
Chapter 9

Sample Statistics

Suppose we have a random variable X, and we collect n independent samples X1, X2, . . . , Xn of this random
variable. The probability model is that the samples are random variables X1, X2, . . . , Xn are mutually
independent and identically distributed with the same distribution as X. As we discussed in Chapter ??,
the sample mean Mn = 1

n

P
n

k=1 Xk is an approximation to the expected value E[X] that converges with
probability 1 to the true expected value E[X], by the Strong Law of Large Numbers.

For any finite n, the sample mean Mn is a random variable. This random variable is the sum of n
independent random variables, so describing statistical properties such as its PDF if X were a continuous
random variable would require computing n-fold convolutions of the PDF fX(x).

Nevertheless, we know

E [Mn � E[X]] = E[
1

n

nX

k=1

Xk] � E[X] =
1

n

nX

k=1

E[Xk] � E[X] = 0

from the property that all the Xk are identically distributed. Under the assumption that the random variable
X has finite variance �2, we can also compute

Var[Mn] =
1

n2

nX

k=1

Var[Xk] =
�2

n
,

because the random variables Xk are independent.

The Central Limit Theorem states that a scaled version of Mn�E[X] has a CDF that converges to that of

a standard Gaussian random variable with mean 0 and variance 1. Specifically, we define Zn =
p

nMn�E[X]
�

as the scaled random variable. Then,

lim
n!1

P[{Zn  x}] = �(x), for all x 2 <.

In this chapter, we are concerned with finite collections of independent samples of a random variable,
using these samples to estimate properties of the random variable X. Unlike the limit results of ??, we want
to estimate the accuracy we can obtain from a fixed finite number of samples n. We consider problems in
both estimation and detection. For instance, we want to estimate the average height of women in the Boston
are by measuring the height of 100 women, uniformly selected from Boston’s population. How accurate will
our estimate be? As another instance, consider conducting a trial for a new vaccine trial with a test group
of 100 subjects and a control group of another 100 subjects. Do the results indicate that the vaccine makes
a significant di↵erence, and what confidence do we have in that conclusion?

9.1 Estimation of Mean and Variance

If we don’t know the true mean, but can collect independent samples of X, the sample mean Mn is often a
reasonable estimator for the true mean E[X]. The sample mean is computed by generating n independent,
identically distributed Xk, k = 1, . . . , n, each of which is identically distributed as X. In this case,

Mn =
1

n

nX

k=1

Xk



198 CHAPTER 9. SAMPLE STATISTICS

has mean E[X], and Mn converges to E[X] by the Strong Law of Large Numbers. If X has finite variance

�2, Mn is the sum of independent, identically distributed random variables, and thus has variance �
2

n
.

Suppose that we would like to estimate the variance �2 of X. Assuming the variance is finite, it is
obtained as

Var[X] = �2 = E[
⇣
X � E[X]

⌘2
].

Given knowledge of E[X], and samples X1, . . . , Xn, an estimate of the variance can be obtained as

bVn =
1

n

nX

k=1

(Xk � E[X])2.

Since the Xk are independent and identically distributed as X, we have

E[bVn] =
1

n

nX

k=1

E[(Xk � E[X])2] =
1

n

nX

k=1

Var[X] = Var[X].

By the Strong Law of Large Numbers, we know limn!1 bVn = Var[X] with probability 1.

What if we did not know the mean E[X], but had only the sample values Xk, k = 1, . . . , n to estimate
the variance? In this case, we may consider estimating the variance by using the sample mean Mn. That is,

V n =
1

n

nX

k=1

(Xk � Mn)2.

This can be simplified as

V n =
1

n

nX

k=1

(X2
k

� 2XkMn + M2
n
)

=
1

n

nX

k=1

X2
k

� 2
� 1

n

nX

k=1

Xk

�
Mn + M2

n

=
1

n

nX

k=1

X2
k

� 2M2
n

+ M2
n

=
1

n

nX

k=1

X2
k

� M2
n

Using the previous equation, we can compute the expected value of this estimate as

E[V n] = E[X2] � E[M2
n
] = E[X]2 + Var[X] � E[X]2 � Var[X]

n
=

n � 1

n
Var[X].

This shows that the estimate V n is a biased estimate of Var[X], and underestimates it by a small amount.
To compensate for this, one can use the unbiased estimate:

Vn =
1

n � 1

nX

k=1

(Xk � Mn)2.

This sample variance is an unbiased estimate of the true variance of X based on the samples X1, . . . , Xn.
Most computer packages compute the sample variance as Vn.

What about an estimate of the standard deviation? While we can generate di↵erent estimates for the
standard deviation directly, the common definition the sample standard deviation is

b�n =
p

Vn.

This guarantees the consistent interpretation that the sample standard deviation is the square root of the
sample variance,
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9.2 Confidence Intervals for Sample Means

In the press, we read reports that quote statistics such as 57% ± 3% of responders prefer brand A to brand
B, with confidence interval 95%. How were such numbers calculated? We discuss this in this section.

Assume we have a random variable X, and we collect n independent samples Xk of X. Assume X has
finite mean µ and variance �2. The sample mean of X, given n samples Xi is Mn = 1

n

P
n

k=1 Xk, which is a
random variable. From the previous analysis, we know

E[Mn] = E[X] = µ; Var[Mn] =
Var[X]

n
=

�2

n
.

Mn is an estimate of E[X]. Given a small constant ↵, we want to find an interval [A, B] such that

P[{A  E[X]  B}|Mn] = 1 � ↵.

If we find such numbers, B � A is called the confidence interval and 1 � ↵ the confidence.

Often, we select the interval to be centered about the sample mean Mn, in order to determine how close
Mn is to the true mean E[X]. Specifically, consider the event {|Mn � µ| < ✏} for some ✏ > 0. Given the
statistical properties of Mn, we can compute P[{|Mn � µ| < ✏}] = q. We say that the true mean is in the
interval [Mn � ✏, Mn + ✏] with confidence q.

We can use several of the limit theorems from Chapter 8 to estimate these confidence intervals. The
variance of Mn is �

2

n
, which is small for large values numbers of samples n. If we know �2, the Chebyshev

inequality yields

P[{|Mn � µ| � ✏}]  �2

n✏2
.

