
Chapter 8

Sums of Random Variables: Bounds and Lim-
its

So far in this course, we have focused mostly on pairs of random variables X and Y . Many experiments of
interest generate more than two random variables for each outcome. When we consider we consider n � 2
random variables X1, . . . , Xn, we describe their probabilistic behavior using a joint Cumulative distribution
function (CDF) of the form

FX1,...,Xn
(x1, . . . , xn) = P[{X1  x1, . . . , Xn  xn}],

which is the natural extension of the joint CDF for pairs of random variables. When the joint random
variables are discrete, we define the joint probability mass function (PMF) as

PX1,...,Xn
(x1, . . . , xn) = P[{X1 = x1, . . . , Xn = xn}].

When the random variables are continuous, we define the joint probability density function (PDF) as

fX1,...,Xn
(x1, . . . , xn) =

@n

@x1 · · · @xn

FX1,...,Xn
(x1, . . . , xn).

All of the basic properties that we established for CDFs, PMFs and PDFs for pairs of random variables
extend naturally to CDFs, PMFs and PDFs of n random variables.

In this chapter, we study experiments that generate a countably infinite collection of random variables.
Such collections are often called discrete time random processes, as the index of the random variables
can be mapped to the countable natural numbers. Figure 8.1 compares experiments that generate random
vectors, which we have discussed previously, to ones that generate a countable collection of random variables.
Formally, each element Xk(!) of the collection {X1, X2, X3, . . .} is a random variable, a measurable function
from the sample space ⌦ to the real numbers. Such collections are often called random processes or stochastic
processes. A random process is an indexed collection {Xt, t 2 T} of random variables generated by a single
experiment. When the index T is countable and can be mapped to the natural numbers N , we refer to
such processes as discrete-time or discrete-index random processes. Such processes are generalizations of the
concept of random vectors introduced in earlier chapters, as shown in Figure 8.1.
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Figure 8.1: Experiments generate infinite sequences of random variables.

The study of general random processes is a subject of a more advanced course, and requires tools that
we will not introduce in this course. There are special cases which we can address with simple extensions of
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the methodology we have described in previous chapters. Like random vectors, for general random processes
one would have to define the joint probability mass functions for finite set of distinct indices k1, k2, . . . , kn, of
the form PXk1 ,Xk2 ,...,Xkn

(x1, x2, . . . , xn) if the random variables are discrete. Equivalently, one would need
to define joint probability density functions fXk1 ,Xk2 ,...,Xkn

(x1, x2, . . . , xn). Computing such joint densities
is cumbersome and hard to describe.

In this chapter, we focus on the special case where the collection of random variables {X1, X2, X3, . . .}
are mutually independent. This implies that, for any finite set of distinct indices k1, k2, . . . , kn, and subsets
A1, A2, . . . An ⇢ <, we have

P[{Xk1 2 A1}, {Xk2 2 A2}, . . . , {Xkn
2 An}] = P[{Xk1 2 A1}]P[{Xk1 2 A1}] · · ·P[{Xkn

2 An}].

When the random variables are discrete, the joint probability mass functions factor as

PXk1 ,Xk2 ,...,Xkn
(x1, x2, . . . , xn) = PXk1

(x1)PXk2
(x2) · PXkn

(xn).

For continuous random variables, the joint densities factor as

fXk1 ,Xk2 ,...,Xkn
(x1, x2, . . . , xn) = fXk1

(x1)fXk2
(x2) · fXkn

(xn).

This independence property will allow us to analyze properties of the collection of random variables using
the tools we have developed for the analysis of pairs of random variables in earlier chapters.

Of particular interest is the case where the collection {X1, X2, X3, . . .} corresponds to outputs of repeating
an experiment independently, with an infinite number of trials. For instance, let Xi correspond to the output
of a Bernoulli trial, with parameter p that represents the probability that Xi = 1. The empirical theory of
probability suggests that p should be the fraction of experiments that result in an outcome Xi = 1. From
the results of the last chapter, the maximum likelihood estimate of p given observations of the outcomes of

the first N experiments is
P

N

i=1 Xi

N
. What happens as the number of experiments N increases to infinity? In

the limit, we would expect that this estimate, which is a derived random variable, would converge in some
sense to the correct value p. We will analyze the behavior of such sequences of random variables and make
precise in what manner do such sequences converge.

