Increasing PFA results in increasing PD.

• The ROC is a concave curve, with the graph above the PD = PFA line. Performance on the line
PD = PFA correspond to detectors that that randomly guess D(y) = 1 with probability p, independent
of the measured value y. The optimal detectors achieve better performance by using the information
in y. This argument can be extended to show the ROC is a concave curve.

Determining the ROC requires computing the region A1(T ) = {y 2 RY : L(y) � T} where the likelihood
ratio decision rule results in decision 1 for threshold T . If we know that region, then PD(T ) = P[{y 2
A1(T )}|H1], PFA(T ) = P[{y 2 A1(T )}|H0]. By varying T , we obtain the points on the ROC. We discuss
examples to show how this is done.

Example 6.11
We have a coin that may be biased so that the probability of Heads is 0.8 (Hypothesis H1.) If the coin is unbiased, the
probability of Heads is 0.5 (Hypothesis H0.) We conduct three independent flips and count the number of heads as our
measurement Y . The likelihoods and the likelihood ratio are shown in the table below:

Y : 0 1 2 3

PY |H1 0.0080 0.0960 0.3840 0.5120
PY |H0 0.1250 0.3750 0.3750 0.1250
L(y) 0.0640 0.2560 1.0240 4.0960
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We see that, for thresholds T above 4.1, the decision is always D(y) = 0, and
so PD = 0, PFA = 0. For thresholds around T = 1.1, D(y) = 1 if y = 3, and
0 otherwise. Thus, PD = 0.5120, PFA = 0.1250. As we lower the threshold
to between 0.26 and 1.02, D(y) = 1 for y = 2, 3 and 0 for y = 0, 1. Then,
PD = 0.896, PFA = 0.5. We continue this and obtain the various points, plotted
on the ROC figure on the right.

Note that we have connected the discrete points in the ROC with straight lines.
One can achieve performance on those straight lines by randomly switching be-
tween the thresholds corresponding to the two endpoints on the line. That type
of random decision rule can be used to achieve a desired PFA that is di↵erent
from the finite ones obtained by the discrete breakpoints in the likelihood ratio
table above.

Figure 6.9: ROC for example.

Example 6.12
We have a light source that can either have an intensity of 100 photons/second, or 200 photons/second. We measure the
number of photons emitted over a 1 second period, and have to decide which is the correct intensity for the light source.
Let H1 correspond to intensity of 120 photons/second, and H0 correspond to intensity of 100 photons/second. If H1 is
correct, the number of photons measured is a Poisson(120) random variable; if H0 is correct, the number is a Poisson(100)
random variable.

The likelihood ratio for this problem is

L(y) =
PY |H1(y)

PY |H0(y)
=

120y

y! e�120

100y

y! e�100
= (1.2)ye�20

An optimal likelihood ratio test is
n
L(y)

H1

?
H0

T
o

for a threshold T . Taking

logarithms, of both sides, this reduces to

ln
�
L(y)

�
= y ln(1.2)� 20 > ln(T ) () y >

ln(T ) + 20
ln 1.2

.
Figure 6.10: ROC for example.

For instance, for the ML decision rule, T = 1, and so the ML decision rule is {y
H1

?
H0

109.7}. The ROC is

shown in Figure 6.10 , where we have connected the discrete points in the ROC with straight lines.

Example 6.13 (Scalar Gaussian Detection)
Consider again the problem of determining which of two Gaussian densities of scalar observation comes from. In particular,
suppose y is scalar and distributed N(0,�2) under H0 and distributed N(m,�2) under H1. The likelihood ratio is

L(y) =
1p
2⇡�

e�
(y�m)2

2�2

1p
2⇡�

e�
(y)2

2�2

= e�
(y�m)2

2�2 +
(y)2

2�2 .

and the log-likelihood ratio is

ln

✓
L(y)

◆
=

1
2�2

(2my �m2).

Hence, comparing the log-likelihood ratio to the log of a threshold T yields the decision rule

y
H1

?
H0

m
2

+
�2 ln(T )

m
= �.