Thus, P[{|Mn � µ| < ✏}] � 1 � �
2

n✏2
, yielding an estimate of the confidence level q = 1 � �

2

n✏2
for fixed values

of n, ✏.

If the random variables Xk are bounded with values in [a, b], we can use Hoe↵ding’s inequality to get an
improved confidence level:

P[{|Mn � µ| � ✏}]  2e
� 2n✏

2

(b�a)2 .

Thus, the true mean is in the interval [Mn � ✏, Mn + ✏] with confidence level q = 1 � 2e
� 2n✏

2

(b�a)2 .

For large n, we can approximate this probability using the Central Limit Theorem (CLT). The CLT

states that the random variable Z =
p

n(Mn�µ)
�

has the distribution of a standard Gaussian random variable,
so Z ⇠ N (0, 1). Then,

P[{|Mn � µ| � ✏}] = P[{|Z| �
p

n✏

�
} = 2(1 � �(

✏
p

n

�
)) = 2Q(

✏
p

n

�
).

Thus, the true mean is in the interval [Mn � ✏, Mn + ✏] with confidence level q = 1 � 2Q( ✏
p

n

�
).

If we know ✏ and n, we can estimate the confidence level that |Mn �µ| < ✏ using the above results. What
if we knew ✏ and the desired confidence level 1 � ↵, and wanted to know how large n had to be to get that
confidence level for that interval?

To answer this, if we are using the CLT, we determine a value T such that Q(T ) = ↵/2 using the standard
Gaussian CDF table in Appendix C. Then,

P[{|
p

n(Mn � µ)

�X

 T}] ⇡ 1 � ↵,
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or equivalently,

P[|Mn � µ|  T�Xp
n

] ⇡ 1 � ↵.

This translates to the following statement: with confidence level 1 � ↵, the true expected value µ lies in the
interval [Mn � T�Xp

n
, Mn + T�p

n
]. The length of the confidence interval is 2 T�p

n
. To determine the number of

samples n required for an interval of length 2✏, we solve

T�Xp
n

= ✏ =) n =
�T 2�2

✏2
�
.

Similarly, we can determine how large n needs to be using other bounds such as the Chebyshev bound
or Hoe↵ding’s Inequality. We illustrate this process in the examples below.

Example 9.1
Suppose X is a Bernoulli(0.25) random variable. Assume we collect 100 independent, identically distributed samples of

X, denoted as Xk, k = 1, . . . , 100. Define M100 = 1
100

P100
k=1 Xi. Estimate the probability P[{|M100 � 0.25| > 0.01}].

The variance of a Bernoulli(p) random variable is p(1 � p). Thus, the variance of X is 3
16 , and the standard deviation is

p
3

4 . Using the Chebyshev Inequality, we obtain

P[{|M100 � 0.25| > 0.01}] 
3
16

100 · 0.012  3
0.16

= 18.75

which is a useless estimate, as we know probabilities are less than 1. This means we don’t have enough samples to estimate
the mean of X accurately.

Since Bernoulli random variables take values in [0, 1], Hoe↵ding’s inequality yields

P[{|M100 � µ| � 0.01}]  2e�
200(0.01)2

12 = 2e�0.02

which is also a number greater than one, so it is not a useful bound.

What about the estimate from the Central Limit Theorem? In this case, Mn is approximated by a Gaussian with mean
0.25 and variance 3

16·100 = 3
1600 . The transformation Z = Mn�0.25p

3
1600

= 40(Mn�0.25)p
3

makes Z a standard Gaussian random

variable. The event {|Mn � 0.25| > 0.01} is equivalent to the event {|Z| > 0.4p
3
}. Thus, we can estimate the desired

probability as

P[{|Mn � 0.25| > 0.01}] ⇡ P[{|Z| > 0.4p
3
}] = 2Q(

0.4p
3
) ⇡ 0.8174.

Example 9.2
Continuing the example 9.1, we would like to estimate the required number of samples n so that the sample mean
Mn 2 [µ� 0.01, µ+ 0.01] with confidence 0.95.

Using the Chebyshev inequality, we want

P[{|Mn � 0.25| > 0.01}] 
3
16

n · 0.012  0.05

Combining the last two equations, we get n �
3
16

5·(0.01)3 = 300,000
8 = 37, 500. It is clear why 100 samples were inadequate

in the previous example.

Using Hoe↵ding’s inequality yields

P[{|Mn � µ| � 0.01}]  2e�
2n(0.01)2

12 = 2e�
2n

10000 .

Let n be such that

2e�
2n

10000 = 0.05 () � 2n
10000

= ln(0.025) () n = 5000 ln(40) ⇡ 18, 444.
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Using the Central Limit Theorem, we get the following estimate:

P[{|Mn � 0.25| > 0.01}] ⇡ 2Q(
0.01q

3
16n

)  0.05.

We use the standard Gaussian table in Appendix C to find the value of z⇤ such that Q(z) = 0.025, or equivalently,
�(z) = 0.975. Looking at the table, we find z⇤ = 1.96. Hence, as long as 0.01p

3
16n

> z⇤, we have Q( 0.01p
3

16n

)  0.025.

Simplifying the above inequality, we get

0.01
p
16np
3

> 1.96 =) n > (1.96
p
3)2 · (25)2 ⇡ 7203.

We see that the estimate obtained from the Central Limit Theorem can give us the required confidence for Mn 2
[µ � 0.01, µ + 0.01] with a smaller number of samples than the estimate from the Chebyshev Inequality or Hoe↵ding’s
inequality.

Example 9.3
Let’s ask a di↵erent question related to example 9.1: Given that you have collected 1000 samples Xk, k = 1, . . . , 1000,
what is the 95% confidence interval around µ for the estimate M1000?

Using the Chebyshev Inequality, we have

P[{|M1000 � 0.25| > ✏}] 
3
16

1000 · ✏2  0.05

This implies

✏2 � 6
1600

=) ✏ �
p
6

40
⇡ 0.3873.

Using the CLT, we get Q( ✏p
3

16000

) = 0.025, which means that

✏q
3

16000

= 1.96 =) ✏ = 1.96
p

3/16000 ⇡ 0.0268.

Using Hoe↵ding’s inequality, we get e�
2000(✏)2

12 = 0.025 which means that ✏2 = ln(40)
2000 =) ✏ = 0.0429.