8.1 Independent, Identically Distributed Random Variables

A collection of random variables {Xn, n 2 N} is referred to as an independent, identically distributed
collection of random variables if the random variables X1, X2, . . . are mutually independent, and the marginal
cumulative distribution function of each random variable is the same for each random variable. That is,
FXk

(x) = FXj
(x) for any j, k 2 N . We use the short-hand notation i.i.d. to represent independent and

identically distributed in the rest of this chapter.

Let {Xn, n 2 N} be an i.i.d. collection of random variables, each of which has finite mean µ and finite
variance �2. Define a sequence of dependent random variables Sn using partial sums as:

Sn = X1 + X2 + · · · + Xn.

Using linearity of expectation and the i.i.d. property, we establish the following:

E[Sn] =
nX

j=1

E[Xj ] = nµ.
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What about the covariance of Sn? This is also computed readily, as

VarSn = E[(Sn � E[Sn])2] = E
⇥� nX

j=1

(Xj � µ)
�2⇤

= E
⇥ nX

j=1

nX

k=1

(Xj � µ)(Xi � µ)
⇤

=
nX

j=1

nX

k=1

E
⇥
(Xj � µ)(Xi � µ)

⇤

=
nX

j=1

nX

k=1

Cov[Xj , Xk] =
nX

j=1

Var[Xj ] = n�2

where the last equality follows because the Xj are i.i.d., hence Cov[Xj , Xk] = 0 if k 6= j, and Cov[Xj , Xk] =
Var[Xj ] = �2 if k = j.

Notice that, as n grows, E[Sn] and Var[Sn] both grow linearly with n. Thus, we don’t expect any type
of convergence for the sequence Sn. Let’s define instead the variables Mn = Sn

n
, the average of the first n

random variables Xk. Then,

E[Mn] =
E[Sn]

n
= µ,

and

Var[Mn] =
� 1

n

�2
Var[Sn] =

n�2

n2
=
�2

n
.

Note now that, as n increases, the variables Mn have the same mean, and the variance of the random
variables decreases. The distribution of Mn becomes more concentrated about its average µ.

Example 8.1
Let X be an exponential random variable with � = 1. Thus, E[X] = 1

� = 1. Let Mn denote the sample mean of n
independent samples of X. How many samples are needed so that the variance of the sample mean is less than or equal
to 0.01?

From the properties of exponential random variables, Var[X] = 1
�2 = 1. Hence, for the average of n samples,

Var[Mn] = VarX
n . This means that we need at least 100 samples for the variance to be 0.01 or less.

At this point, we don’t know much about the probability distribution of Mn. Indeed, since Mn is a sum
of independent random variables, its probability density function is an n-fold convolution of the densities of
the scaled random variables Xj/n. In order to make statements concerning the probability of events related
to Mn, we discuss next some estimates of such probabilities based on only mean and variance information.

8.2 Useful inequalities for Random Variables

In order to analyze notions of convergence of random variables, it is useful to bound the errors between the
limit random variable and elements of the sequence using inequalities that do not require knowledge of the
full distribution of the random variables. Below, we present a few useful inequalities:

8.2.1 Markov inequality

Suppose that X is a non-negative random variable with known finite mean, and we want to obtain some
bounds on the probability distribution function of X. The Markov Inequality is given by

P[{X � a}] =

Z 1

a

fX(x) dx  E[X]

a
.
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How do show the Markov inequality is true? The steps below illustrate the argument when X is a continuous
random variable with finite expected value. Since X is non-negative, the density fX(x) is zero for x < 0.

E[X] =

Z 1

�1
xfX(x) dx =

Z 1

0
xfX(x) dx

=

Z
a

0
xfX(x) dx +

Z 1

a

xfX(x) dx

�
Z 1

a

xfX(x) dx (Drop the first term, non-negative)

� a

Z 1

a

fX(x) dx = aP[{X � a}] (x � c in the integrand)

The Markov inequality follows by dividing both sides by a.

The above argument can be generalized as follows: Let g(x) � 0 everywhere, and let g(x) > a > 0 for all
x 2 A, for a subset A of the real line <. Then,

E[g(X)] =

Z

x2A

g(x)fX(x) dx +

Z

x/2A

g(x)fX(x) dx

�
Z

x2A

g(x)fX(x) dx � a

Z

x2A

fX(x) dx

= aP[{X 2 A}].

Hence, P[{X 2 A}]  E[g(X)]
a

.