From this, we can use the Gaussian likelihood formulas to obtain PD and PFA as:

PD = 1� �(
��m

�
) = Q(

��m
�

); PFA = 1� �(
�
�
) = Q(

�
�
).

These calculations of PD and PF are illustrated in Figure 6.11.
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Figure 6.11: Illustration of PD and PFA calculation.

Example 6.14 (Gaussian detection with di↵erent variances)
Suppose y is scalar and distributed N(0,�2

1) under H0 and distributed N(0,�2
0) under H1. Assume �1 < �0. Thus, the

Gaussians have the same mean, but di↵erent variances.

L(y) =
1p

2⇡�1
e
� (y)2

2�2
1

1p
2⇡�0

e
� (y)2

2�2
0

=
�1

�0
e
� y

2

2�2
1
+ y

2

2�2
0 .

The log-likelihood ratio is

ln

✓
L(y)

◆
= �y2

2
(
1
�2
1

� 1
�2
0

) + ln(�1)� ln(�0).

Hence, comparing the log-likelihood ratio to the log of a threshold T yields the decision rule

�y2
H1

?
H0

�2
1�

2
0

�2
0 � �2

1

⇣
ln(�0)� ln(�1) + ln(T )

⌘
= �.

Note we were careful in dividing by numbers that are positive, so the sign of the inequalities was preserved. Unlike the case
where the means were di↵erent, the detector is quadratic in the measurement. Since the density of Y under H0 has larger
variance, higher magnitudes of the measured y provide more support for hypothesis H0. We can simplify the decision rule:
In terms of y, we select H1 if |y| 

p
�, otherwise, we select H0. From this, we can use the Gaussian likelihood formulas

to obtain PD and PFA as:

PD = P[{|Y | 
p
�}|H1] = �(

p
�

�1
)� �(�

p
�

�1
).

PFA = P[{|Y | 
p
�}|H1] = �(

p
�

�0
)� �(�

p
�

�0
)

The ROC can now be obtained by varying � from 0 to 1. The ROC is shown in Figure 6.12.

Figure 6.12: ROC for Gaussian hypotheses with di↵erent varlances.
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6.6 Binary Hypothesis Testing with Vector Observations

The previous sections have assumed that the measurement Y is a scalar measurement, either discrete-
valued or continuous valued. The previous theories developed extend completely to the case of pairs of
measurements X,Y , or vector-valued measurements Y . We briefly overview these extensions for pairs of
measurements X, Y .

As before, we assume that the two hypotheses H0, H1 are events in E that form a partition of the sample
space ⌦. We assume that we observe a pair of random variables X, Y . If X, Y are discrete random variables,
we assume that we are given the conditional joint probability mass functions PX,Y |H0

(x, y) and PX,Y |H1
(x, y).

With this information, the likelihood ratio can be defined as a function of values (x, y) 2 RX,Y by

L(x, y) =
PX,Y |H1

(x, y)

PX,Y |H0
(x, y)

.

For jointly continuous measurements, the likelihoods are given by the conditional joint probability density
functions fX,Y |H0

(x, y) and fX,Y |H1
(x, y). The likelihood ratio is defined as

L(x, y) =
fX,Y |H1

(x, y)

fX,Y |H0
(x, y)

.

Once we have the likelihood ratios, the ML, MAP and MBR detectors are defined in identical manner to
the scalar case:

DML(x, y) =
n

L(x, y)
H1

?
H0

1
o

.

DMAP (x, y) =
n

L(x, y)
H1

?
H0

P[H0]

P[H1]

o
.

DML(x, y) =
n

L(x, y)
H1

?
H0

C10P[H0]

C01P[H1]

o
.

What is unique about the vector case is that the optimal decision rule depends only on a scalar function
of the vector of observations X, Y . This holds true for higher-dimensional vectors: there is always a scalar
function of the measurement vector Y that serves as a su�cient statistic to make an optimal decision.