Example 9.4
We are taking measurements of an unknown distance d, and the measurements are noisy. Hence, we assume that a
measurement X = d +W , where W is a zero-mean random variable with variance �2. Hence, E[X] = d, Var[X] = �2.
We can repeat this measurement n times, resulting in n independent, identically distributed measurementsXk, k = 1, . . . , n.
We will estimate d as the sample mean of these measurements, as

d̂ =
1
n

nX

k=1

Xk.

Suppose we want to determine how many measurements are needed to obtain 99% confidence interval that the error
|d̂� d|  0.1? Assuming n is large, so that we use the Central Limit Theorem approximation, so that the random variable
p
n(d̂�d)

� is approximated by a standard Gaussian random variable with mean 0, variance 1. Using the standard Gaussian
table in Appendix C, we determine a value z⇤ such that Q(z) = 0.005, or equivalently, �(z) = 0.995. Looking at the table,

we find z⇤ = 2.575. This implies that P[{
p
n(d̂�d)

� |  2.575}] = 0.99, or equivalently, P[{|d̂� d|  2.575 �p
n
}] = 0.99.

We want to find n so that the 99% confidence interval is |d̂�d|  0.1. Hence, we must select n such that 2.575 �p
n
 0.1.

This requires n � (25.75)2�2. For � = 1, this is approximately 663 samples.

Example 9.5
Suppose we measure the response time X of a service system, and are interested in estimating the mean response time.
The 10 measurements we collect are listed in the observation vector Y below:

Y =
⇥
41.6 41.48 42.34 41.95 41.86 42.18 41.72 42.26 41.81 42.04

⇤T
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The sample mean is M10 = 41.924, which is an approximation of E[X]. Suppose we know �X = 0.1. We want to find a
95% confidence interval for E[X].

Going to our table for Q(·), we try to find a value T such that Q(T ) = 0.025. We find that T ⇡ 1.96. Then,

P

{|E[X]�M10| 

1.96(0.1)p
10

⇡ 0.062

�
⇡ 0.95.

Thus, we say that E[M ] 2 [41.862, 41.986] with confidence 95%.

In the previous examples, we assume that we know the variance of X, denoted by �2. In many practical
situations, we don’t know the variance, but have only the observed sample values. We have two approaches
for this: one is to use an upper bound on the standard deviation, computed from the properties of the
random variable in question. For instance, the variance of a Bernoulli(p) random variable is p(1 � p). For
any value of p, this number is less than or equal to 0.25, so that the standard deviation is bounded above
by 0.5. We can use similar approaches with other types of random variables, provided we have bounds on
their parameters.

If the random variable X is bounded with range RX ⇢ [a, b], we can use Hoe↵ding’s inequality, which
does not require knowledge of the variance, but instead uses knowledge of the bounds on the range of X.

Alternatively, we can bound the variance by (b�a)2

4 , the largest variance any random variable can have with
range RX ⇢ [a, b].

A second approach is to use the sample standard deviation as a substitute for the true standard deviation.
We illustrate this with examples below.

Example 9.6
We are interested in estimating the probability p that people like bananas. We want a confidence interval of length 0.06
around our estimate, with confidence level 95.5%, corresponding to T = 2 standard deviations. How many people do we
need to poll, assuming that the opinions of people are independent?

Note that the answer any one person gives is a Bernoulli random variable, which is 1 if they like bananas, and 0 if they
don’t. We don’t allow “I don’t know” responses...Thus, if we knew p, the variance in the random variable X corresponding
to a response would be p(1� p), which is a number less than 0.25. Let’s use this as a bound for the true variance which
we don’t know. Let the response of person k be Xk, and let Zn = 1

n

Pn
k=1 Xk. Then,

P

{|Zn � p|  2

p
0.25p
n

}
�
� 0.955.

To get the confidence interval we want, we must have 2
p
0.25p
n

= 1p
n

= 0.06
2 = 0.03. Hence,

p
n ⇡ 100

3 , so n ⇡ 1112
persons need to be interviewed. We could reduce this number somewhat by estimating the variance of the specific responses
adaptively. By using a bound, we get a conservative number to interview that does not depend on the actual responses.

Note that another bound on the variance is used in Hoe↵ding’s inequality: when the range of X is bounded by [a, b], the
variance is bounded by (b� a)2/4.

Example 9.7
Let’s return to Example 9.5. Assume we did not know the variance of X. Let Mn denote the mean response time given
n observed data. We can estimate the variance using the estimator Vn = 1

n�1

Pn
k=1(Yk �Mn)

2.

For the data provided in Example 9.5, with n = 10 samples, the variance estimate is V10 = 0.081. Taking the square root
yields a sample standard deviation of 0.284.

Now, with only 10 measurements, the 95% confidence interval would be

P

{|E[X]�M10| 

1.96(0.284)p
10

⇡ 0.175}
�
⇡ 0.95.

Thus, our confidence interval increases almost by a factor of 3: E[X] is in the interval [41.75, 42.1] with confidence 95%.
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Example 9.8
Here is an example we use in many engineering applications. You are trying to estimate the reliability of a system by
using a simulation program that introduces the various random e↵ects that can cause system failures. Note that, in each
simulation, the system either fails or not, and hence the outcome of each simulation is a Bernoulli random variable Xk,
where Xk = 1 indicates success. The reliability we are trying to estimate is E[X]. If we conduct 100 simulations, and
the estimated reliability p̂ = M100 = 0.95, and the sample variance Vn is 0.05, what can we say regarding the confidence
interval and the level of confidence for this estimate?

Let’s look for the 0.955 confidence level interval, corresponding to a threshold of two standard deviations. With Vn = 0.05,
the sample standard deviation is 0.223. With 100 simulations, the length of the confidence interval is

P[{|M100 � E[X]|  2 · (0.223)p
100

}] � 0.955.

Thus, our true reliability E[X] 2 [0.905, 0.995] with confidence 95.5%. Note that this is an estimate, because the sample
variance Vn was random, and not a bound on the true variance.

What if we increased the number of simulations to 2500? Then our confidence interval tightens significantly, so E[X] 2
[0.936, 0.964] with confidence 95.5%. The important relationship is that the width of the confidence interval is inversely
proportional to the square root of the number of simulations.