8.2.2 Chebyshev inequality

Suppose that the mean µ and variance �2 of a random variable X are known, and we would like to bound
the probability that the variable is far from its mean. The Chebyshev inequality states that

P[{|X � µ| � a}]  �2

a2
.

The Chebyshev inequality can be derived from the Markov Inequality, by defining the non-negative
random variable Y = (X � µ)2. Since E[Y ] = Var[X] is finite, the Markov inequality states that

P[{Y � a2}]  E[Y ]

a2
=
�2

a2
.

In terms of equivalent events,

P[{|X � µ| � a}] = P[{Y � a2}]  �2

a2
,

which shows the Chebyshev Inequality.

A di↵erent way of writing the Chebyshev inequality is as follows: Let a = a0�. Then,

P[{|X � µ| � a}]P[{|X � µ| � a0�}] = �2

a02�2
=

1

a02 .

This can be interpreted as in terms of number of standard deviations away from the mean. The probability
that X is more than a0 standard deviations away from its mean is less than 1

a02 .

The above can be generalized for any random variable X such that E[(X � µ)n] is finite for some even
number n, as

P[{|X � m| � a}] = P[{|X � m|n � an}]  E[|X � m|n]

an
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or, more generally, for any real, nonnegative, even function g(x) which is non-decreasing for x > 0, and has
finite expectation. Then,

P[{g(X) � g(a)}]  E[g(X)]

g(a)
.

Example 8.2
A random variable W , which represents the waiting time to be served at a restaurant, is uniformly distributed in the interval
from 0 to 10 minutes. Estimate a bound on the probability that the wait is at least 8 minutes.

Note that, in this case, we know the exact probability of the event {W � 8}, because we have the density of W :
Hence, P[{W � 8}] = 0.2. What if we estimated this using either the Markov inequality or the Chebyshev inequality? We
know that E[W ] = 5, and Var[W ] = 100

12 = 25
3 . We also know that W � 0. Hence, the Markov inequality indicates that

P[{W � 8}]  E[W ]
8

=
5
8
,

which is much larger than 0.2. It shows that the bound can be loose.

What about the Chebyshev inequality? It states:

P[{|W � 5| � 3}] 
25
3

9
=

25
27

.

If we divide by 2 to represent the one-sided probability that W > 8, we have

P[{W � 8}]  25
54

,

which is closer to 0.2, but still a loose bound.

Example 8.3
Assume X is Gaussian, with mean 0 and variance 1. Then, P[{|X| > a}] = 2Q(a), where Q(·) is the standard Gaussian
complementary cumulative distribution function. We can compare, as a function of a, the estimate generated by the
Chebyshev inequality and the true value 2Q(a), as:

Value of a Chebyshev Inequality 2Q(a)
a = 2 0.25 0.0455
a = 3 0.111 0.0027
a = 4 0.0625 0.0000633
a = 5 0.04 0.0000006

The values illustrate the conservative nature of the Chebyshev inequality.

Example 8.4
Chebyshev’s Inequality can provide a tight bound for some distributions. Consider the discrete random variable X with
range in RX = {�1, 1} such that P (1) = 0.5, P (�1) = 0.5. Then, E[X] = 0,Var[X] = 1. Therefore, Chebyshev’s
Inequality states that

P[{|X � E[X]| � 1}]  1.

However, we know that P[{|X � E[X]| � 1}] = 1 in this example, so the bound is equal to the actual probability.

8.2.3 Cherno↵ and Jensen Inequalities

There are other bounds on probabilities of random variables that are useful to know. We discuss them briefly
here without proof.

Given a random variable X, define a new random variable Y✏ as:

Y✏ =

(
1 X � ✏,

0 otherwise.

That is, Y is the indicator random variable that X � ✏.
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Then, for all t � 0, the following inequality holds:

etX � et✏Y.

Thus,
E
⇥
etX
⇤

� E
⇥
et✏Y

⇤
= et✏P[{X � ✏}],

which implies that
P[{X � ✏}]  e�t✏E

⇥
etX
⇤
, t � 0.

This bound can be tightened through the choice of t, as follows:

P[{X � ✏}]  min
t�0

e�t✏E
⇥
etX
⇤
, t � 0.

Note that this bound requires computation of E
⇥
etX
⇤
, which is equivalent to computing the characteristic

function (or moment-generating function) of X! Thus, this bound requires extensive knowledge of the full
probability density function of X, and not just its mean and variance.