The hard part of detection with vector observations is finding the decision regions so that we can compute
performance metrics such as the probability of false alarm or the probability of missed detection. For pairs of
random variables, we need to find the regions {(x, y) 2 RX,Y : D(x, y) = 0} and {(x, y) 2 RX,Y : D(x, y) =
1}. For scalar measurements, we did this by analyzing the likelihood ratio test, and simplifying the equations
to identify the regions. This is significantly harder for vector measurements, but there are special cases where
we can do this.

We illustrate these extensions to vector observations with examples below.

Example 6.15
We are going to extend the diagnosis problem discussed in Example 6.7. The patient believes he has the flu. The hypothesis
H1 is the patient has the flu versus H0 that the patient only has a cold. Let X be the measured temperature, and let Y
be the results of a rapid influenza diagnostic test (RIDT) done on a mucus sample. We model the likelihood of X as a
conditional Gaussian random variable with mean 98 degrees and standard deviation 2 degrees under H0, and mean 102
degrees with standard deviation 2 degrees under H1. The RIDT test is a color test, so we model the likelihood of Y in a
very simple manner as a conditional Gaussian random variable (in the visible color spectrum) with mean wavelength 500
nm and standard deviation 100 nm under H0, and mean wavelength 650 nm and standard deviation 100 nm under H1.
We assume that X,Y are conditionally independent given H0, and also conditionally independent under H1.

With the above information, we can now write the conditional joint probability density of (X,Y ) given H0 and H1 as

fX,Y |H0(x, y) =
1

2
p
2⇡

e�
(x�98)2

8
1

100
p
2⇡

e�
(y�500)2

20000 .



6.6. BINARY HYPOTHESIS TESTING WITH VECTOR OBSERVATIONS 157

fX,Y |H1(x, y) =
1

2
p
2⇡

e�
(x�102)2

8
1

100
p
2⇡

e�
(y�650)2

20000 .

The likelihood ratio is:

L(x, y) =
fX,Y |H1(x, y)

fX,Y |H0(x, y)

=
1

2
p
2⇡

e�
(x�102)2

8 1
100

p
2⇡

e�
(y�650)2

20000

1
2
p
2⇡

e�
(x�98)2

8
1

100
p
2⇡

e�
(y�500)2

20000

= e�
(x�102)2

8 +
(x�98)2

8 e�
(y�650)2

20000 +
(y�500)2

20000

Taking logarithms yields the log-likelihood ratio:

ln

✓
L(x, y)

◆
= � (x� 102)2

8
+

(x� 98)2

8
� (y � 650)2

20000
+

(y � 500)2

20000

=
(102� 98)(2x� 200)

8
+

150(2y � 1150)
20000

= x� 4 · 200
8

+
3

200
y � 3 · 23

8

= x+
3

200
y � 869

8
.

The maximum likelihood detector compares the log-likelihood ratio to the threshold 0. This test becomes:

DML(x, y) =
n
x+

3
200

y
H1

?
H0

869
8

o
.

The decision rule reduces to comparing a scalar statistic x+ 3
20y to a threshold. This defines a region in x-y space where

the decision is 0, and another region where the decision is 1, separated by the line x+ 3
200y = 869

8 . With this definition of
decision regions, we can now do compute PFA and PMD as two-dimensionl integrals.

In this case, there is a simpler method for computing performance. Define the statistic Z = X + 3
200Y as a linear

combination of X,Y . Z is a su�cient statistic for this problem, because the max-likelihood detector depends only on

Z: DML(x, y) =
n
z

H1

?
H0

869
8

o
.

Since X,Y are jointly Gaussian conditioned on H0, Z is a Gaussian random variable conditioned on H0. Its conditional
mean is E[Z|H0] = E[X|H0] + 3

200E[Y |H0] = 98 + 7.5 = 105.5. Since X and Y are conditionally independent given H0,
we get

Var[Z|H0] = Var[X|H0] +

✓
3

200

◆2

Var[Y |H0] = 4 +
9

40000
10000 = 6.25.