We conclude this section by referencing some examples illustrating how confidence intervals are used.
In 2008, a Gallup survey (https://news.gallup.com/poll/105850/ownership-may-good-wellbeing.aspx) was
conducted to determine whether TV ownership was good for wellbeing. People questioned were asked to
rate their life on a scale of 0 to 10. Specifically, they were asked: “Please imagine a ladder with 11 steps,
numbered zero to 10, where the top represents the best possible life for you, and the bottom represents the
worst possible life for you, which step comes closer to the way you feel about your life?” The responses were
sorted into those that came from households with TVs, and those that came from households without TVs.

Note that the answers are integers from 0 to 10. Just like we did for Bernoulli replies, we can bound the
variance of the responses by the variance of a discrete uniform distribution on {0, 1, . . . , 10}, which is 10.
Hence, the standard deviation is

p
10. For a population of 810, a 95% confidence level would result in a

confidence interval of ±0.24.

Typical outcomes of this poll are statements such as: “For the European data, one can say with 95%
confidence that the true population for wellbeing among those without TVs is between 4.88 and 5.26.”
This estimate resulted from a sample of 810 persons that did not have TVs in their home. Note that this
confidence interval (±0.19) is narrower than the worst-case interval above, indicating that the Gallup survey
used a standard deviation estimate based on the responses that was smaller than the worst-case estimate.
Similarly, another statement in the poll was “For those with TVs the 95% confidence interval for well-being
is much narrower – between 5.78 and 5.82 – because of the larger sample size.” In this case, the poll included
40,267 households with TVs in their home. An increase in the number of samples by a factor of nearly 50
reduced the confidence interval by a factor of close to 7. The ratio is not exactly

p
n because the estimate

of the standard deviation also changed.

Given that 2020 is the year of the U.S. Census, one should note that the U.S. Census Bureau routinely
uses confidence levels of 90% in their surveys, which is about 1.645 standard deviations. One survey of the
number of people in poverty in 1995 stated a confidence level of 90% for the statistics: “The number of people
in poverty in the United States is 35,534,124 to 37,315,094.” That means if the Census Bureau repeated
the survey using the same techniques, 90 percent of the time the results would fall between 35,534,124 and
37,315,094 people in poverty. The stated figure (35,534,124 to 37,315,094) is the confidence interval. Now
you know a little more as to how to interpret such statistical statements that appear in our news reports.

9.3 Sampling Gaussian Random Variables

In the previous sections, we did not assume that the variable X that had n independent, identically dis-
tributed samples was Gaussian. For large n, we were able to use properties like the Central Limit Theorem
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Figure 9.1: PDF of chi-squared random variables with di↵erent degrees of freedom.

to approximate the distribution of the sample mean as Gaussian, and get confidence intervals for estimates
of the sample mean. However, we could not do the same for estimates of the sample variance, or for small
number of samples n.

When Xk, k = 1, . . . , n are Gaussian with mean µ and variance �2, the sample mean Mn is Gaussian,
and we can use Gaussian properties to get confidence intervals for small values of n. We have

P[{|Mn � µ| � ✏}] = 2(1 � �(
✏
p

n

�
)) = 2Q(

✏
p

n

�
).

What about the sample variance? The estimate of the sample variance is Vn = 1
n�1

P
n

k=1(Xk � Mn)2.
This random variable is now the sum of squares of random variables. We introduce two new classes of
continuous random variables which will be used to analyze properties of the random variance.

Definition 9.1
Let X1, . . . , Xn be independent, standard Gaussian random variables with mean 0, variance 1. Define the random variable
Y = X2

1 + . . . + X2
n. Then, Y is said to be a chi-squared random variable with n degrees of freedom. We write this as

Y ⇠ �2(n).

Figure 9.1 shows the probability density function for Student’s t random variables with di↵erent degrees of
freedom.

We can derive the following properties for Y ⇠ �2(n):

• E[Y ] =
P

n

k=1 E[X2
k
] = n.

• E[Y 2] =
P

n

j=1

P
n

k=1 E[X2
j
X2

k
]. We can compute each term in the sum as

E[X2
j
X2

k
] =

(
E[X2

j
]E[Xk]2 = 1 j 6= k

E[X4
k
] = 3 j = k.

Thus, E[Y 2] = 3n + n2 � n = 2n + n2.
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• Var[Y ] = E[Y 2] � E[Y ]2 = 2n.

• Let U ⇠ �2(n) and V ⇠ �2(m) be independent random variables. Then, Y = U + V ⇠ �2(m + n).

Like standard Gaussians, the CDF of chi-squared random variables is tabulated and used to compute
probabilities of intervals. An important property of chi-squared random variables is to analyze the statistics
of estimates of the sample variance, when the underlying random variables Xk are Gaussian.

Let X1, . . . , Xn be independent, identically distributed Gaussian random variables with Xk ⇠ N (µ, �2).
The sample mean and variance are:

Mn =
1

n

nX

k=1

Xk; Vn =
1

n � 1

nX

k=1

(Xk � Mn)2.

Then, we will show that the random variable Y = 1
�2

P
n

k=1(Xk � Mn)2 is a �2(n � 1) random variable.
Moreover, Y and Mn are independent random variables. Note that Y is proportional to the sample variance,
as Y = n�1

�2 Vn.

Let’s first show that Y and Mn are independent random variables. Write �2Y as

�2Y =
nX

k=1

(Xk � Mn)2 = (X1 � Mn)2 +
nX

k=2

(Xk � Mn)2 =
⇣ nX

k=2

(Xk � Mn)
⌘2

+
nX

k=2

(Xk � Mn)2

where the last equality follows because
P

n

k=1(Xk � Mn) = 0. We know Xk are i.i.d. and Gaussian. Let’s
define a linear variable transformation as follows: W1 = Mn; W2 = X2 � Mn; W3 = X3 � Mn; · · · Wn =
Xn � Mn. This is a linear transformation, so the variables Wk are Gaussian, and zero-mean. Furthermore,
the inverse of the transformation is

X2 = W2 � W1; X3 = W3 + W1; · · · Xn = Wn + W1; X1 = W1 � W2 � · · · � Wn.

As a matrix, we write this as

X = AW =

2

666664

1 �1 �1 · · · �1
1 1 0 · · · 0
1 0 1 · · · 0
...