Another useful inequality is Jensen’s inequality. A convex function g(x) of a continuous variable x in an
interval I is a function such that, for any ↵ 2 [0, 1], any x, y 2 I, the following is true:

g(↵x + (1 � ↵)y)  ↵g(x) + (1 � ↵)g(y).

Let X denote a random variable with probability density or probability mass function distributed over
I, and let µ denote its mean, which must be in I. Then, for any convex function g, we have

g(µ)  E[g(X)].

One way to recognize that this is true is to note that, if X were a discrete random variable with PX(x) =
↵, PX(y) = 1 � ↵, then the definition of g as convex implies

g(↵x + (1 � ↵)y) = g(E[X])  ↵g(x) + (1 � ↵)g(y) = E[g(X)].

This can be extended to other discrete probability mass functions, and in a limiting argument to continuous
random variables X.

Jensen’s inequality can be used to derive many inequalities concerning moments of random variables,
such as the Cauchy-Schwartz inequality that we used to prove that the correlation coe�cient between two
random variables X, Y is a number with magnitude less than or equal to 1.

Example 8.5
Assume X is Binomial(n, p). Then, using the Cherno↵ bound, we have

P[{X � ✏}]  min
t�0

e�t✏E
h
etX

i
, t � 0.

We can compute E
⇥
etX

⇤
in this case, as X is the sum of n independent Bernoulli(p) random variables Y1, . . . , Yn. Hence,

E
h
etX

i
= E

h
et

P
n

k=1 Yk

i
=

nY

k=1

E[etYk ] =
nY

k=1

(1� p+ pet) = (1� p+ pet)n.

Let’s compute a bound on P[{X � ↵n}] for 1 > ↵ > p. Then,

min
t�0

e�t↵nE
h
etX

i
= min

t�0
e�t↵n(1� p+ pet)n

Taking the derivative with respect to t and setting it equal to 0 yields

d
dt

�
e�t↵n(1� p+ pet)n

�
= �↵ne�t↵n(1� p+ pet)n + npete�t↵n(1� p+ pet)n�1 = 0.
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Dividing by common factors yields the solution at the minimum value:

↵n(1� p+ pet) = npet ) et =
↵(1� p)
p(1� ↵)

Substituting into the bound, we get:

min
t�0

e�t↵nE
h
etX

i
=

✓
p(1� ↵)
↵(1� p)

◆↵n✓
1� p+ p

↵(1� p)
p(1� ↵)

◆
=

✓
p(1� ↵)
↵(1� p)

◆↵n (1� p)
(1� ↵)

=

✓
p
↵

◆↵n✓1� ↵)
1� p

◆↵n�1

For p = 0.5,↵ = 0.75 the above bound is P[{X � ↵n}] = 2

✓
1
3

◆0.75n

, which decays fast as n increases.

8.2.4 Hoe↵ding’s Inequality

Hoe↵ding’s inequality provides bounds on probabilities of the averages of random variables. Let X1, . . . , Xn

be independent random variables whose range RXk
⇢ [ak, bk], where �1 < ak < bk < 1. That is, with

probability 1, ak � Xk  bk for k = 1, . . . , n. We define the sample mean of these variables by

Mn =
1

n

nX

k=1

Xk.

Then,

P[{Mn � E[Mn] � ✏}]  e
� 2n2

✏
2

P
n

k=1
(b

k
�a

k
)2 ,

P[{Mn � E[Mn]  �✏}]  e
� 2n2

✏
2

P
n

k=1
(b

k
�a

k
)2 .

We can combine the two bounds to get a bound that is similar to the Chebyshev bound, as

P[{|Mn � E[Mn]| � ✏}]  2e
� 2n2

✏
2

P
n

k=1
(b

k
�a

k
)2 .

For the special case that Xk are independent, identically distributed Bernoulli(p) random variables,
ak = 0, bk = 1, and thus

P
n

k=1(bk � ak)2 = n. In this case, Hoe↵ding’s inequality yields

P[{|Mn � p| � ✏}]  2e�2n✏
2

.

Example 8.6
Let’s apply Hoe↵ding’s inequality to the previous example, whereX is Binomial(n, p), so thatX is the sum of n independent

Bernoulli(p) random variables Y1, . . . , Yn. We want to compute P[{X � ↵n}] for 1 > ↵ > p. Note that Mn = X
n , so

P[{X � ↵n}] = P[{Mn � ↵}] = P[{Mn � p � ↵� p}. Using Hoe↵ding’s inequality, we have

P[{Mn � p � ↵� p}  e�2n(↵�p)2 .