Similarly, Z is Gaussian conditioned on H1 with E[Z|H1] = 102 + 3
200650 = 111.75, and Var[Z|H1] = 6.25. We write the

ML detector in terms of Z as

DML(z) =
n
z

H1

?
H0

108.625
o
.

and now we can analyze its performance the same way we did for a scalar Gaussian random variable decision rule. Thus,

PFA = Q

✓
108.625� 105.5p

6.25

◆
; PMD = Q

✓
111.75� 105.5p

6.25

◆
.

Example 6.16
Consider the radar detection example, where N independent pulses are sent out. However, instead of making a detection
on each pulse return and counting the number of detections, we measure the signal strength of each return, so that a
vector of signal strength measurements is collected. We assume that each pulse provides a measurement Yi, where

Yi =

(
Wi if hypothesis H0 is true (no target present)

E +Wi if hypothesis H1 is true (target present).

where E is a known constant, Wi, i = 1, . . . , N are independent, zero-mean Gaussian random variables with variance �2.
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The above model results in a vector of observations Y , where the components Yi are jointly Gaussian and independent.
Under hypothesis H1, each Yi has mean E and variance �2, whereas under hypothesis H0, each Yi has mean 0 and variance
�2. In this case, the likelihood ratio is given by

L(y) =
fY |H1(y)

fY |H0(y)
=

NY

i=1

e
�(yi�E)2

2�2

e
�(yi)

2

2�2

=
NY

i=1

e
2Eyi�E

2

2�2 = e

2E

� NX

i=1

yi
�
�NE2

2�2

Taking logs of both sides the decision rule can be reduced to:

1
N

NX

i=1

yi
H1

?
H0

E
2

+
�2 ln(T )
NE

where T is the threshold used in the likelihood ratio test (e.g. 1 for the maximum likelihood detector.) In this case, note
that a scalar su�cient statistic is Z = 1

N

PN
i=1 Yi, which is a linear combination of Y and hence Gaussian conditioned on

H0 and on H1. The mean of Z under H1 is

E[Z|H1] = E[
NX

i=1

Yi

N
|H1] =

1
N

NX

i=1

E[Yi|H1 =
1
N

NX

i=1

E = E.

Similarly, the mean of Z under H0 is 0. The variance of Z under both H1 and H0 is

Var[Z|H1] = Var[
NX

i=1

Yi

N
|H1] =

NX

i=1

Var[
Yi

N
|H1] =

NX

i=1

�2

N2
=

�2

N
,

because the Yi components are independent (and thus uncorrelated), so the variance of the sum is the sum of the variances
of the individual components.

Thus, the e↵ect of using N measurements is equivalent to using one measurement with variance reduced by a factor of

1/N , thereby increasing the e↵ective signal-to-noise ratio in the detector. Denote by � = E
2 + �2 ln(T )

NE as the threshold
used in the log-likelihood ratio test for Z. We can now compute the performance statistics as a function of this threshold
using the Gaussian properties of Z, as

PFA = P[Z > �|H0] = Q(
�N

1
2

�
).

PMD = P[Z < �|H1] = Q(
(E � �)N

1
2

�
).

The e↵ect of increasing N is to get a more accurate measurement. This means the performance of the detector, as
captured in the ROC curve, improves. As N ! 1, both PFA and PMD decrease to zero. The ROC for di↵erent values
of N is illustrated in Figure 6.13.

6.7 M-ary Hypothesis Testing

The exposition so far has focused on binary hypothesis testing problems. When there are M possibilities or
hypotheses, we term the problem an M -ary detection or hypothesis testing problem. We have M events in
(⌦, E ,P), denoted as Hi, i = 0, . . . , M � 1, which are mutually exclusive and collectively exhaustive, so they
form a partition of ⌦. We assume there are measurements Y which are random vectors that provide the
information for detection. If Y is discrete-valued, we are provided the conditional probability mass functions
PY |Hi

(y) for i = 0, 1, . . . , M � 1. If Y is a jointly continuous random vector, we are provided the conditional
probability density functions fY |Hi

(y) for i = 0, 1, . . . , M � 1.