...
. . . · · ·

...
1 0 0 · · · 1

3

777775
W.

Note that det[A] = n. Since the Xk are independent, we have

fX(x1, . . . , xn) =
1

(
p

2⇡�2)n
e�

P
n

k=1
(x

k
�µ)2

2�2 .

Using the linear transformation, the joint PDF of W is Gaussian, and given by

fW (w1, . . . , wn) =
n

(
p

2⇡�2)n
e� (w1�

P
n

k=2 w
k
�µ)2

2�2 e�
P

n

k=2
(w

k
w1�µ)2

2�2 .

Let’s expand and regroup the quadratic in the exponent, as

(w1 �
nX

k=2

wk � µ)2 +
nX

k=2

(wk � w1 � µ)2 = w2
1 � 2w1

nX

k=2

(wk � µ) +
⇣ nX

k=2

wk � µ
⌘2

+

nX

k=2

(wk � µ)2 + 2w1

nX

k=2

(wk � µ) +
nX

k=2

w2
1

= nw2
1 +

nX

k=2

(wk � µ)2 +
⇣ nX

k=2

wk � µ
⌘2
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Hence,

fW (w1, . . . , wn) =
n

(
p

2⇡�2)n
e�nw

2
1

2�2 e
frac

P
n

k=2(wk�µ)2+

⇣
P

n

k=2 wk�µ

⌘2

2�
2

,

which shows that W1 is independent of W2, W3, . . . , Wn.

Observe that Mn = W1, and Y = 1
�2

⇣ P
n

k=2 W 2
k

+
� P

n

k=2 Wk)2
⌘
. Hence Mn and Y are independent.

To show that Y is a chi-squared random variable with n � 1 degrees of freedom, note the following:

U =
nX

k=1

(Xk � µ)2

�2

is a chi-squared random variable with n degrees of freedom. Then,

U =
nX

k=1

(Xk � Mn + Mn � µ)2

�2
=

nX

k=1

(Xk � Mn)2

�2
+ 2

nX

k=1

(Xk � Mn)(Mn � µ)

�2
+

nX

k=1

(Mn � µ)2

�2

= Y + 2(Mn � µ)
nX

k=1

(Xk � Mn)

�2
+ n

(Mn � µ)2

�2

= Y + n
(Mn � µ)2

�2

where the middle term vanishes because Mn is the sample mean of the Xk. The last term is the square of a
standard Gaussian random variable also, because E[Mn] = µ, Var[Mn] = �

2

n
. So, we have V = Y + Z, where

V ⇠ �2(n), Z ⇠ �2(1) and Z is independent of Y . This means that Y is a chi-squared random variable with
n � 1 degrees of freedom.

Another standard distribution that is used in statistics is the Student’s t-distribution. The CDF of this
distribution is also tabulated. Let Z be a standard Gaussian random variable, and let Y be a chi-squared
distributed random variable with n degrees of freedom, that is independent of Z. Then, the random variable

W =
Zq

Y

n

has a Student’s t-distribution with n degrees of freedom, abbreviated as W ⇠ T (n). Figure 9.2 shows the
PDF of a Student’s t-distribution with di↵erent degrees of freedom, as well as a standard Gaussian PDF.
The plots illustrate that the Student’s t-distribution approaches a standard Gaussian PDF as the number
of degrees of freedom increases.

The following properties of W ⇠ T (n) are stated without proof:

• For n > 1, E[W ] = 0. For n = 1, E[W ] is undefined.

• For n > 2, Var[W ] = n

n�2 . For n = 1, 2, Var[W ] is undefined (infinite).

• For large n, the density of W approaches N (0, 1).

• The PDF of W is an even function, symmetric about 0.

Why are Students’ t-distributions important? Given X1, X2, . . . , Xn i.i.d. Gaussian random variables
with mean µ and variance �2, and let Mn, Vn denote the sample mean and variance of these variables. Let
b� =

p
Vn denote the sample standard deviation. Then,

W =

p
n(Mn � µ)

b� =

p
n(Mn � µ)p

Vn
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Figure 9.2: PDF of chi-squared random variables with di↵erent degrees of freedom.

has a Student’s t-distribution with n � 1 degrees of freedom (W ⇠ T (n � 1).)

To see this, note the following:

W =

p
n(Mn � µ)p

Vn

=

p
n(Mn � µ)

�

�p
Vn

.

The variable Z =
p

n(Mn�µ)
�

is a standard Gaussian random variable. The variable Vn

�2 can be written as
Vn

�2 = 1
n�1Y , where Y is a chi-squared random variable with n � 1 degrees of freedom. Hence, the ratio is a

Student’s t-distribution with n � 1 degrees of freedom.

We can use this to compute confidence intervals for samples of Gaussian random variables without
specifying either the mean or variance of the distribution, as shown in the example below.

Example 9.9
Let’s return to the problem of example 9.5, with the additional assumption that response time X of a service system is
Gaussian with unknown mean µ and variance �2. We collect 10 independent measurements of X, listed in the observation
vector Y below:

Y =
⇥
41.6 41.48 42.34 41.95 41.86 42.18 41.72 42.26 41.81 42.04

⇤T

The sample mean is M10 = 41.924, which is an approximation of E[X]. The sample variance is 0.0807, and the sample
standard deviation b� is 0.284.

We want to find a 95% confidence interval for E[X]. We have 10 samples, so
p
10(M10�µ)p

V10
T (9). We use Microsoft

Excel or MATLAB to find the value for which the CDF of a T (9) random variable has value 0.975, which is approximately
2.262.

Then,

P

{|
p
10(M10 � µ)p

V10
|  2.262}

�
= P


{|M10 � µ|  2.262 · 0.284p

10
⇡ 0.236}

�
= 0.95.

Thus, we say that E[M ] 2 [41.698, 42.160] with confidence 95%. The increase in the width of the confidence interval,
when compared with the estimate of 9.7, is due to the uncertainty in the estimate of the standard deviation.

We can also get confidence intervals on the sample variance of a normal distribution. The sample variance,
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based on the sample random variables X1, . . . , Xn, is

Vn =
1

n � 1

nX

k=1

(Xk � Mn)2,

where Mn is the sample mean. We know that the random variable Y = (n�1)Vn

�2 has a chi-squared distribution
with n � 1 degrees of freedom. To find a 1 � ↵ confidence interval, we look at the CDF of Y ⇠ �(n � 1) to
determine thresholds t1, t2 � 0 such that

P[{Y  t1}] = ↵/2]; P[{Y  t2}] = 1 � ↵/2.