For ↵ = 0.75, p = 0.5, this bound becomes P[{Mn � p � 0.25}  e�
n

8 .

8.3 The Law of Large Numbers

The law of large numbers has a central role in probability and statistics. It states that if you repeat an
experiment independently a large number of times and average the result, what you obtain should be close
to the expected value. It is consistent with the frequency interpretation of the concept of probability, where
the probability of an event is the fraction of times when the event occurs if the experiment were repeated
independently an infinite number of times. There are two main versions of the Law of Large Numbers: the
weak law of large numbers and the strong law of large numbers. The di↵erences are subtle, and we will
highlight some of the

We state the weak law of large numbers first, and then prove it.
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Theorem 8.1 (Weak Law of Large Numbers)
Let {Xn} be a sequence of independent, identically distributed random variables with finite means E[Xn] = µ, and define
the sequence of sample means {Mn} as

Mn =
1
n

nX

i=1

Xi

Then, for any " > 0,
lim

n!1
P[{ |Mn � µ| > " }] = 0.

The proof of this theorem in its general case is subtle, and requires a truncation argument. We will
instead show this using the additional assumption that Var[Xn] = �2 < 1. In this case, we have already

shown in Section 8.1 that E[Mn] = µ,Var[Mn] = �
2

n
. Using Chebyshev’s inequality, we have that,

P[{|Mn � µ| � "}]  �2

n"2
.

Taking the limit of this as n ! 1 establishes the weak law of large numbers.

As mentioned earlier, the weak law applies in the case of i.i.d. random variables, but it also applies in
some other cases. For instance, if the Xn have finite bounded variances, and are uncorrelated, the law still
holds. Even if the variances grow unbounded with n, as long as the variance of the averages Mn goes to zero
as n ! 1, the same argument can be applied to establish the weak law of large numbers.

The type of convergence used in the weak law of large numbers is convergence in probability. A sequence
of random variables {Mn} converges to a limiting random variable M in probability if and only if

lim
n!1

P[{|Mn � M | > "}] = 0.

When the random variables Xn have finite variance, bounded by �2, we can show the averages Mn

converge to their limit in mean square also, which means

lim
n!1

E[(Mn � µ)2] = 0.

This is trivial to show as we know the variance of Mn goes to zero, and the mean is µ.

Example 8.7
Assume X is a Bernoulli random variable, with probability p that X = 1. Let Xk be a repetition of the same experiment,
for k = 1, 2, . . .. From our results in estimation, we know that the maximum likelihood estimate of p given n observations
Xk is given by

bpML({Xk, k = 1, 2, . . . , n}) =
Pn

k=1 Xk

n
.

which is the sample average discussed above. By the weak Law of Large Numbers,

P[{|
Pn

k=1 Xk

n
� bpML({Xk, k = 1, 2, . . . , n})| � "}]  �2

n"2
 1

4n"2
,

which converges to zero as n ! 1.

Example 8.8
One of the problems with MMSE estimation that we discussed in Section 7.3 is that the integrals are hard to compute.
For instance, in Example 7.6, we had to compute the following integral to get the conditional density of X given Y = y:
R 1000

0
2x
106

1
2
p
2⇡

e�
(y�40+40 log10(x))2

8 dx.

In general, suppose we have a function g(x), and we wanted to compute
R b

a
g(x) dx, but g(x) was a continuous function

that was hard to integrate. We can compute the integral approximately using the weak Law of Large Numbers as follows:
Let {Xn} be an i.i.d. sequence of random variables, uniformly distributed in [a, b]. Let Yn = g(Xn). Then, {Yn} is also

an i.i.d. sequence, and E[Y ] =
R b

a
g(x)
b�a dx. Given that [a, b] is a bounded interval and g(x) is continuous, we can show that

Var[Yn] = �2
Y < 1.
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By the weak Law of Large Numbers, the average Y1+Y2+...+Yn

n is close to E[Y ]. Hence, an approximation for the
integral is Z b

a

g(x) dx ⇡ (b� a)
Y1 + Y2 + . . .+ Yn

n
.

Furthermore, we can compute the probability that the error is significant using the Chebyshev inequality. This probabilistic
technique is known as the Monte Carlo method of integration.