A decision rule D(y) is. function that maps each observed value y into {0, 1, . . . , M � 1} where decision
k means that hypothesis Hk is the selected hypothesis. The concepts for designing decision rules that we
presented previously for binary hypothesis testing extend naturally to this case. For the maximum likelihood
decision rule, we want to select D(y) = k whenever

PY |Hk
(y) � PY |Hj

(y), for all j 6= i( y discrete).
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Figure 6.13: Illustration ROC behavior as we obtain more independent observations.

fY |Hk
(y) � fY |Hj

(y), for all j 6= i( y continuous).

For the maximum a posteriori decision rule, we want to select D(y) = k whenever

P[Hk|Y = y] � P[Hj |Y = y], for all j 6= i.

Equivalently, select D(y) = k whenever

PY |Hk
(y)P[Hk] � PY |Hj

(y)P[Hj ], for all j 6= i( y discrete).

fY |Hk
(y)P[Hk] � fY |Hj

(y)P[Hj ], for all j 6= i( y continuous).

As before, the MAP decision rule will minimize the average probability of error. If we defined costs Cij

associated with the cost of selecting decision Ui when hypothesis Hj is true, we can also define an equivalent
theory for the minimum Bayes risk decision rule as in the binary hypothesis testing problems.

The biggest di↵erence in the m-ary detection case is that there is no longer a su�cient scalar statistic
like the likelihood ratio that we can compare to a threshold for optimal decision rules. Instead, the optimal
decision rules must compute the M likelihoods, scale them appropriately, and pick the best decision on the
basis of the resulting scaled values.

We illustrate m-ary detection problems with a couple of examples.

Example 6.17
Consider a communications problem where we try to communicate two bits at a time. We denote our two bits as pairs
A,B 2 {�1, 1}. We have four basic signals we are sending (1,1), (-1,1),(-1,-1),(1,-1), corresponding to hypotheses
H0, H1, H2, H3 correspond to the transmitted symbols in this order.

To send the symbols, we use a variation of quadrature amplitude modulation, using short pulses of the form s(t) =
A cos(!t) + B sin(!t), t 2 [0, T ]. A typical QAM modulation scheme is show in Figure 6.14, where the input I is the
in-phase component, corresponding to the symbol A, and the input Q is the quadrature component, corresponding to the
symbol B. The resulting transmitted pulse is s(t) = A cos(!t) +B sin(!t), t 2 [0, T ]

The signals propagate through the environment to a receiver, that demodulates the signal using a quadrature demodulation
scheme, as shown in Figure 6.14. In the demodulator, the received signal is split, and multiplied each by cos(!t) and
sin(!t). The in-phase output of the demodulator, I(t), corresponds to the signal s(t) cos(!t), and the quadrature output
Q(t) corresponds to the signal s(t) sin(!t).

Note that I(t) = A cos2(!t) +B cos(!t) sin(!t). Thus, averaging I(t) over an interval of a few periods yields the output
A/2, as the second term averages to 0. Similarly, Q(t) = A cos(!t) sin(!t) + B sin2(!t), which averages to B/2. This
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In any system that uses quadrature amplitude modulation, QAM, there will be modulators and demodulators.

These QAM modulators and demodulators are required to provide the capability to modulate both the in-phase
and quadrature components of the modulating signal onto the carrier.

QAM modulator basics
The QAM modulator essentially follows the idea that can be seen from the basic QAM theory where there are
two carrier signals with a phase shift of 90° between them. These are then amplitude modulated with the two
data streams known as the I or In-phase and the Q or quadrature data streams. These are generated in the
baseband processing area.
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integrity of the signal. Any non-linearities will alter the relative levels of the signals and alter the phase
difference, thereby distorting he signal and introducing the possibility of data errors.

QAM demodulator basics
The QAM demodulator is very much the reverse of the QAM modulator.