This guarantees that

P[{t1  Y  t2}] = P[{t1  (n � 1)c�2

�2
 t2}] = 1 � ↵.

We can take inverses to obtain

P[{ 1

t1
� �2

(n � 1)c�2
� 1

t2
}] = P[{ (n � 1)c�2

t1
� �2 � (n � 1)c�2

t2
}].

This gives a (1 � ↵) confidence interval for the true variance �2 as [ (n�1)c�2

t2
, (n�1)c�2

t1
].

Example 9.10
For the problem of example 9.5, n = 10 and the sample variance is 0.0807. To obtain a 95% confidence interval, we
compute the thresholds t1, t2 for ↵ = 0.05 using Microsoft Excel or MATLAB, and obtain t1 = 2.700, t2 = 19.023. This
yields a 95% confidence interval that the true variance �2 2 [0.038, 0.269]. Our sample variance is in this interval, but the
interval is large, as n is small.

9.4 Significance Testing based on Sample Statistics

In significance testing, we are interested in determining whether a set of observations show e↵ects that di↵er
significantly from those expected from a nominal model. The nominal model is our null hypothesis H0, which
describes the nominal probability distribution function of the observations. For simplicity, assume Y to be
a continuous random variable described by a probability density function fY |H0

(y). We observe a sample
of that random variable, and we are interested in determining whether the sample of the random variable
is consistent with the assumed distribution fY |H0

(y). In contrast to binary hypothesis testing, there is no
alternative hypothesis H1 with a similar probability model for Y . Instead, the alternative is that H0 is not
the correct hypothesis. The question answered by significance testing is whether the observed value of Y is
consistent with the hypothesis H0, or whether the value is inconsistent, so that the hypothesis that Y was
generated according to H0 should be rejected.

The types of error that one makes in significance testing are denoted as Type I and Type II errors. A
Type I error occurs when we reject the null hypothesis, declaring that the observed value of Y is inconsistent
with the null hypothesis, even though the data was generated according to H0. This error is a false positive,
or a false alarm, using our nomenclature from Chapter ??. A Type II error occurs when we declare that
the observed value is consistent with the null hypothesis, even though it was not generated by a density
corresponding to the null hypothesis. This type of error is a false negative, or a missed detection.

To design a test of significance for the null hypothesis, we start with a value of ↵, called the level of
significance. We want to design a test such that the probability of false alarm is less than or equal to ↵. To
do this, we select a set R0 ⇢ < of values such that P[{Y 2 R0|H0}] = ↵. The significance test declares the
value is inconsistent and rejects H0 if Y 2 R0, and fails to reject H0 if the observed value Y /2 R0.

There are many ways of selecting the set R0 that satisfy P[{Y 2 R0|H0}] = ↵. The two most common ways
are one-sided tests and two-sided tests. For a typical one-sided test, let FY |H0

(y) denote the cumulative
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distribution function of the observation Y conditioned on the null hypotheses. We select a value t↵ such
that FY |H0

(t↵) = 1 � ↵, and select R0 = {y > t↵}. One-sided tests are appropriate for evaluating when the
observed value of Y is too large to be consistent with the null hypothesis. In this case, ↵ is the probability
of a Type I error, namely, a false alarm. Although these tests appear to focus only on rejection of H0 for
values that are too high, we can extend this to values that are too low by considering the observation �Y
instead of Y .

A two-sided test is designed to test whether the observed random variable is either too high or too low
to be consistent with the null hypothesis. Define tl, th as follows:

FY |H0
(tl) =

↵

2
; FY |H0

(th) = 1 � ↵

2
.

Define the reject set as R0 = {y : y < tl or y > th}. Then, P[{Y 2 R0}|H0] = ↵.

Given an observation Y = y0, the p-value of y0 is defined as the probability, under the null hypothesis,
that you will observe a value as extreme or more extreme that y0. For a one-sided test, the p-value is defined
as 1 � FY |H0

(y0). For a two-sided test, the definition is more nuanced, and depends on the specific nature of
the CDF FY |H0

(y0); one definition is 2 min
�
FY |H0

(y0), 1 � FY |H0
(y0)

�
. If the p-value is smaller than ↵, the

null hypothesis is rejected. This is a di↵erent way of implementing the hypothesis test that does not require
computing the inverse of the CDF FY |H0

(y) to obtain a threshold.

Example 9.11
Our probability model for how late the Green Line is in arriving at its scheduled stop on St. Mary’s street is that Y , the
delay time in minutes, is an exponential random variable with rate parameter � = 0.5, so that the expected delay time
is 2 minutes. This is our null hypothesis. We are going to measure the observed delay time Y , and we want to design a
significance test for hypothesis H0 at a confidence level of 1 � ↵ = 0.95, looking for evidence that the null hypothesis is
inconsistent with the observed data if the measured delay time is too large.

The appropriate test is a one-sided test, as we are looking for delays that are too large to be consistent with the null
hypothesis. Using the properties of exponential random variables, the probability distribution function of Y is

FY |H0(y) =

(
0 y  0

1� e�0.5y y > 0.

We want to define the reject set R0 = {y > t0.05} for some threshold value t0.05 that gives a confidence level of 0.95.
Hence, we want FY |H0(t0.05) = 1� ↵ = 0.95. Thus,

e�0.5t0.05 = 0.05 ) t0.05 = 5.9915.

Hence, our test of significance is Y > 5.9915, defining the region of measurements for which the null hypothesis is rejected.

For any measured value Y = y, its p-value is computed as 1� FY |H0(y) = e�0.5y. If the p-value of the measurement
is less than the desired significance level ↵ = 0.05, the null hypothesis is rejected.

As the above example illustrates, the key to designing a test of significance is to identify the conditional
probability distribution of the test statistic Y under the null hypothesis H0. Using this conditional PDF
FY |H0

(y), we can compute thresholds for the appropriate significance level, and determine the p-values of
measured test values Y = y.