The statement of the weak law of large numbers is a statement about probabilities, averaged over all the
outcomes in the experiment. It does not guarantee that, for any outcome ! 2 ⌦ that generates a sequence
of realizations of random variables X1(!), X2(!), . . . , the average of those random variables will be close to
E[X] = µ. It does not even guarantee that the set of outcomes for which the average does not converge to µ
has zero probability of occurring. For that, we need the Strong Law of Large Numbers, stated next:

Theorem 8.2 (Strong Law of Large Numbers)
Let {Xn} be a sequence of independent, identically distributed random variables with finite mean µ. Define the sequence
of sample means {Mn} as

Mn =
1
n

nX

k=1

Xk

then,

P
h
{! 2 ⌦ : lim

n!1
Mn(!) = µ}

i
= 1.

The type of convergence in the strong law of large numbers is known as almost sure convergence. It states
that the probability of an outcome where the sequence does not converge is zero. The proof is more complex
than that of the weak law and is beyond the scope of our course. The strong law requires independence of
the random variables Xk, whereas the weak law can be established using uncorrelated assumptions.

The main di↵erence between the strong law of large numbers and the weak law of large numbers is where
the limit is placed in the statement: The weak law states:

lim
n!1

P[{ |Mn � µ| > " }] = 0,

whereas the strong law states:

P
h
{! 2 ⌦ : lim

n!1
Mn = µ}

i
= 1.

Thus, the strong law states that, for any " > 0, the probability of the event {|Mn�µ| > " for at most a finite n}
is equal to 1.

8.4 The Central Limit Theorem

The law of large numbers characterizes that the sample averages Mn converge to a deterministic quantity,
the mean E[X] = µ. Basically, it states that the cumulative distribution function FMn

(z) converges to a unit
step function:

FMn
(z) =

(
0 z < µ

1 z � µ.

It is often of interest to characterize the error Mn � µ. We know from our previous analysis that, if the
sequence {Xk} is i.i.d., with finite mean µ and finite variance �2, the error Mn �µ has 0 mean, and variance
�

2

n
. If we define a scaled variable Yn =

p
n

�
(Mn � µ), the variables Yn have zero mean and variance 1 for all

n. We can express Yn in terms of the partial sums Sn = nMn as

Yn =
Mn � µ

�p
n

=
Sn � nµ

�
p

n
.
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The Central Limit Theorem states that, as n increases, the cumulative distribution functions of Yn

converge to a special form, as stated below:

Theorem 8.3 (Central Limit Theorem)
Consider a sequence of independent, identically distributed random variables {Xn} with finite mean µ and finite variance
�2. Denote the partial sum Sn and the partial average Mn as

Sn =
nX

i=1

Xi; Mn =
1
n
Sn.

Define the new random sequence {Yn} as

Yn =
Sn � nµ

�
p
n

=
Mn � µ

�p
n

.

Then, for any real. number y, the sequence of cumulative distribution functions FYn
(y) converges to �(y), the cumulative

distribution function of a standard Gaussian random variable with mean 0 and variance 1.

The surprising part of the Central Limit Theorem (CLT) is that the distribution of the individual random
variables can be arbitrary. This is why Gaussian random variables are used so often in probabilistic analysis,
since they approximately model sums of many independent e↵ects. Note also the scaling used in the Central
Limit Theorem: Sn has mean nµ and variance n�2. Hence, Yn is measured in terms of units of standard
deviation away from the mean, a similar scaling that we used when computing probabilities of Gaussian
random variables.

We sketch a brief proof the the CLT by computing what are known as characteristic functions, which are
the Fourier transform of the probability density functions of continuous random variables, or equivalently the
Fourier transform of the of the generalized probability mass functions (expressed as the sum of �(·) functions)
for discrete random variables. Since density functions integrate to 1 and probability mass functions sum to
1, the characteristic function transform will be well-defined for all j!, with j =

p
�1.

The characteristic function of a random variable X is

 W (!) = E[ej!X ] =

(R1
�1 ej!xfX(x) dx X continuous,
P

xk2RX
ej!xkP (xk) X discrete.

Note that

Yn =
1

�X

p
n

nX

k=1

(Xk � µx)

is a sum of independent, zero-mean random variables. There is a convergence result in probability called
Lévy’s continuity theorem, which states that, if the characteristic functions of a sequence of random variables
Yn converge pointwise as n ! 1 to a function  (!) which is continuous at ! = 0, then the CDFs of Yn

converge pointwise to the CDF of a random variable Y with characteristic function  (!). We will use this
result to prove the CLT using characteristic functions.