The signals enter the system, they are split and each side is applied to a mixer. One half has the in-phase local
oscillator applied and the other half has the quadrature oscillator signal applied.
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Basic QAM I-Q demodulator circuit

The basic modulator assumes that the two quadrature signals remain exactly in quadrature.

A further requirement is to derive a local oscillator signal for the demodulation that is exactly on the required
frequency for the signal. Any frequency offset will be a change in the phase of the local oscillator signal with
respect to the two double sideband suppressed carrier constituents of the overall signal.

Systems include circuitry for carrier recovery that often utilises a phase locked loop - some even have an inner
and outer loop. Recovering the phase of the carrier is important otherwise the bit error rate for the data will be
compromised.

The circuits shown above show the generic IQ QAM modulator and demodulator circuits that are used in a vast
number of different areas. Not only are these circuits made from discrete components, but more commonly
they are used within integrated circuits that are able to provide a large number of functions.
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averaging is a low-pass filter and generates measurements of the transmitted A,B bits. Of course, these measurements
are corrupted by background noise in the detector, signal corruption in the transmission channel, and small phase errors in
the oscillators between the modulator and the demodulator.

The mathematical model of this detection problem is as follows: we measure two continuous random variables (X,Y ),
corresponding to the averages of the I and Q outputs of the demodulator. We model the statistics of these random
variables as follows: We assume that X,Y are conditionally independent and Gaussian given any of the four hypotheses
Hi, i = 0, 1, 2, 3. Furthermore, under each hypothesis, the variance of X is �2, and the variance of Y is also �2. However,
the means change between hypotheses:

• Under H0, E[X|H0] ⌘ m0
x = 1,E[Y |H0] ⌘ m0

y = 1.

• Under H1, E[X|H1] ⌘ m1
x = �1,E[Y |H1] ⌘ m1

y = 1.

• Under H2, E[X|H2] ⌘ m2
x = �1,E[Y |H2] ⌘ m2

y = �1.

• Under H3, E[X|H3] ⌘ m3
x = 1,E[Y |H3] ⌘ m3

y = �1.

The signals are illustrated in Figure 6.14.

The likelihood under Hi is thus fX,Y |Hi
(x, y) = 1

2⇡�2 e
� (x�m

i
x
)2+(y�my)2

2�2 . To pick the largest one, we can compare the
logarithms of the likelihoods, and subtract a common constant from all of them, to get a di↵erent comparison function
ci(x, y) as

ci(x, y) = ln
�
fX,Y |Hi

(x, y)
�
� ln

� 1
2⇡�2

�
= � (x�mi

x)
2 + (y �my)

2

2�2
.

We can scale ci(x, y) and subtract the same term to all i, to get

di(x, y) = 2�2ci(x, y) +
x2

2
+

y2

2
= mi

xx+mi
yy � (mx

i )
2 + (my

i )
2

2
= mi

xx+mi
yy � 1.

Every transformation we did above preserved the order of the likelihoods fX,Y |Hi
(x, y). Hence, the maximum likelihood

decision is
DML(x, y) = Ui⇤ , where i⇤ 2 arg max

i=0,1,2,3
mi

xx+mi
yy � 1.

Note the -1 is not important. Then, we decide 0 when: x+ y > x� y;x+ y > �x� y;x+ y > �x+ y. Combine these
inequalities, we get the region x > 0, y > 0. Thus, we decide 0 if we measure x, y in the first quadrant. Similarly, we
decide 1 if the measurement (x, y) is in x < 0, y > 0, U2 if the measurement is in x, y < 0, and U3 if x > 0, y < 0.

We’ve simplified the decision rule so we could identify the decision regions in terms of the regions of the measurement
range RX,Y . We can use this to analyze the performance. Note the following: we can compute P[DML(X,Y ) = 0|H0] =
P[X � 0, Y � 0|H0] = P[X � 0|H0]P[Y � 0|H0] because of the conditional independence of X,Y . Thus,

P[DML(X,Y ) = 0|H0] = �(
1
�
)�(

1
�
) = �(

1
�
)2.
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This is the probability that we don’t make an error when H0 is the correct hypothesis. By symmetry, this is also
P[DML(X,Y ) = Ui|Hi], i = 1, 2, 3. If all the hypotheses had equal prior probability P[Hi], the expected probability
of correct decoding is �( 1

� )
2.