9.4.1 The One Sample Z-Test

Consider the null hypothesis that the random variable X is a Gaussian random variable with known mean µ
and variance �2. As an observation, we collect n independent observations of X, and want to accept or reject
the hypothesis that the measurements were generated according to the null hypothesis. The one-sample Z
test consists of determining whether the batch of n measurements is consistent with null hypothesis.
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To make the decision, we use the sample mean of the observations as the statistic Y for the test. Thus, we
test the hypothesis that the sample mean of the n observations X1, . . . , Xn is consistent with the assumption
that the observations were generated according to the null hypothesis.

This type of hypothesis test is known as a one-sample Z-test. Under the null hypothesis H0, the sample
mean Mn = 1

n

P
n

k=1 Xk is a Gaussian random variable with mean µ and variance �
2

n
. We want to design

a test with a level of significance ↵ that the sample mean is di↵erent from µ. The appropriate test is a
two-sided test, as the sample mean can be either too large or too small.

The random variable Z =
p

n(Mn�µ)
�

, referred to as the Z-statistic, is known to be a standard Gaussian
random variable with mean 0 and variance 1. Given the value Mn = µ̂n, the resulting Z-statistic is z =p

n(µ̂n�µ)
�

. The hypothesis test can be expressed in terms of the Z-statistic, as we want to find a threshold T↵/2

so that P[{|Z| > T↵/2}] = ↵, which is the same problem as finding a 1�↵ confidence interval for the estimate
Mn. The threshold is computed the same way: we find the value T↵/2 so that �(�T↵/2) = Q(T↵/2) = ↵/2,
or equivalently �(T↵/2) = 1 � ↵/2. For instance, if ↵ = 0.05, then T↵/2 = 1.96. Then, if |z| > T↵/2, the
observations do not support the null hypothesis at a level of significance ↵.

An equivalent way of implementing a Z-test is to compute the p-value of the sample mean Mn, or
equivalently, the Z- statistic. The p-value of a measurement is the probability of getting a measurement
value that is more extreme than the current measurement. With a two-sided test and a Gaussian null
hypothesis, the p-value of Z = z is �(�z) + (1 � �(z)) = 2�(�|z|). If the p-value is less than the level of
significance ↵, then the evidence indicates that the null hypothesis can be rejected at that level of significance.
The advantage of this approach is that we don’t have to compute the inverse of the standard Gaussian CDF
� to compute a threshold.

Example 9.12
Assume that a probabilistic model for the weight of a randomly selected male person in the US is a Gaussian random
variable measured in pounds, with mean 195, and standard deviation 30. We believe that Canadians have the same weight
distribution, so we designed an experiment to weigh 100 randomly selected Canadian males, and compute their average
weight, denoted as Wave. Design a statistical test with significance level 0.01 to determine whether the measured Wave

supports the null hypothesis that the weight of Canadian males has the same probability model as the weight of US males.

The measured random variable is Wave, which is the average of 100 independent samples of Canadian male weights.
To answer the question, we need to compute the probability distribution of Wave under the null hypothesis, given that

Wave =
1

100
(W1 +W2 + . . .+W100).

Under the null hypothesis, the Wi’s are independent Gaussian random variables, with mean 195 and standard deviation 30.

The Z statistic for this problem is Z = 10(Wave�195
30 . We want to define a two-sided test to accept or reject the null

hypothesis with significance level 0.01, we are looking for a threshold T0.005 such that, if |Z| > T0.005, we will reject the
hypothesis with significance level 0.01.

Thus, we need to select T0.005 such that Q(T0.005) = 1� �(T0.005) = 0.005; this implies T0.005 = 2.576.

We reject the null hypothesis with significance level 0.01 whenever |Z| > 2.576, or equivalently the average weight
di↵erence |Wave � 195| > 7.728 pounds. Note the e↵ect of selecting a sample size of 100 persons had in reducing the
standard deviation of the test statistic Wave. If we had weighed 9,000 Canadian males, the threshold would be much
smaller, as the standard deviation of the sample mean would be 1, and now a smaller di↵erence in average weight would
be significant.

For this problem, we can compute the p-value of a measured Wave = W , by computing P[{|Wave � 195| > |195 �
W |}|H0] as the probability that the null hypothesis would yield a measurement more extreme than W . This yields a

p-value for W of 2Q( |W�195|
3 ).

Example 9.13
The lifetime of a certain cell type has been determined to be distributed according to a Gaussian distribution with mean
1570 hours and a standard deviation of 120 hours. You perform an experiment and measure the lifetime of 100 cells, and
compute a sample mean lifetime of 1600 hours. Is the sample mean you measure significantly di↵erent from the population
mean at a significance level of 0.05?
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The Z statistic is z =
p
100(1600�1570)

120 = 2.5. The p-value of z can be computed from Appendix C as 2�(�2.5) =
0.0124. Since the p-value is less than the significance level, we can reject the null hypothesis that the experiment lifetimes
were sampled from a N (1570, 14400) distribution.

When the underlying null hypothesis is not a normal distribution, we can still use Z-tests provided that
the number of samples n is su�ciently large (e.g. greater than 30). This is because the Z statistic will have
an approximately Gaussian distribution, according to the Central Limit Theorem in Chapter ??.

9.4.2 The One Sample T -Test

In the One Sample Z-Test, the null hypothesis assumed that both the mean and the standard deviation
were known. In many applications, these parameters are rarely known. We discuss a di↵erent test, where
we know the mean but not the standard deviation of the null hypothesis.

As in the Z-Test, we collect n observations of a random variable X, which is assumed under the null
hypothesis H0 to be Gaussian, with known mean µ, but with unknown variance �2. We would like to test
the hypothesis that the sample mean Mn = 1

n

P
n

k=1 Xk is consistent with the null hypothesis at a level of
significance ↵.

Note that we don’t have a well-specified PDF for the sample mean. We know that E[Mn|H0] = µ, and
fMn|H0

(x) is Gaussian, but we don’t know its variance. Let’s compute the sample variance Vn, and the
sample standard deviation b� =

p
Vn as described earlier. Then, transform Mn to a new random variable

known as the T -statistic, as

T =

p
n(Mn � µ)

b� .

If the null hypothesis is true, T is distributed according to a Student’s t-distribution with n � 1 degrees of
freedom, as shown in Section 9.3. Thus, we know fT |H0

(t), and can perform a test of the null hypothesis
with level of significance ↵.