The characteristic function of Yn is given by:

 Yn
(!) = E[ej!Yn ] = E[e

j!
1

�X

p
n

P
n

k=1(Xk�µ)
]

= E
"

nY

k=1

e
j!

1
�X

p
n

(Xk�µ)

#

=
nY

k=1

E
h
e
j!

1
�X

p
n

(Xk�µ)
i

(independence)

=
⇣
E
h
e
j!

1
�X

p
n

(X1�µ)
i ⌘n

(identically distributed)

where the last equalities follows from the independent, identically distributed assumption. We expand the
exponential in the expression using a Taylor series as:

ej!
X1�µ

�
p

n = 1 +
j!(X1 � µ)

�
p

n
� !2(X1 � µ)2

2�2n
+ . . .
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For large n, we neglect terms beyond the first three terms to get the approximation:

E[ej!
X1�µ

�
p

n ] ⇡ 1 +
j!E[X1 � µ]

�
p

n
� !2E[(X1 � µ)2]

2�2n

⇡ 1 � !2

2n

because E[X1 � µ] = 0,E[(X1 � µ)2] = �2. Thus,

 Yn
(!) ⇡ (1 � !2

2n
)n

and, taking limits as n ! 1, we get

lim
n!1

 Yn
(s) = e�!

2
/2

Let Z be a zero mean, unit variance Gaussian random variable. Then,

 Z(!) =

Z 1

�1

1p
2⇡

e� z
2

2 +j!zdz =

Z 1

�1

1p
2⇡

e� z
2

2 +j!z+!
2

2 �!
2

2 dz =

Z 1

�1

1p
2⇡

e� (z�j!z)2

2 �!
2

2 dz = e
�!

2

2 .

Thus, the characteristic functions of Yn converge for each ! to the characteristic function of a zero-mean,
unit variance Gaussian random variable for all values. By Lévy’s continuity theorem, this implies that the
CDF of Yn converges to the CDF of a Gaussian(0, 1) random variable.

The CLT implies that, given any i.i.d. sequence of random variables, we can compute probabilities of
events relating to the sum of the random variables approximately using a Gaussian distribution. That is,

P[{(X1 + X2 + . . . + Xn)  a}] ⇡ �

✓
a � nµp

n�

◆

and

P[{ 1

n
(X1 + X2 + . . . + Xn)  b}] ⇡ �

 
b � µ

�p
n

!
.

As a rule of thumb, these approximation are very accurate as long as |a�nµX |p
n�

is less than 3.

Example 8.9
Assume we have a disk drive that takes X milliseconds for each disk access time, where X is a random variable, uniformly
distributed in [0,12]. Assume one must access disk 12 times independently, and define the total access time T = X1 +

. . .+X12. Then, E[T ]12E[X] = 72 msec, and Var[T ] = 12Var[X] = 12 · 122

12 = 144. Therefore, the standard deviation of
the sum is 12. We want to compute the probability that the total wait time is greater than 75 seconds.

We approximate this with the CLT, since T is the sum of i.i.d. random variables.

P[T > 75] = 1� FT (75) ⇡ 1� �

✓
75� 72

12

◆
= 1� �(0.25) = Q(0.25).

What about the probability that T < 48? This is

FT (48) ⇡ �(
48� 72

12
) = �(�2) = Q(2).

Note that, to compute this exactly, we would need the probability density of T , which would require performing 12
convolutions.

Example 8.10
A Modem transmits 104 bits, where each bit is i.i.d. with probability p = 0.5. We would like to estimate the probability
that we get more that 5100 one bits. We also want to estimate the probability that the number of one bits we receive is
in the interval (4900,5100].

The total number of one bits received, T is the sum of 104 independent Bernoulli random variables. We know this is a
Binomial (104, 0.5) random variable, but computing the quantities asked involve summing between 100 and 200 binomial
terms. We approximate this using. the CLT as follows:

E[T ] = 104p = 5000; Var[T ] = 104p(1� p) = 2500; �T = 50.
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With this approximation, we quickly estimate

P[{T > 5100}] = 1� FT (5100) ⇡ 1� �(
5100� 5000

50
) = 1� �(2) = Q(2).

P[{T 2 (4900, 5100]}] = FT (5100)� FT (4900) ⇡ �(2)� �(�2) = �(2)�Q(2).