Example 6.18
Suppose we want to detect which of three possible N -dimensional signals mk, k = 0, 1, 2 is being received in the presence
of noise. Under hypothesis Hk the observation Y is given by the vector Gaussian density:

fY |Hk
(y) =

NY

j=1

1p
2⇡

e�
(yj�m

k

j
)2

2 .

This means each of the components of the observation Y is conditionally independent, Gaussian, with variance 1 and
conditional expectation given by the components of mk.

Assume that we want a minimum probability of error decision rule, namely the MAP decision rule. Let Pk = P[Hk], the
prior probabilities. The MAP decision rule picks

DMAP (y) = Ui⇤ , where i⇤ 2 arg min
k=0,1,2

Pk

NY

j=1

1p
2⇡

e�
(yj�m

k

j
)2

2 .

We now have a valid decision rule, but the decision regions are hard to figure out, and this requires a lot of computation.
We simplify the decision rules by taking transformations that preserve the order: we first compute log-likelihoods, and
subtract common constants, to define

ck(y) = ln
�
fY |Hk

(y)
�
+ ln(Pk)�N ln(

1p
2⇡

) = ln(Pk)�
nX

j=1

(yj �mk
j )

2

2
.

We can further simplify this by adding the same term to all the ck(y), as

dk(y) = ck(y) +
NX

j=1

y2
j

2
= ln(Pk) + (mk)T y � 1

2
(mk)Tmk,

where we have used vector notation for transposes. The terms dk(y) are referred to as discriminant functions; in this case,
they are linear functions of y, which help establish the regions.

Thus, the decision 0 is made whenever

ln(P0) + (m0)T y � 1
2
(m0)Tm0 > ln(P1) + (m1)T y � 1

2
(m1)Tm1,

ln(P0) + (m0)T y � 1
2
(m0)Tm0 > ln(P2) + (m2)T y � 1

2
(m2)Tm2.

Combining the y terms on the left side of the first equation, we get:

(m0 �m1)T y > ln(P1)� ln(P0) +
1
2

�
(m0)Tm0 � (m1)Tm1�

which defines a half-plane perpendicular to the line connecting m0 and m1. Working with the second equation yields

(m0 �m2)T y > ln(P2)� ln(P0) +
1
2

�
(m0)Tm0 � (m2)Tm2�

which is another half plane perpendicular to the line connecting m0 and m2. The intersection of the two half-planes is the
region of y where we decide 0. A similar analysis can be done to determine the regions for 1 and U2.

It is worth noting that, if the prior probabilities are all equal to 1/3, then the half-plane separating m0 and m1 goes through

the midpoint of the line connecting m0 and m1. This is because, setting y = m0+m1

2 , we get

(m0)T y � 1
2
(m0)Tm0 = (m0)Tm1.

(m1)T y � 1
2
(m1)Tm1 = (m0)Tm1.

Thus, this value of y is on the boundary of the decision regions between 0, 1. The resulting decision regions are illustrated
in Figure 6.15 for a two-dimensional case. The decision boundaries are the bisectors of the lines connecting the means
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Figure 6.15: Illustration of the ML decision rule in the observation space.

under the di↵erent hypotheses. In general, this type of decision strategy is called a nearest neighbor classifier or a minimum
distance receiver in the literature. Given the decision regions, we can now calculate performances, albeit with complicated
integrals even in the case where we have conditionally independent measurements, because the decision regions are not
parallel to the y1, y2 axes.

As a final comment in this Chapter, techniques such as nearest neighbor classifiers and linear discrimi-
nants are used extensively in data science and machine learning without much theoretical justification. In
this Chapter, we have learned classes of statistical models for which nearest average classifiers and linear
discriminants lead to optimal decision rules. We will use this to understand the hidden assumptions behind
many classification methods in data science.