The Student’s t-distribution PDF is symmetric about 0. We use a two-sided test, so we compute threshold
t↵/2 so that FT |H0

(�t↵2) = ↵/2. Then, our decision rule is: if |T | > t↵2 , we reject hypothesis H0 at a level
of significance ↵. Otherwise, we don’t reject hypothesis H0.

Equivalently, we compute the p-value of the computed T -statistic T = t, as p = 2 ⇤ F (�|t|). If p < ↵, we
can reject hypothesis H0 at a level of significance ↵.

Example 9.14
Consider the problem of example 9.13, except that we don’t know the true standard deviation �2 of the lifetime of the
cells. You perform an experiment and measure the lifetime of 100 cells, and compute a sample mean lifetime of 1600 hours
and a sample standard deviation of 120 hours. Is the sample mean you measure significantly di↵erent from the population
mean at a significance level of 0.05?

Compute the T -statistic:

t =

p
n(Mn � 1570)

b� =
10(1600� 1570)

120
= 2.5.

The distribution of the T statistic is a Student’s t-distribution with 99 degrees of freedom. Looking up the p-value for 2.5
in either MATLAB or Microsoft Excel, it is 2 · 0.00703 = 0.01406, which is less than 0.05, so the results support rejecting
hypothesis H0 with a level of significance 0.05.

Similarly, the threshold t0.025 is 1.984. Since 2.5 is greater than that threshold, the results support rejecting hypothesis
H0.

Suppose we approximated the T - statistic distribution by a standard Gaussian distribution. What would be the
corresponding threshold t0.025? We have computed this to be 1.96. We see that the threshold using the correct distribution
is slightly larger.
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9.4.3 Two Samples T - and Z-tests

In one sample tests, we want to evaluate the null hypothesis that a collection of observations is consistent
with a prior probability model. In two sample tests, we are interested in evaluating the null hypothesis that
two sets of observations are consistent with a common probability model. We begin with the two-sample
Z-tests.

Assume we have two Gaussian random variables X, Y , where X ⇠ N (µ1, �2
1), and Y ⇠ N (µ2, �2

2).
Assume we collect a set of n1 independent samples X1, . . . , Xn1 of X, and n2 independent samples Y1, . . . , Yn2

of Y . We want to test the null hypothesis that µ1 = µ2 with a level of significance ↵.

The sample mean of the first set, M (1)
n1 = 1

n1

P
n1

k=1 Xk, is a Gaussian random variable with mean µ1

and variance �
2
1

n1
. Similarly, the sample mean of the second set, M (2)

n2 = 1
n2

P
n2

k=1 Yk is a Gaussian random

variable with mean µ2 and variance �
2
2

n2
. Random variables M (1)

n1 , M (2)
n2 are independent.

Under hypothesis H0, the di↵erence M (1)
n1 �M (2)

n2 is a Gaussian random variable with mean 0 and variance
�

2
1

n1
+ �

2
2

n2
, as it is the di↵erence of two independent Gaussian random variables. We define the Z-statistic as

Z =
M (1)

n1 � M (2)
n2q

�
2
1

n1
+ �

2
2

n2

.

Under H0, Z is a Gaussian random variable with mean 0, variance 1. To evaluate H0 with a level of
significance ↵, we perform the same test as before: Compute the test statistic Z = z based on the data.
Then, compute threshold t↵/2 such that �(�t↵/2) = ↵/2, and determine whether |z| > t↵/2. If it is, reject
the null hypothesis H0 with level of significance ↵. Equivalent, compute the p-value p = 2�(�|t|) and reject
the null hypothesis with significance level ↵ if p < ↵.

Note that we don’t need to know the values of µ1 = µ2 to conduct this Z-test. However, we do need to
know the standard deviations of the two sets �1 and �2.

What if the variances �2
1 , �2

2 were not known? We can use a simple generalization of the one-sample

T -test when the unknown variances are assumed to be the same. We know
M

(1)
n1

�M
(2)
n2q

�2
n1

+ �2
n2

is a standard Gaussian

random variable. We also know that (n1 � 1)
V

(1)
n1
�2 + (n2 � 1)

V
(2)
n2
�2 is a chi-squared random variable with

n1 + n2 � 2 degrees of freedom. Then, the T -statistic can be defined as

T =
M (1)

n1 � M (2)
n2

b�
q

1
n1

+ 1
n2

where

b� =

s
(n1 � 1)V (1)

n1 + (n2 � 1)V (2)
n2

n1 + n2 � 2

is the pooled variance.

The T - statistic has a Student’s t-distribution with n1 + n2 � 2 degrees of freedom, and can now be used
to accept or reject the null hypothesis with a desired level of significance.

When the variances are unequal and unknown, one can derive a more complex test with approximate
numbers of degrees of freedom, known as Welch’s t-test. This results in T -statistics that have fractional
degrees of freedom. The details can be found in statistics books or in Wikipedia.

Example 9.15
To investigate the e↵ect of a new hay fever drug on driving skills, a researcher studies 24 individuals with hay fever: 12
who have been taking the drug and 12 who have not. All participants then entered a simulator and were given a driving
test which assigned a score to each driver as summarized in the table below:
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Control 23 15 16 25 20 17 18 14 12 19 21 22
Drug 16 21 16 11 24 21 18 15 19 22 13 24

We want to test the null hypothesis that the drug has no adverse e↵ects in decreasing the average score of the drivers with
a lever of significance 0.05. We compute the sample mean and variance for the two groups as M (1) = 18.5,M (2) = 18.33,
V (1) = 15.18, V (2) = 17.88. We assume the variances are the same, since the sampled variances are similar, and compute
the pooled variance as b�2 = 16.53. Given the mean values, the resulting pooled variance, and the number of samples
n1, n2, the value of the T -statistic is 0.1004. The one-sided p-value of this T -statistic with 22 degrees of freedom is 0.46,
which is much higher than the desired level of significance of 0.05. Thus, we fail to reject the null hypothesis and are 95%
confident that any di↵erence between the two groups is due to chance variations.

The two-sample T -tests and Z-tests depend on the assumption that the distribution of the underlying
random variables from which the samples are generated is Gaussian. When that assumption is violated, we
can still apply the T -tests and Z-tests as appropriate when the number of samples in each group n1, n2 are
su�ciently large (greater than 30) so that the Central Limit Theorem allows us to use Gaussian distribution

approximations for the sample means M (1)
n1 , M (2)

n2 .


